Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Load Balancing\<close> | |
theory Approx_LB_Hoare | |
imports Complex_Main "HOL-Hoare.Hoare_Logic" | |
begin | |
text \<open>This is a formalization of the load balancing algorithms and proofs | |
in the book by Kleinberg and Tardos \cite{KleinbergT06}.\<close> | |
hide_const (open) sorted | |
(* TODO: mv *) | |
lemma sum_le_card_Max: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> sum f A \<le> card A * Max (f ` A)" | |
proof(induction A rule: finite_ne_induct) | |
case (singleton x) | |
then show ?case by simp | |
next | |
case (insert x F) | |
then show ?case by (auto simp: max_def order.trans[of "sum f F" "card F * Max (f ` F)"]) | |
qed | |
lemma Max_const[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Max ((\<lambda>_. c) ` A) = c" | |
using Max_in image_is_empty by blast | |
abbreviation Max\<^sub>0 :: "nat set \<Rightarrow> nat" where | |
"Max\<^sub>0 N \<equiv> (if N={} then 0 else Max N)" | |
fun f_Max\<^sub>0 :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat" where | |
"f_Max\<^sub>0 f 0 = 0" | |
| "f_Max\<^sub>0 f (Suc x) = max (f (Suc x)) (f_Max\<^sub>0 f x)" | |
lemma f_Max\<^sub>0_equiv: "f_Max\<^sub>0 f n = Max\<^sub>0 (f ` {1..n})" | |
by (induction n) (auto simp: not_le atLeastAtMostSuc_conv) | |
lemma f_Max\<^sub>0_correct: | |
"\<forall>x \<in> {1..m}. T x \<le> f_Max\<^sub>0 T m" | |
"m > 0 \<Longrightarrow> \<exists>x \<in> {1..m}. T x = f_Max\<^sub>0 T m" | |
apply (induction m) | |
apply simp_all | |
apply (metis atLeastAtMost_iff le_Suc_eq max.cobounded1 max.coboundedI2) | |
subgoal for m by (cases \<open>m = 0\<close>) (auto simp: max_def) | |
done | |
lemma f_Max\<^sub>0_mono: | |
"y \<le> T x \<Longrightarrow> f_Max\<^sub>0 (T (x := y)) m \<le> f_Max\<^sub>0 T m" | |
"T x \<le> y \<Longrightarrow> f_Max\<^sub>0 T m \<le> f_Max\<^sub>0 (T (x := y)) m" | |
by (induction m) auto | |
lemma f_Max\<^sub>0_out_of_range [simp]: | |
"x \<notin> {1..k} \<Longrightarrow> f_Max\<^sub>0 (T (x := y)) k = f_Max\<^sub>0 T k" | |
by (induction k) auto | |
lemma fun_upd_f_Max\<^sub>0: | |
assumes "x \<in> {1..m}" "T x \<le> y" | |
shows "f_Max\<^sub>0 (T (x := y)) m = max y (f_Max\<^sub>0 T m)" | |
using assms by (induction m) auto | |
locale LoadBalancing = (* Load Balancing *) | |
fixes t :: "nat \<Rightarrow> nat" | |
and m :: nat | |
and n :: nat | |
assumes m_gt_0: "m > 0" | |
begin | |
subsection \<open>Formalization of a Correct Load Balancing\<close> | |
subsubsection \<open>Definition\<close> | |
definition lb :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat set) \<Rightarrow> nat \<Rightarrow> bool" where | |
"lb T A j = ((\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}) \<comment> \<open>No job is assigned to more than one machine\<close> | |
\<and> (\<Union>x \<in> {1..m}. A x) = {1..j} \<comment> \<open>Every job is assigned\<close> | |
\<and> (\<forall>x \<in> {1..m}. (\<Sum>j \<in> A x. t j) = T x) \<comment> \<open>The processing times sum up to the correct load\<close>)" | |
abbreviation makespan :: "(nat \<Rightarrow> nat) \<Rightarrow> nat" where | |
"makespan T \<equiv> f_Max\<^sub>0 T m" | |
lemma makespan_def': "makespan T = Max (T ` {1..m})" | |
using m_gt_0 by (simp add: f_Max\<^sub>0_equiv) | |
(* | |
lemma makespan_correct: | |
"\<forall>x \<in> {1..m}. T x \<le> makespan T m" | |
"m > 0 \<Longrightarrow> \<exists>x \<in> {1..m}. T x = makespan T m" | |
apply (induction m) | |
