Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
27.3 kB
section \<open>Load Balancing\<close>
theory Approx_LB_Hoare
imports Complex_Main "HOL-Hoare.Hoare_Logic"
begin
text \<open>This is a formalization of the load balancing algorithms and proofs
in the book by Kleinberg and Tardos \cite{KleinbergT06}.\<close>
hide_const (open) sorted
(* TODO: mv *)
lemma sum_le_card_Max: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> sum f A \<le> card A * Max (f ` A)"
proof(induction A rule: finite_ne_induct)
case (singleton x)
then show ?case by simp
next
case (insert x F)
then show ?case by (auto simp: max_def order.trans[of "sum f F" "card F * Max (f ` F)"])
qed
lemma Max_const[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> Max ((\<lambda>_. c) ` A) = c"
using Max_in image_is_empty by blast
abbreviation Max\<^sub>0 :: "nat set \<Rightarrow> nat" where
"Max\<^sub>0 N \<equiv> (if N={} then 0 else Max N)"
fun f_Max\<^sub>0 :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat" where
"f_Max\<^sub>0 f 0 = 0"
| "f_Max\<^sub>0 f (Suc x) = max (f (Suc x)) (f_Max\<^sub>0 f x)"
lemma f_Max\<^sub>0_equiv: "f_Max\<^sub>0 f n = Max\<^sub>0 (f ` {1..n})"
by (induction n) (auto simp: not_le atLeastAtMostSuc_conv)
lemma f_Max\<^sub>0_correct:
"\<forall>x \<in> {1..m}. T x \<le> f_Max\<^sub>0 T m"
"m > 0 \<Longrightarrow> \<exists>x \<in> {1..m}. T x = f_Max\<^sub>0 T m"
apply (induction m)
apply simp_all
apply (metis atLeastAtMost_iff le_Suc_eq max.cobounded1 max.coboundedI2)
subgoal for m by (cases \<open>m = 0\<close>) (auto simp: max_def)
done
lemma f_Max\<^sub>0_mono:
"y \<le> T x \<Longrightarrow> f_Max\<^sub>0 (T (x := y)) m \<le> f_Max\<^sub>0 T m"
"T x \<le> y \<Longrightarrow> f_Max\<^sub>0 T m \<le> f_Max\<^sub>0 (T (x := y)) m"
by (induction m) auto
lemma f_Max\<^sub>0_out_of_range [simp]:
"x \<notin> {1..k} \<Longrightarrow> f_Max\<^sub>0 (T (x := y)) k = f_Max\<^sub>0 T k"
by (induction k) auto
lemma fun_upd_f_Max\<^sub>0:
assumes "x \<in> {1..m}" "T x \<le> y"
shows "f_Max\<^sub>0 (T (x := y)) m = max y (f_Max\<^sub>0 T m)"
using assms by (induction m) auto
locale LoadBalancing = (* Load Balancing *)
fixes t :: "nat \<Rightarrow> nat"
and m :: nat
and n :: nat
assumes m_gt_0: "m > 0"
begin
subsection \<open>Formalization of a Correct Load Balancing\<close>
subsubsection \<open>Definition\<close>
definition lb :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat set) \<Rightarrow> nat \<Rightarrow> bool" where
"lb T A j = ((\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}) \<comment> \<open>No job is assigned to more than one machine\<close>
\<and> (\<Union>x \<in> {1..m}. A x) = {1..j} \<comment> \<open>Every job is assigned\<close>
\<and> (\<forall>x \<in> {1..m}. (\<Sum>j \<in> A x. t j) = T x) \<comment> \<open>The processing times sum up to the correct load\<close>)"
abbreviation makespan :: "(nat \<Rightarrow> nat) \<Rightarrow> nat" where
"makespan T \<equiv> f_Max\<^sub>0 T m"
lemma makespan_def': "makespan T = Max (T ` {1..m})"
using m_gt_0 by (simp add: f_Max\<^sub>0_equiv)
(*
lemma makespan_correct:
"\<forall>x \<in> {1..m}. T x \<le> makespan T m"
"m > 0 \<Longrightarrow> \<exists>x \<in> {1..m}. T x = makespan T m"
apply (induction m)
apply simp_all
apply (metis atLeastAtMost_iff le_Suc_eq max.cobounded1 max.coboundedI2)
subgoal for m by (cases \<open>m = 0\<close>) (auto simp: max_def)
done
lemma no_machines_lb_iff_no_jobs: "lb T A j 0 \<longleftrightarrow> j = 0"
unfolding lb_def by auto
lemma machines_if_jobs: "\<lbrakk> lb T A j m; j > 0 \<rbrakk> \<Longrightarrow> m > 0"
using no_machines_lb_iff_no_jobs by (cases m) auto
*)
lemma makespan_correct:
"\<forall>x \<in> {1..m}. T x \<le> makespan T"
"\<exists>x \<in> {1..m}. T x = makespan T"
