Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Tobias Nipkow *) | |
section "Skew Heap Analysis" | |
theory Skew_Heap_Analysis | |
imports | |
Complex_Main | |
Skew_Heap.Skew_Heap | |
Amortized_Framework | |
Priority_Queue_ops_merge | |
begin | |
text\<open>The following proof is a simplified version of the one by Kaldewaij and | |
Schoenmakers~\cite{KaldewaijS-IPL91}.\<close> | |
text \<open>right-heavy:\<close> | |
definition rh :: "'a tree => 'a tree => nat" where | |
"rh l r = (if size l < size r then 1 else 0)" | |
text \<open>Function \<open>\<Gamma>\<close> in \cite{KaldewaijS-IPL91}: number of right-heavy nodes on left spine.\<close> | |
fun lrh :: "'a tree \<Rightarrow> nat" where | |
"lrh Leaf = 0" | | |
"lrh (Node l _ r) = rh l r + lrh l" | |
text \<open>Function \<open>\<Delta>\<close> in \cite{KaldewaijS-IPL91}: number of not-right-heavy nodes on right spine.\<close> | |
fun rlh :: "'a tree \<Rightarrow> nat" where | |
"rlh Leaf = 0" | | |
"rlh (Node l _ r) = (1 - rh l r) + rlh r" | |
lemma Gexp: "2 ^ lrh t \<le> size t + 1" | |
by (induction t) (auto simp: rh_def) | |
corollary Glog: "lrh t \<le> log 2 (size1 t)" | |
by (metis Gexp le_log2_of_power size1_size) | |
lemma Dexp: "2 ^ rlh t \<le> size t + 1" | |
by (induction t) (auto simp: rh_def) | |
corollary Dlog: "rlh t \<le> log 2 (size1 t)" | |
by (metis Dexp le_log2_of_power size1_size) | |
function T_merge :: "'a::linorder tree \<Rightarrow> 'a tree \<Rightarrow> nat" where | |
"T_merge Leaf t = 1" | | |
"T_merge t Leaf = 1" | | |
"T_merge (Node l1 a1 r1) (Node l2 a2 r2) = | |
(if a1 \<le> a2 then T_merge (Node l2 a2 r2) r1 else T_merge (Node l1 a1 r1) r2) + 1" | |
by pat_completeness auto | |
termination | |
by (relation "measure (\<lambda>(x, y). size x + size y)") auto | |
fun \<Phi> :: "'a tree \<Rightarrow> int" where | |
"\<Phi> Leaf = 0" | | |
"\<Phi> (Node l _ r) = \<Phi> l + \<Phi> r + rh l r" | |
lemma \<Phi>_nneg: "\<Phi> t \<ge> 0" | |
by (induction t) auto | |
lemma plus_log_le_2log_plus: "\<lbrakk> x > 0; y > 0; b > 1 \<rbrakk> | |
\<Longrightarrow> log b x + log b y \<le> 2 * log b (x + y)" | |
by(subst mult_2; rule add_mono; auto) | |
lemma rh1: "rh l r \<le> 1" | |
by(simp add: rh_def) | |
lemma amor_le_long: | |
"T_merge t1 t2 + \<Phi> (merge t1 t2) - \<Phi> t1 - \<Phi> t2 \<le> | |
lrh(merge t1 t2) + rlh t1 + rlh t2 + 1" | |
proof (induction t1 t2 rule: merge.induct) | |
case 1 thus ?case by simp | |
next | |
case 2 thus ?case by simp | |
next | |
case (3 l1 a1 r1 l2 a2 r2) | |
show ?case | |
proof (cases "a1 \<le> a2") | |
case True | |
let ?t1 = "Node l1 a1 r1" let ?t2 = "Node l2 a2 r2" let ?m = "merge ?t2 r1" | |
have "T_merge ?t1 ?t2 + \<Phi> (merge ?t1 ?t2) - \<Phi> ?t1 - \<Phi> ?t2 | |
= T_merge ?t2 r1 + 1 + \<Phi> ?m + \<Phi> l1 + rh ?m l1 - \<Phi> ?t1 - \<Phi> ?t2" | |
using True by (simp) | |
also have "\<dots> = T_merge ?t2 r1 + 1 + \<Phi> ?m + rh ?m l1 - \<Phi> r1 - rh l1 r1 - \<Phi> ?t2" | |
by simp | |
also have "\<dots> \<le> lrh ?m + rlh ?t2 + rlh r1 + rh ?m l1 + 2 - rh l1 r1" | |
using "3.IH"(1)[OF True] by linarith | |
also have "\<dots> = lrh ?m + rlh ?t2 + rlh r1 + rh ?m l1 + 1 + (1 - rh l1 r1)" | |
using rh1[of l1 r1] by (simp) | |
also have "\<dots> = lrh ?m + rlh ?t2 + rlh ?t1 + rh ?m l1 + 1" | |
by (simp) | |
also have "\<dots> = lrh (merge ?t1 ?t2) + rlh ?t1 + rlh ?t2 + 1" | |
using True by(simp) | |
finally show ?thesis . | |
next | |
case False with 3 show ?thesis by auto | |
qed | |
qed | |
lemma amor_le: | |
"T_merge t1 t2 + \<Phi> (merge t1 t2) - \<Phi> t1 - \<Phi> t2 \<le> | |
lrh(merge t1 t2) + rlh t1 + rlh t2 + 1" | |
by(induction t1 t2 rule: merge.induct)(auto) | |
lemma a_merge: | |
"T_merge t1 t2 + \<Phi>(merge t1 t2) - \<Phi> t1 - \<Phi> t2 \<le> | |
3 * log 2 (size1 t1 + size1 t2) + 1" (is "?l \<le> _") | |
proof - | |
have "?l \<le> lrh(merge t1 t2) + rlh t1 + rlh t2 + 1" using amor_le[of t1 t2] by arith | |