apply simp_all | |
apply (metis atLeastAtMost_iff le_Suc_eq max.cobounded1 max.coboundedI2) | |
subgoal for m by (cases \<open>m = 0\<close>) (auto simp: max_def) | |
done | |
lemma no_machines_lb_iff_no_jobs: "lb T A j 0 \<longleftrightarrow> j = 0" | |
unfolding lb_def by auto | |
lemma machines_if_jobs: "\<lbrakk> lb T A j m; j > 0 \<rbrakk> \<Longrightarrow> m > 0" | |
using no_machines_lb_iff_no_jobs by (cases m) auto | |
*) | |
lemma makespan_correct: | |
"\<forall>x \<in> {1..m}. T x \<le> makespan T" | |
"\<exists>x \<in> {1..m}. T x = makespan T" | |
using f_Max\<^sub>0_correct m_gt_0 by auto | |
lemma lbE: | |
assumes "lb T A j" | |
shows "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}" | |
"(\<Union>x \<in> {1..m}. A x) = {1..j}" | |
"\<forall>x \<in> {1..m}. (\<Sum>y \<in> A x. t y) = T x" | |
using assms unfolding lb_def by blast+ | |
lemma lbI: | |
assumes "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}" | |
"(\<Union>x \<in> {1..m}. A x) = {1..j}" | |
"\<forall>x \<in> {1..m}. (\<Sum>y \<in> A x. t y) = T x" | |
shows "lb T A j" using assms unfolding lb_def by blast | |
lemma A_lb_finite [simp]: | |
assumes "lb T A j" "x \<in> {1..m}" | |
shows "finite (A x)" | |
by (metis lbE(2) assms finite_UN finite_atLeastAtMost) | |
text \<open>If \<open>A x\<close> is pairwise disjoint for all \<open>x \<in> {1..m}\<close>, then the the sum over the sums of the | |
individual \<open>A x\<close> is equal to the sum over the union of all \<open>A x\<close>.\<close> | |
lemma sum_sum_eq_sum_Un: | |
fixes A :: "nat \<Rightarrow> nat set" | |
assumes "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}" | |
and "\<forall>x \<in> {1..m}. finite (A x)" | |
shows "(\<Sum>x \<in> {1..m}. (\<Sum>y \<in> A x. t y)) = (\<Sum>x \<in> (\<Union>y \<in> {1..m}. A y). t x)" | |
using assms | |
proof (induction m) | |
case (Suc m) | |
have FINITE: "finite (\<Union>x \<in> {1..m}. A x)" "finite (A (Suc m))" | |
using Suc.prems(2) by auto | |
have "\<forall>x \<in> {1..m}. A x \<inter> A (Suc m) = {}" | |
using Suc.prems(1) by simp | |
then have DISJNT: "(\<Union>x \<in> {1..m}. A x) \<inter> (A (Suc m)) = {}" using Union_disjoint by blast | |
have "(\<Sum>x \<in> (\<Union>y \<in> {1..m}. A y). t x) + (\<Sum>x \<in> A (Suc m). t x) | |
= (\<Sum>x \<in> ((\<Union>y \<in> {1..m}. A y) \<union> A (Suc m)). t x)" | |
using sum.union_disjoint[OF FINITE DISJNT, symmetric] . | |
also have "... = (\<Sum>x \<in> (\<Union>y \<in> {1..Suc m}. A y). t x)" | |
by (metis UN_insert image_Suc_lessThan image_insert inf_sup_aci(5) lessThan_Suc) | |
finally show ?case using Suc by auto | |
qed simp | |
text \<open>If \<open>T\<close> and \<open>A\<close> are a correct load balancing for \<open>j\<close> jobs and \<open>m\<close> machines, | |
then the sum of the loads has to be equal to the sum of the processing times of the jobs\<close> | |
lemma lb_impl_job_sum: | |
assumes "lb T A j" | |
shows "(\<Sum>x \<in> {1..m}. T x) = (\<Sum>x \<in> {1..j}. t x)" | |
proof - | |
note lbrules = lbE[OF assms] | |
from assms have FINITE: "\<forall>x \<in> {1..m}. finite (A x)" by simp | |
have "(\<Sum>x \<in> {1..m}. T x) = (\<Sum>x \<in> {1..m}. (\<Sum>y \<in> A x. t y))" | |
using lbrules(3) by simp | |
also have "... = (\<Sum>x \<in> {1..j}. t x)" | |
using sum_sum_eq_sum_Un[OF lbrules(1) FINITE] | |
unfolding lbrules(2) . | |
finally show ?thesis . | |
qed | |
subsubsection \<open>Lower Bounds for the Makespan\<close> | |