using f_Max\<^sub>0_correct m_gt_0 by auto
lemma lbE:
assumes "lb T A j"
shows "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}"
"(\<Union>x \<in> {1..m}. A x) = {1..j}"
"\<forall>x \<in> {1..m}. (\<Sum>y \<in> A x. t y) = T x"
using assms unfolding lb_def by blast+
lemma lbI:
assumes "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}"
"(\<Union>x \<in> {1..m}. A x) = {1..j}"
"\<forall>x \<in> {1..m}. (\<Sum>y \<in> A x. t y) = T x"
shows "lb T A j" using assms unfolding lb_def by blast
lemma A_lb_finite [simp]:
assumes "lb T A j" "x \<in> {1..m}"
shows "finite (A x)"
by (metis lbE(2) assms finite_UN finite_atLeastAtMost)
text \<open>If \<open>A x\<close> is pairwise disjoint for all \<open>x \<in> {1..m}\<close>, then the the sum over the sums of the
individual \<open>A x\<close> is equal to the sum over the union of all \<open>A x\<close>.\<close>
lemma sum_sum_eq_sum_Un:
fixes A :: "nat \<Rightarrow> nat set"
assumes "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> A x \<inter> A y = {}"
and "\<forall>x \<in> {1..m}. finite (A x)"
shows "(\<Sum>x \<in> {1..m}. (\<Sum>y \<in> A x. t y)) = (\<Sum>x \<in> (\<Union>y \<in> {1..m}. A y). t x)"
using assms
proof (induction m)
case (Suc m)
have FINITE: "finite (\<Union>x \<in> {1..m}. A x)" "finite (A (Suc m))"
using Suc.prems(2) by auto
have "\<forall>x \<in> {1..m}. A x \<inter> A (Suc m) = {}"
using Suc.prems(1) by simp
then have DISJNT: "(\<Union>x \<in> {1..m}. A x) \<inter> (A (Suc m)) = {}" using Union_disjoint by blast
have "(\<Sum>x \<in> (\<Union>y \<in> {1..m}. A y). t x) + (\<Sum>x \<in> A (Suc m). t x)
= (\<Sum>x \<in> ((\<Union>y \<in> {1..m}. A y) \<union> A (Suc m)). t x)"
using sum.union_disjoint[OF FINITE DISJNT, symmetric] .
also have "... = (\<Sum>x \<in> (\<Union>y \<in> {1..Suc m}. A y). t x)"
by (metis UN_insert image_Suc_lessThan image_insert inf_sup_aci(5) lessThan_Suc)
finally show ?case using Suc by auto
qed simp
text \<open>If \<open>T\<close> and \<open>A\<close> are a correct load balancing for \<open>j\<close> jobs and \<open>m\<close> machines,
then the sum of the loads has to be equal to the sum of the processing times of the jobs\<close>
lemma lb_impl_job_sum:
assumes "lb T A j"
shows "(\<Sum>x \<in> {1..m}. T x) = (\<Sum>x \<in> {1..j}. t x)"
proof -
note lbrules = lbE[OF assms]
from assms have FINITE: "\<forall>x \<in> {1..m}. finite (A x)" by simp
have "(\<Sum>x \<in> {1..m}. T x) = (\<Sum>x \<in> {1..m}. (\<Sum>y \<in> A x. t y))"
using lbrules(3) by simp
also have "... = (\<Sum>x \<in> {1..j}. t x)"
using sum_sum_eq_sum_Un[OF lbrules(1) FINITE]
unfolding lbrules(2) .
finally show ?thesis .
qed
subsubsection \<open>Lower Bounds for the Makespan\<close>
text \<open>If \<open>T\<close> and \<open>A\<close> are a correct load balancing for \<open>j\<close> jobs and \<open>m\<close> machines, then the processing time
of any job \<open>x \<in> {1..j}\<close> is a lower bound for the load of some machine \<open>y \<in> {1..m}\<close>\<close>
lemma job_lower_bound_machine:
assumes "lb T A j" "x \<in> {1..j}"
shows "\<exists>y \<in> {1..m}. t x \<le> T y"
proof -
note lbrules = lbE[OF assms(1)]
have "\<exists>y \<in> {1..m}. x \<in> A y" using lbrules(2) assms(2) by blast
then obtain y where y_def: "y \<in> {1..m}" "x \<in> A y" ..
moreover have "finite (A y)" using assms(1) y_def(1) by simp
ultimately have "t x \<le> (\<Sum>x \<in> A y. t x)" using lbrules(1) member_le_sum by fast
also have "... = T y" using lbrules(3) y_def(1) by blast
finally show ?thesis using y_def(1) by blast
qed
text \<open>As the load of any machine is a lower bound for the makespan, the processing time
of any job \<open>x \<in> {1..j}\<close> has to also be a lower bound for the makespan.