also have "\<dots> = real(lrh(merge t1 t2)) + rlh t1 + rlh t2 + 1" by simp | |
also have "\<dots> = real(lrh(merge t1 t2)) + (real(rlh t1) + rlh t2) + 1" by simp | |
also have "rlh t1 \<le> log 2 (size1 t1)" by(rule Dlog) | |
also have "rlh t2 \<le> log 2 (size1 t2)" by(rule Dlog) | |
also have "lrh (merge t1 t2) \<le> log 2 (size1(merge t1 t2))" by(rule Glog) | |
also have "size1(merge t1 t2) = size1 t1 + size1 t2 - 1" by(simp add: size1_size size_merge) | |
also have "log 2 (size1 t1 + size1 t2 - 1) \<le> log 2 (size1 t1 + size1 t2)" by(simp add: size1_size) | |
also have "log 2 (size1 t1) + log 2 (size1 t2) \<le> 2 * log 2 (real(size1 t1) + (size1 t2))" | |
by(rule plus_log_le_2log_plus) (auto simp: size1_size) | |
finally show ?thesis by(simp) | |
qed | |
definition T_insert :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> int" where | |
"T_insert a t = T_merge (Node Leaf a Leaf) t + 1" | |
lemma a_insert: "T_insert a t + \<Phi>(skew_heap.insert a t) - \<Phi> t \<le> 3 * log 2 (size1 t + 2) + 2" | |
using a_merge[of "Node Leaf a Leaf" "t"] | |
by (simp add: numeral_eq_Suc T_insert_def rh_def) | |
definition T_del_min :: "('a::linorder) tree \<Rightarrow> int" where | |
"T_del_min t = (case t of Leaf \<Rightarrow> 1 | Node t1 a t2 \<Rightarrow> T_merge t1 t2 + 1)" | |
lemma a_del_min: "T_del_min t + \<Phi>(skew_heap.del_min t) - \<Phi> t \<le> 3 * log 2 (size1 t + 2) + 2" | |
proof (cases t) | |
case Leaf thus ?thesis by (simp add: T_del_min_def) | |
next | |
case (Node t1 _ t2) | |
have [arith]: "log 2 (2 + (real (size t1) + real (size t2))) \<le> | |
log 2 (4 + (real (size t1) + real (size t2)))" by simp | |
from Node show ?thesis using a_merge[of t1 t2] | |
by (simp add: size1_size T_del_min_def rh_def) | |
qed | |
subsubsection "Instantiation of Amortized Framework" | |
lemma T_merge_nneg: "T_merge t1 t2 \<ge> 0" | |
by(induction t1 t2 rule: T_merge.induct) auto | |
fun exec :: "'a::linorder op \<Rightarrow> 'a tree list \<Rightarrow> 'a tree" where | |
"exec Empty [] = Leaf" | | |
"exec (Insert a) [t] = skew_heap.insert a t" | | |
"exec Del_min [t] = skew_heap.del_min t" | | |
"exec Merge [t1,t2] = merge t1 t2" | |
fun cost :: "'a::linorder op \<Rightarrow> 'a tree list \<Rightarrow> nat" where | |
"cost Empty [] = 1" | | |
"cost (Insert a) [t] = T_merge (Node Leaf a Leaf) t + 1" | | |
"cost Del_min [t] = (case t of Leaf \<Rightarrow> 1 | Node t1 a t2 \<Rightarrow> T_merge t1 t2 + 1)" | | |
"cost Merge [t1,t2] = T_merge t1 t2" | |
fun U where | |
"U Empty [] = 1" | | |
"U (Insert _) [t] = 3 * log 2 (size1 t + 2) + 2" | | |
"U Del_min [t] = 3 * log 2 (size1 t + 2) + 2" | | |
"U Merge [t1,t2] = 3 * log 2 (size1 t1 + size1 t2) + 1" | |
interpretation Amortized | |
where arity = arity and exec = exec and inv = "\<lambda>_. True" | |
and cost = cost and \<Phi> = \<Phi> and U = U | |
proof (standard, goal_cases) | |
case 1 show ?case by simp | |
next | |
case (2 t) show ?case using \<Phi>_nneg[of t] by linarith | |
next | |
case (3 ss f) | |
show ?case | |
proof (cases f) | |
case Empty thus ?thesis using 3(2) by (auto) | |
next | |
case [simp]: (Insert a) | |
obtain t where [simp]: "ss = [t]" using 3(2) by (auto) | |
thus ?thesis using a_merge[of "Node Leaf a Leaf" "t"] | |
by (simp add: numeral_eq_Suc insert_def rh_def T_merge_nneg) | |
next | |
case [simp]: Del_min | |
obtain t where [simp]: "ss = [t]" using 3(2) by (auto) | |
thus ?thesis | |
proof (cases t) | |
case Leaf with Del_min show ?thesis by simp | |
next | |
case (Node t1 _ t2) | |
have [arith]: "log 2 (2 + (real (size t1) + real (size t2))) \<le> | |
log 2 (4 + (real (size t1) + real (size t2)))" by simp | |
from Del_min Node show ?thesis using a_merge[of t1 t2] | |
by (simp add: size1_size T_merge_nneg) | |
qed | |
next | |
case [simp]: Merge | |
obtain t1 t2 where "ss = [t1,t2]" using 3(2) by (auto simp: numeral_eq_Suc) | |
thus ?thesis using a_merge[of t1 t2] by (simp add: T_merge_nneg) | |
qed | |
qed | |
end | |