text \<open>If \<open>T\<close> and \<open>A\<close> are a correct load balancing for \<open>j\<close> jobs and \<open>m\<close> machines, then the processing time | |
of any job \<open>x \<in> {1..j}\<close> is a lower bound for the load of some machine \<open>y \<in> {1..m}\<close>\<close> | |
lemma job_lower_bound_machine: | |
assumes "lb T A j" "x \<in> {1..j}" | |
shows "\<exists>y \<in> {1..m}. t x \<le> T y" | |
proof - | |
note lbrules = lbE[OF assms(1)] | |
have "\<exists>y \<in> {1..m}. x \<in> A y" using lbrules(2) assms(2) by blast | |
then obtain y where y_def: "y \<in> {1..m}" "x \<in> A y" .. | |
moreover have "finite (A y)" using assms(1) y_def(1) by simp | |
ultimately have "t x \<le> (\<Sum>x \<in> A y. t x)" using lbrules(1) member_le_sum by fast | |
also have "... = T y" using lbrules(3) y_def(1) by blast | |
finally show ?thesis using y_def(1) by blast | |
qed | |
text \<open>As the load of any machine is a lower bound for the makespan, the processing time | |
of any job \<open>x \<in> {1..j}\<close> has to also be a lower bound for the makespan. | |
Follows from @{thm [source] job_lower_bound_machine} and @{thm [source] makespan_correct}.\<close> | |
lemma job_lower_bound_makespan: | |
assumes "lb T A j" "x \<in> {1..j}" | |
shows "t x \<le> makespan T" | |
by (meson job_lower_bound_machine[OF assms] makespan_correct(1) le_trans) | |
text \<open>The makespan over \<open>j\<close> jobs is a lower bound for the makespan of any correct load balancing for \<open>j\<close> jobs.\<close> | |
lemma max_job_lower_bound_makespan: | |
assumes "lb T A j" | |
shows "Max\<^sub>0 (t ` {1..j}) \<le> makespan T" | |
using job_lower_bound_makespan[OF assms] by fastforce | |
lemma job_dist_lower_bound_makespan: | |
assumes "lb T A j" | |
shows "(\<Sum>x \<in> {1..j}. t x) / m \<le> makespan T" | |
proof - | |
have "(\<Sum>x \<in> {1..j}. t x) \<le> m * makespan T" | |
using assms lb_impl_job_sum[symmetric] | |
and sum_le_card_Max[of "{1..m}"] m_gt_0 by (simp add: makespan_def') | |
then have "real (\<Sum>x \<in> {1..j}. t x) \<le> real m * real (makespan T)" | |
using of_nat_mono by fastforce | |
then show ?thesis by (simp add: field_simps m_gt_0) | |
qed | |
subsection \<open>The Greedy Approximation Algorithm\<close> | |
text \<open>This function will perform a linear scan from \<open>k \<in> {1..m}\<close> and return the index of the machine with minimum load assuming \<open>m > 0\<close>\<close> | |
fun min_arg :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat" where | |
"min_arg T 0 = 1" | |
| "min_arg T (Suc x) = | |
(let k = min_arg T x | |
in if T (Suc x) < T k then (Suc x) else k)" | |
lemma min_correct: | |
"\<forall>x \<in> {1..m}. T (min_arg T m) \<le> T x" | |
by (induction m) (auto simp: Let_def le_Suc_eq, force) | |
lemma min_in_range: | |
"k > 0 \<Longrightarrow> (min_arg T k) \<in> {1..k}" | |
by (induction k) (auto simp: Let_def, force+) | |
lemma add_job: | |
assumes "lb T A j" "x \<in> {1..m}" | |
shows "lb (T (x := T x + t (Suc j))) (A (x := A x \<union> {Suc j})) (Suc j)" | |
(is \<open>lb ?T ?A _\<close>) | |
proof - | |
note lbrules = lbE[OF assms(1)] | |
\<comment> \<open>Rule 1: @{term ?A} pairwise disjoint\<close> | |
have NOTIN: "\<forall>i \<in> {1..m}. Suc j \<notin> A i" using lbrules(2) assms(2) by force | |
with lbrules(1) have "\<forall>i \<in> {1..m}. i \<noteq> x \<longrightarrow> A i \<inter> (A x \<union> {Suc j}) = {}" | |
using assms(2) by blast | |