Follows from @{thm [source] job_lower_bound_machine} and @{thm [source] makespan_correct}.\<close>
lemma job_lower_bound_makespan:
assumes "lb T A j" "x \<in> {1..j}"
shows "t x \<le> makespan T"
by (meson job_lower_bound_machine[OF assms] makespan_correct(1) le_trans)
text \<open>The makespan over \<open>j\<close> jobs is a lower bound for the makespan of any correct load balancing for \<open>j\<close> jobs.\<close>
lemma max_job_lower_bound_makespan:
assumes "lb T A j"
shows "Max\<^sub>0 (t ` {1..j}) \<le> makespan T"
using job_lower_bound_makespan[OF assms] by fastforce
lemma job_dist_lower_bound_makespan:
assumes "lb T A j"
shows "(\<Sum>x \<in> {1..j}. t x) / m \<le> makespan T"
proof -
have "(\<Sum>x \<in> {1..j}. t x) \<le> m * makespan T"
using assms lb_impl_job_sum[symmetric]
and sum_le_card_Max[of "{1..m}"] m_gt_0 by (simp add: makespan_def')
then have "real (\<Sum>x \<in> {1..j}. t x) \<le> real m * real (makespan T)"
using of_nat_mono by fastforce
then show ?thesis by (simp add: field_simps m_gt_0)
qed
subsection \<open>The Greedy Approximation Algorithm\<close>
text \<open>This function will perform a linear scan from \<open>k \<in> {1..m}\<close> and return the index of the machine with minimum load assuming \<open>m > 0\<close>\<close>
fun min_arg :: "(nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat" where
"min_arg T 0 = 1"
| "min_arg T (Suc x) =
(let k = min_arg T x
in if T (Suc x) < T k then (Suc x) else k)"
lemma min_correct:
"\<forall>x \<in> {1..m}. T (min_arg T m) \<le> T x"
by (induction m) (auto simp: Let_def le_Suc_eq, force)
lemma min_in_range:
"k > 0 \<Longrightarrow> (min_arg T k) \<in> {1..k}"
by (induction k) (auto simp: Let_def, force+)
lemma add_job:
assumes "lb T A j" "x \<in> {1..m}"
shows "lb (T (x := T x + t (Suc j))) (A (x := A x \<union> {Suc j})) (Suc j)"
(is \<open>lb ?T ?A _\<close>)
proof -
note lbrules = lbE[OF assms(1)]
\<comment> \<open>Rule 1: @{term ?A} pairwise disjoint\<close>
have NOTIN: "\<forall>i \<in> {1..m}. Suc j \<notin> A i" using lbrules(2) assms(2) by force
with lbrules(1) have "\<forall>i \<in> {1..m}. i \<noteq> x \<longrightarrow> A i \<inter> (A x \<union> {Suc j}) = {}"
using assms(2) by blast
then have 1: "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> ?A x \<inter> ?A y = {}"
using lbrules(1) by simp
\<comment> \<open>Rule 2: @{term ?A} contains all jobs\<close>
have "(\<Union>y \<in> {1..m}. ?A y) = (\<Union>y \<in> {1..m}. A y) \<union> {Suc j}"
using UNION_fun_upd assms(2) by auto
also have "... = {1..Suc j}" unfolding lbrules(2) by auto
finally have 2: "(\<Union>y \<in> {1..m}. ?A y) = {1..Suc j}" .
\<comment> \<open>Rule 3: @{term ?A} sums to @{term ?T}\<close>
have "(\<Sum>i \<in> ?A x. t i) = (\<Sum>i \<in> A x \<union> {Suc j}. t i)" by simp
moreover have "A x \<inter> {Suc j} = {}" using NOTIN assms(2) by blast
moreover have "finite (A x)" "finite {Suc j}" using assms by simp+
ultimately have "(\<Sum>i \<in> ?A x. t i) = (\<Sum>i \<in> A x. t i) + (\<Sum>i \<in> {Suc j}. t i)"
using sum.union_disjoint by simp
also have "... = T x + t (Suc j)" using lbrules(3) assms(2) by simp
finally have "(\<Sum>i \<in> ?A x. t i) = ?T x" by simp
then have 3: "\<forall>i \<in> {1..m}. (\<Sum>j \<in> ?A i. t j) = ?T i"
using lbrules(3) assms(2) by simp
from lbI[OF 1 2 3] show ?thesis .