then have 1: "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> ?A x \<inter> ?A y = {}" | |
using lbrules(1) by simp | |
\<comment> \<open>Rule 2: @{term ?A} contains all jobs\<close> | |
have "(\<Union>y \<in> {1..m}. ?A y) = (\<Union>y \<in> {1..m}. A y) \<union> {Suc j}" | |
using UNION_fun_upd assms(2) by auto | |
also have "... = {1..Suc j}" unfolding lbrules(2) by auto | |
finally have 2: "(\<Union>y \<in> {1..m}. ?A y) = {1..Suc j}" . | |
\<comment> \<open>Rule 3: @{term ?A} sums to @{term ?T}\<close> | |
have "(\<Sum>i \<in> ?A x. t i) = (\<Sum>i \<in> A x \<union> {Suc j}. t i)" by simp | |
moreover have "A x \<inter> {Suc j} = {}" using NOTIN assms(2) by blast | |
moreover have "finite (A x)" "finite {Suc j}" using assms by simp+ | |
ultimately have "(\<Sum>i \<in> ?A x. t i) = (\<Sum>i \<in> A x. t i) + (\<Sum>i \<in> {Suc j}. t i)" | |
using sum.union_disjoint by simp | |
also have "... = T x + t (Suc j)" using lbrules(3) assms(2) by simp | |
finally have "(\<Sum>i \<in> ?A x. t i) = ?T x" by simp | |
then have 3: "\<forall>i \<in> {1..m}. (\<Sum>j \<in> ?A i. t j) = ?T i" | |
using lbrules(3) assms(2) by simp | |
from lbI[OF 1 2 3] show ?thesis . | |
qed | |
lemma makespan_mono: | |
"y \<le> T x \<Longrightarrow> makespan (T (x := y)) \<le> makespan T" | |
"T x \<le> y \<Longrightarrow> makespan T \<le> makespan (T (x := y))" | |
using f_Max\<^sub>0_mono by auto | |
lemma smaller_optimum: | |
assumes "lb T A (Suc j)" | |
shows "\<exists>T' A'. lb T' A' j \<and> makespan T' \<le> makespan T" | |
proof - | |
note lbrules = lbE[OF assms] | |
have "\<exists>x \<in> {1..m}. Suc j \<in> A x" using lbrules(2) by auto | |
then obtain x where x_def: "x \<in> {1..m}" "Suc j \<in> A x" .. | |
let ?T = "T (x := T x - t (Suc j))" | |
let ?A = "A (x := A x - {Suc j})" | |
\<comment> \<open>Rule 1: @{term ?A} pairwise disjoint\<close> | |
from lbrules(1) have "\<forall>i \<in> {1..m}. i \<noteq> x \<longrightarrow> A i \<inter> (A x - {Suc j}) = {}" | |
using x_def(1) by blast | |
then have 1: "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> ?A x \<inter> ?A y = {}" | |
using lbrules(1) by auto | |
\<comment> \<open>Rule 2: @{term ?A} contains all jobs\<close> | |
have NOTIN: "\<forall>i \<in> {1..m}. i \<noteq> x \<longrightarrow> Suc j \<notin> A i" using lbrules(1) x_def by blast | |
then have "(\<Union>y \<in> {1..m}. ?A y) = (\<Union>y \<in> {1..m}. A y) - {Suc j}" | |
using UNION_fun_upd x_def by auto | |
also have "... = {1..j}" unfolding lbrules(2) by auto | |
finally have 2: "(\<Union>y \<in> {1..m}. ?A y) = {1..j}" . | |
\<comment> \<open>Rule 3: @{term ?A} sums to @{term ?T}\<close> | |
have "(\<Sum>i \<in> A x - {Suc j}. t i) = (\<Sum>i \<in> A x. t i) - t (Suc j)" | |
by (simp add: sum_diff1_nat x_def(2)) | |
also have "... = T x - t (Suc j)" using lbrules(3) x_def(1) by simp | |
finally have "(\<Sum>i \<in> ?A x. t i) = ?T x" by simp | |
then have 3: "\<forall>i \<in> {1..m}. (\<Sum>j \<in> ?A i. t j) = ?T i" | |
using lbrules(3) x_def(1) by simp | |
\<comment> \<open>@{term makespan} is not larger\<close> | |
have "lb ?T ?A j \<and> makespan ?T \<le> makespan T" | |
using lbI[OF 1 2 3] makespan_mono(1) by force | |
then show ?thesis by blast | |
qed | |
text \<open>If the processing time \<open>y\<close> does not contribute to the makespan, we can ignore it.\<close> | |
lemma remove_small_job: | |
assumes "makespan (T (x := T x + y)) \<noteq> T x + y" | |
shows "makespan (T (x := T x + y)) = makespan T" | |
proof - | |
let ?T = "T (x := T x + y)" | |
have NOT_X: "makespan ?T \<noteq> ?T x" using assms(1) by simp | |
then have "\<exists>i \<in> {1..m}. makespan ?T = ?T i \<and> i \<noteq> x" | |
using makespan_correct(2) by metis | |
then obtain i where i_def: "i \<in> {1..m}" "makespan ?T = ?T i" "i \<noteq> x" by blast | |
then have "?T i = T i" using NOT_X by simp | |
moreover from this have "makespan T = T i" | |
by (metis i_def(1,2) antisym_conv le_add1 makespan_mono(2) makespan_correct(1)) | |
ultimately show ?thesis using i_def(2) by simp | |
qed | |
lemma greedy_makespan_no_jobs [simp]: | |
"makespan (\<lambda>_. 0) = 0" | |
using m_gt_0 by (simp add: makespan_def') | |
lemma min_avg: "m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..m}. T i)" | |
(is \<open>_ * ?T \<le> ?S\<close>) | |
proof - | |
have "(\<Sum>_ \<in> {1..m}. ?T) \<le> ?S" | |
using sum_mono[of \<open>{1..m}\<close> \<open>\<lambda>_. ?T\<close> T] | |
and min_correct by blast | |
then show ?thesis by simp | |
qed | |
definition inv\<^sub>1 :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat set) \<Rightarrow> nat \<Rightarrow> bool" where | |
"inv\<^sub>1 T A j = (lb T A j \<and> j \<le> n \<and> (\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 2 * makespan T'))" | |
lemma inv\<^sub>1E: | |
assumes "inv\<^sub>1 T A j" | |
shows "lb T A j" "j \<le> n" | |
"lb T' A' j \<Longrightarrow> makespan T \<le> 2 * makespan T'" | |
using assms unfolding inv\<^sub>1_def by blast+ | |
lemma inv\<^sub>1I: | |
assumes "lb T A j" "j \<le> n" "\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 2 * makespan T'" | |
shows "inv\<^sub>1 T A j" using assms unfolding inv\<^sub>1_def by blast | |
lemma inv\<^sub>1_step: | |
assumes "inv\<^sub>1 T A j" "j < n" | |
shows "inv\<^sub>1 (T ((min_arg T m) := T (min_arg T m) + t (Suc j))) | |
(A ((min_arg T m) := A (min_arg T m) \<union> {Suc j})) (Suc j)" | |
(is \<open>inv\<^sub>1 ?T ?A _\<close>) | |
proof - | |
note invrules = inv\<^sub>1E[OF assms(1)] | |
\<comment> \<open>Greedy is correct\<close> | |
have LB: "lb ?T ?A (Suc j)" | |
using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast | |
\<comment> \<open>Greedy maintains approximation factor\<close> | |
have MK: "\<forall>T' A'. lb T' A' (Suc j) \<longrightarrow> makespan ?T \<le> 2 * makespan T'" | |
proof rule+ | |
fix T\<^sub>1 A\<^sub>1 assume "lb T\<^sub>1 A\<^sub>1 (Suc j)" | |
from smaller_optimum[OF this] | |
obtain T\<^sub>0 A\<^sub>0 where "lb T\<^sub>0 A\<^sub>0 j" "makespan T\<^sub>0 \<le> makespan T\<^sub>1" by blast | |
then have IH: "makespan T \<le> 2 * makespan T\<^sub>1" | |
using invrules(3) by force | |
show "makespan ?T \<le> 2 * makespan T\<^sub>1" | |
proof (cases \<open>makespan ?T = T (min_arg T m) + t (Suc j)\<close>) | |
case True | |
have "m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..m}. T i)" by (rule min_avg) | |
also have "... = (\<Sum>i \<in> {1..j}. t i)" by (rule lb_impl_job_sum[OF invrules(1)]) | |
finally have "real m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i)" | |
by (auto dest: of_nat_mono) | |
with m_gt_0 have "T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i) / m" | |
by (simp add: field_simps) | |
then have "T (min_arg T m) \<le> makespan T\<^sub>1" | |
using job_dist_lower_bound_makespan[OF \<open>lb T\<^sub>0 A\<^sub>0 j\<close>] | |
and \<open>makespan T\<^sub>0 \<le> makespan T\<^sub>1\<close> by linarith | |
moreover have "t (Suc j) \<le> makespan T\<^sub>1" | |
using job_lower_bound_makespan[OF \<open>lb T\<^sub>1 A\<^sub>1 (Suc j)\<close>] by simp | |
ultimately show ?thesis unfolding True by simp | |
next | |
case False show ?thesis using remove_small_job[OF False] IH by simp | |
qed | |
qed | |
from inv\<^sub>1I[OF LB _ MK] show ?thesis using assms(2) by simp | |
qed | |
lemma simple_greedy_approximation: | |
"VARS T A i j | |
{True} | |
T := (\<lambda>_. 0); | |
A := (\<lambda>_. {}); | |
j := 0; | |
WHILE j < n INV {inv\<^sub>1 T A j} DO | |
i := min_arg T m; | |
j := (Suc j); | |
A := A (i := A(i) \<union> {j}); | |
T := T (i := T(i) + t j) | |
OD | |
{lb T A n \<and> (\<forall>T' A'. lb T' A' n \<longrightarrow> makespan T \<le> 2 * makespan T')}" | |
proof (vcg, goal_cases) | |
case (1 T A i j) | |
then show ?case by (simp add: lb_def inv\<^sub>1_def) | |
next | |
case (2 T A i j) | |
then show ?case using inv\<^sub>1_step by simp | |
next | |
case (3 T A i j) | |
then show ?case unfolding inv\<^sub>1_def by force | |
qed | |
definition sorted :: "nat \<Rightarrow> bool" where | |
"sorted j = (\<forall>x \<in> {1..j}. \<forall>y \<in> {1..x}. t x \<le> t y)" | |
lemma sorted_smaller [simp]: "\<lbrakk> sorted j; j \<ge> j' \<rbrakk> \<Longrightarrow> sorted j'" | |
unfolding sorted_def by simp | |
lemma j_gt_m_pigeonhole: | |
assumes "lb T A j" "j > m" | |
shows "\<exists>x \<in> {1..j}. \<exists>y \<in> {1..j}. \<exists>z \<in> {1..m}. x \<noteq> y \<and> x \<in> A z \<and> y \<in> A z" | |
proof - | |
have "\<forall>x \<in> {1..j}. \<exists>y \<in> {1..m}. x \<in> A y" | |
using lbE(2)[OF assms(1)] by blast | |
then have "\<exists>f. \<forall>x \<in> {1..j}. x \<in> A (f x) \<and> f x \<in> {1..m}" by metis | |
then obtain f where f_def: "\<forall>x \<in> {1..j}. x \<in> A (f x) \<and> f x \<in> {1..m}" .. | |
then have "card (f ` {1..j}) \<le> card {1..m}" | |
by (meson card_mono finite_atLeastAtMost image_subset_iff) | |
also have "... < card {1..j}" using assms(2) by simp | |
finally have "card (f ` {1..j}) < card {1..j}" . | |
then have "\<not> inj_on f {1..j}" using pigeonhole by blast | |
then have "\<exists>x \<in> {1..j}. \<exists>y \<in> {1..j}. x \<noteq> y \<and> f x = f y" | |
unfolding inj_on_def by blast | |
then show ?thesis using f_def by metis | |
qed | |
text \<open>If \<open>T\<close> and \<open>A\<close> are a correct load balancing for \<open>j\<close> jobs and \<open>m\<close> machines with \<open>j > m\<close>, | |
and the jobs are sorted in descending order, then there exists a machine \<open>x \<in> {1..m}\<close> | |
whose load is at least twice as large as the processing time of job \<open>j\<close>.\<close> | |
lemma sorted_job_lower_bound_machine: | |
assumes "lb T A j" "j > m" "sorted j" | |
shows "\<exists>x \<in> {1..m}. 2 * t j \<le> T x" | |
proof - | |
\<comment> \<open>Step 1: Obtaining the jobs\<close> | |
note lbrules = lbE[OF assms(1)] | |
obtain j\<^sub>1 j\<^sub>2 x where *: | |
"j\<^sub>1 \<in> {1..j}" "j\<^sub>2 \<in> {1..j}" "x \<in> {1..m}" "j\<^sub>1 \<noteq> j\<^sub>2" "j\<^sub>1 \<in> A x" "j\<^sub>2 \<in> A x" | |
using j_gt_m_pigeonhole[OF assms(1,2)] by blast | |
\<comment> \<open>Step 2: Jobs contained in sum\<close> | |
have "finite (A x)" using assms(1) *(3) by simp | |
then have SUM: "(\<Sum>i \<in> A x. t i) = t j\<^sub>1 + t j\<^sub>2 + (\<Sum>i \<in> A x - {j\<^sub>1} - {j\<^sub>2}. t i)" | |
using *(4-6) by (simp add: sum.remove) | |
\<comment> \<open>Step 3: Proof of lower bound\<close> | |
have "t j \<le> t j\<^sub>1" "t j \<le> t j\<^sub>2" | |
using assms(3) *(1-2) unfolding sorted_def by auto | |
then have "2 * t j \<le> t j\<^sub>1 + t j\<^sub>2" by simp | |
also have "... \<le> (\<Sum>i \<in> A x. t i)" unfolding SUM by simp | |
finally have "2 * t j \<le> T x" using lbrules(3) *(3) by simp | |
then show ?thesis using *(3) by blast | |
qed | |
text \<open>Reasoning analogous to @{thm [source] job_lower_bound_makespan}.\<close> | |
lemma sorted_job_lower_bound_makespan: | |
assumes "lb T A j" "j > m" "sorted j" | |
shows "2 * t j \<le> makespan T" | |
proof - | |
obtain x where x_def: "x \<in> {1..m}" "2 * t j \<le> T x" | |
using sorted_job_lower_bound_machine[OF assms] .. | |
with makespan_correct(1) have "T x \<le> makespan T" by blast | |
with x_def(2) show ?thesis by simp | |
qed | |
lemma min_zero: | |
assumes "x \<in> {1..k}" "T x = 0" | |
shows "T (min_arg T k) = 0" | |
using assms(1) | |
proof (induction k) | |
case (Suc k) | |
show ?case proof (cases \<open>x = Suc k\<close>) | |
case True | |
then show ?thesis using assms(2) by (simp add: Let_def) | |
next | |
case False | |
with Suc have "T (min_arg T k) = 0" by simp | |
then show ?thesis by simp | |
qed | |
qed simp | |
lemma min_zero_index: | |
assumes "x \<in> {1..k}" "T x = 0" | |
shows "min_arg T k \<le> x" | |
using assms(1) | |
proof (induction k) | |
case (Suc k) | |
show ?case proof (cases \<open>x = Suc k\<close>) | |
case True | |
then show ?thesis using min_in_range[of "Suc k"] by simp | |
next | |
case False | |
with Suc.prems have "x \<in> {1..k}" by simp | |
from min_zero[OF this, of T] assms(2) Suc.IH[OF this] | |
show ?thesis by simp | |
qed | |
qed simp | |
definition inv\<^sub>2 :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat set) \<Rightarrow> nat \<Rightarrow> bool" where | |
"inv\<^sub>2 T A j = (lb T A j \<and> j \<le> n | |
\<and> (\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 3 / 2 * makespan T') | |
\<and> (\<forall>x > j. T x = 0) | |
\<and> (j \<le> m \<longrightarrow> makespan T = Max\<^sub>0 (t ` {1..j})))" | |
lemma inv\<^sub>2E: | |
assumes "inv\<^sub>2 T A j" | |
shows "lb T A j" "j \<le> n" | |
"lb T' A' j \<Longrightarrow> makespan T \<le> 3 / 2 * makespan T'" | |
"\<forall>x > j. T x = 0" "j \<le> m \<Longrightarrow> makespan T = Max\<^sub>0 (t ` {1..j})" | |
using assms unfolding inv\<^sub>2_def by blast+ | |
lemma inv\<^sub>2I: | |
assumes "lb T A j" "j \<le> n" | |
"\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 3 / 2 * makespan T'" | |
"\<forall>x > j. T x = 0" | |
"j \<le> m \<Longrightarrow> makespan T = Max\<^sub>0 (t ` {1..j})" | |
shows "inv\<^sub>2 T A j" | |
unfolding inv\<^sub>2_def using assms by blast | |
lemma inv\<^sub>2_step: | |
assumes "sorted n" "inv\<^sub>2 T A j" "j < n" | |
shows "inv\<^sub>2 (T (min_arg T m := T(min_arg T m) + t(Suc j))) | |
(A (min_arg T m := A(min_arg T m) \<union> {Suc j})) (Suc j)" | |
(is \<open>inv\<^sub>2 ?T ?A _\<close>) | |
proof (cases \<open>Suc j > m\<close>) | |
case True note invrules = inv\<^sub>2E[OF assms(2)] | |
\<comment> \<open>Greedy is correct\<close> | |
have LB: "lb ?T ?A (Suc j)" | |
using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast | |
\<comment> \<open>Greedy maintains approximation factor\<close> | |
have MK: "\<forall>T' A'. lb T' A' (Suc j) \<longrightarrow> makespan ?T \<le> 3 / 2 * makespan T'" | |
proof rule+ | |
fix T\<^sub>1 A\<^sub>1 assume "lb T\<^sub>1 A\<^sub>1 (Suc j)" | |
from smaller_optimum[OF this] | |
obtain T\<^sub>0 A\<^sub>0 where "lb T\<^sub>0 A\<^sub>0 j" "makespan T\<^sub>0 \<le> makespan T\<^sub>1" by blast | |
then have IH: "makespan T \<le> 3 / 2 * makespan T\<^sub>1" | |
using invrules(3) by force | |
show "makespan ?T \<le> 3 / 2 * makespan T\<^sub>1" | |
proof (cases \<open>makespan ?T = T (min_arg T m) + t (Suc j)\<close>) | |
case True | |
have "m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..m}. T i)" by (rule min_avg) | |
also have "... = (\<Sum>i \<in> {1..j}. t i)" by (rule lb_impl_job_sum[OF invrules(1)]) | |
finally have "real m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i)" | |
by (auto dest: of_nat_mono) | |
with m_gt_0 have "T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i) / m" | |
by (simp add: field_simps) | |
then have "T (min_arg T m) \<le> makespan T\<^sub>1" | |
using job_dist_lower_bound_makespan[OF \<open>lb T\<^sub>0 A\<^sub>0 j\<close>] | |
and \<open>makespan T\<^sub>0 \<le> makespan T\<^sub>1\<close> by linarith | |
moreover have "2 * t (Suc j) \<le> makespan T\<^sub>1" | |
using sorted_job_lower_bound_makespan[OF \<open>lb T\<^sub>1 A\<^sub>1 (Suc j)\<close> \<open>Suc j > m\<close>] | |
and assms(1,3) by simp | |
ultimately show ?thesis unfolding True by simp | |
next | |
case False show ?thesis using remove_small_job[OF False] IH by simp | |
qed | |
qed | |
have "\<forall>x > Suc j. ?T x = 0" | |
using invrules(4) min_in_range[OF m_gt_0, of T] True by simp | |
with inv\<^sub>2I[OF LB _ MK] show ?thesis using assms(3) True by simp | |
next | |
case False | |
then have IN_RANGE: "Suc j \<in> {1..m}" by simp | |
note invrules = inv\<^sub>2E[OF assms(2)] | |
then have "T (Suc j) = 0" by blast | |
\<comment> \<open>Greedy is correct\<close> | |
have LB: "lb ?T ?A (Suc j)" | |
using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast | |
\<comment> \<open>Greedy is trivially optimal\<close> | |
from IN_RANGE \<open>T (Suc j) = 0\<close> have "min_arg T m \<le> Suc j" | |
using min_zero_index by blast | |
with invrules(4) have EMPTY: "\<forall>x > Suc j. ?T x = 0" by simp | |
from IN_RANGE \<open>T (Suc j) = 0\<close> have "T (min_arg T m) = 0" | |
using min_zero by blast | |
with fun_upd_f_Max\<^sub>0[OF min_in_range[OF m_gt_0]] invrules(5) False | |
have TRIV: "makespan ?T = Max\<^sub>0 (t ` {1..Suc j})" unfolding f_Max\<^sub>0_equiv[symmetric] by simp | |
have MK: "\<forall>T' A'. lb T' A' (Suc j) \<longrightarrow> makespan ?T \<le> 3 / 2 * makespan T'" | |
by (auto simp: TRIV[folded f_Max\<^sub>0_equiv] | |
dest!: max_job_lower_bound_makespan[folded f_Max\<^sub>0_equiv]) | |
from inv\<^sub>2I[OF LB _ MK EMPTY TRIV] show ?thesis using assms(3) by simp | |
qed | |
lemma sorted_greedy_approximation: | |
"sorted n \<Longrightarrow> VARS T A i j | |
{True} | |
T := (\<lambda>_. 0); | |
A := (\<lambda>_. {}); | |
j := 0; | |
WHILE j < n INV {inv\<^sub>2 T A j} DO | |
i := min_arg T m; | |
j := (Suc j); | |
A := A (i := A(i) \<union> {j}); | |
T := T (i := T(i) + t j) | |
OD | |
{lb T A n \<and> (\<forall>T' A'. lb T' A' n \<longrightarrow> makespan T \<le> 3 / 2 * makespan T')}" | |
proof (vcg, goal_cases) | |
case (1 T A i j) | |
then show ?case by (simp add: lb_def inv\<^sub>2_def) | |
next | |
case (2 T A i j) | |
then show ?case using inv\<^sub>2_step by simp | |
next | |
case (3 T A i j) | |
then show ?case unfolding inv\<^sub>2_def by force | |
qed | |
end (* LoadBalancing *) | |
end (* Theory *) |