qed
lemma makespan_mono:
"y \<le> T x \<Longrightarrow> makespan (T (x := y)) \<le> makespan T"
"T x \<le> y \<Longrightarrow> makespan T \<le> makespan (T (x := y))"
using f_Max\<^sub>0_mono by auto
lemma smaller_optimum:
assumes "lb T A (Suc j)"
shows "\<exists>T' A'. lb T' A' j \<and> makespan T' \<le> makespan T"
proof -
note lbrules = lbE[OF assms]
have "\<exists>x \<in> {1..m}. Suc j \<in> A x" using lbrules(2) by auto
then obtain x where x_def: "x \<in> {1..m}" "Suc j \<in> A x" ..
let ?T = "T (x := T x - t (Suc j))"
let ?A = "A (x := A x - {Suc j})"
\<comment> \<open>Rule 1: @{term ?A} pairwise disjoint\<close>
from lbrules(1) have "\<forall>i \<in> {1..m}. i \<noteq> x \<longrightarrow> A i \<inter> (A x - {Suc j}) = {}"
using x_def(1) by blast
then have 1: "\<forall>x \<in> {1..m}. \<forall>y \<in> {1..m}. x \<noteq> y \<longrightarrow> ?A x \<inter> ?A y = {}"
using lbrules(1) by auto
\<comment> \<open>Rule 2: @{term ?A} contains all jobs\<close>
have NOTIN: "\<forall>i \<in> {1..m}. i \<noteq> x \<longrightarrow> Suc j \<notin> A i" using lbrules(1) x_def by blast
then have "(\<Union>y \<in> {1..m}. ?A y) = (\<Union>y \<in> {1..m}. A y) - {Suc j}"
using UNION_fun_upd x_def by auto
also have "... = {1..j}" unfolding lbrules(2) by auto
finally have 2: "(\<Union>y \<in> {1..m}. ?A y) = {1..j}" .
\<comment> \<open>Rule 3: @{term ?A} sums to @{term ?T}\<close>
have "(\<Sum>i \<in> A x - {Suc j}. t i) = (\<Sum>i \<in> A x. t i) - t (Suc j)"
by (simp add: sum_diff1_nat x_def(2))
also have "... = T x - t (Suc j)" using lbrules(3) x_def(1) by simp
finally have "(\<Sum>i \<in> ?A x. t i) = ?T x" by simp
then have 3: "\<forall>i \<in> {1..m}. (\<Sum>j \<in> ?A i. t j) = ?T i"
using lbrules(3) x_def(1) by simp
\<comment> \<open>@{term makespan} is not larger\<close>
have "lb ?T ?A j \<and> makespan ?T \<le> makespan T"
using lbI[OF 1 2 3] makespan_mono(1) by force
then show ?thesis by blast
qed
text \<open>If the processing time \<open>y\<close> does not contribute to the makespan, we can ignore it.\<close>
lemma remove_small_job:
assumes "makespan (T (x := T x + y)) \<noteq> T x + y"
shows "makespan (T (x := T x + y)) = makespan T"
proof -
let ?T = "T (x := T x + y)"
have NOT_X: "makespan ?T \<noteq> ?T x" using assms(1) by simp
then have "\<exists>i \<in> {1..m}. makespan ?T = ?T i \<and> i \<noteq> x"
using makespan_correct(2) by metis
then obtain i where i_def: "i \<in> {1..m}" "makespan ?T = ?T i" "i \<noteq> x" by blast
then have "?T i = T i" using NOT_X by simp
moreover from this have "makespan T = T i"
by (metis i_def(1,2) antisym_conv le_add1 makespan_mono(2) makespan_correct(1))
ultimately show ?thesis using i_def(2) by simp
qed
lemma greedy_makespan_no_jobs [simp]:
"makespan (\<lambda>_. 0) = 0"
using m_gt_0 by (simp add: makespan_def')
lemma min_avg: "m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..m}. T i)"
(is \<open>_ * ?T \<le> ?S\<close>)
proof -
have "(\<Sum>_ \<in> {1..m}. ?T) \<le> ?S"
using sum_mono[of \<open>{1..m}\<close> \<open>\<lambda>_. ?T\<close> T]
and min_correct by blast
then show ?thesis by simp
qed
definition inv\<^sub>1 :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat set) \<Rightarrow> nat \<Rightarrow> bool" where
"inv\<^sub>1 T A j = (lb T A j \<and> j \<le> n \<and> (\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 2 * makespan T'))"
lemma inv\<^sub>1E:
assumes "inv\<^sub>1 T A j"
shows "lb T A j" "j \<le> n"
"lb T' A' j \<Longrightarrow> makespan T \<le> 2 * makespan T'"
using assms unfolding inv\<^sub>1_def by blast+
lemma inv\<^sub>1I:
assumes "lb T A j" "j \<le> n" "\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 2 * makespan T'"
shows "inv\<^sub>1 T A j" using assms unfolding inv\<^sub>1_def by blast
lemma inv\<^sub>1_step:
assumes "inv\<^sub>1 T A j" "j < n"
shows "inv\<^sub>1 (T ((min_arg T m) := T (min_arg T m) + t (Suc j)))
(A ((min_arg T m) := A (min_arg T m) \<union> {Suc j})) (Suc j)"
(is \<open>inv\<^sub>1 ?T ?A _\<close>)
proof -
note invrules = inv\<^sub>1E[OF assms(1)]
\<comment> \<open>Greedy is correct\<close>
have LB: "lb ?T ?A (Suc j)"
using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast
\<comment> \<open>Greedy maintains approximation factor\<close>
have MK: "\<forall>T' A'. lb T' A' (Suc j) \<longrightarrow> makespan ?T \<le> 2 * makespan T'"
proof rule+
fix T\<^sub>1 A\<^sub>1 assume "lb T\<^sub>1 A\<^sub>1 (Suc j)"
from smaller_optimum[OF this]
obtain T\<^sub>0 A\<^sub>0 where "lb T\<^sub>0 A\<^sub>0 j" "makespan T\<^sub>0 \<le> makespan T\<^sub>1" by blast
then have IH: "makespan T \<le> 2 * makespan T\<^sub>1"
using invrules(3) by force
show "makespan ?T \<le> 2 * makespan T\<^sub>1"
proof (cases \<open>makespan ?T = T (min_arg T m) + t (Suc j)\<close>)
case True
have "m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..m}. T i)" by (rule min_avg)
also have "... = (\<Sum>i \<in> {1..j}. t i)" by (rule lb_impl_job_sum[OF invrules(1)])
finally have "real m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i)"
by (auto dest: of_nat_mono)
with m_gt_0 have "T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i) / m"
by (simp add: field_simps)
then have "T (min_arg T m) \<le> makespan T\<^sub>1"
using job_dist_lower_bound_makespan[OF \<open>lb T\<^sub>0 A\<^sub>0 j\<close>]
and \<open>makespan T\<^sub>0 \<le> makespan T\<^sub>1\<close> by linarith
moreover have "t (Suc j) \<le> makespan T\<^sub>1"
using job_lower_bound_makespan[OF \<open>lb T\<^sub>1 A\<^sub>1 (Suc j)\<close>] by simp
ultimately show ?thesis unfolding True by simp
next
case False show ?thesis using remove_small_job[OF False] IH by simp
qed
qed
from inv\<^sub>1I[OF LB _ MK] show ?thesis using assms(2) by simp
qed
lemma simple_greedy_approximation:
"VARS T A i j
{True}
T := (\<lambda>_. 0);
A := (\<lambda>_. {});
j := 0;
WHILE j < n INV {inv\<^sub>1 T A j} DO
i := min_arg T m;
j := (Suc j);
A := A (i := A(i) \<union> {j});
T := T (i := T(i) + t j)
OD
{lb T A n \<and> (\<forall>T' A'. lb T' A' n \<longrightarrow> makespan T \<le> 2 * makespan T')}"
proof (vcg, goal_cases)
case (1 T A i j)
then show ?case by (simp add: lb_def inv\<^sub>1_def)
next
case (2 T A i j)
then show ?case using inv\<^sub>1_step by simp
next
case (3 T A i j)
then show ?case unfolding inv\<^sub>1_def by force
qed
definition sorted :: "nat \<Rightarrow> bool" where
"sorted j = (\<forall>x \<in> {1..j}. \<forall>y \<in> {1..x}. t x \<le> t y)"
lemma sorted_smaller [simp]: "\<lbrakk> sorted j; j \<ge> j' \<rbrakk> \<Longrightarrow> sorted j'"
unfolding sorted_def by simp
lemma j_gt_m_pigeonhole:
assumes "lb T A j" "j > m"
shows "\<exists>x \<in> {1..j}. \<exists>y \<in> {1..j}. \<exists>z \<in> {1..m}. x \<noteq> y \<and> x \<in> A z \<and> y \<in> A z"
proof -
have "\<forall>x \<in> {1..j}. \<exists>y \<in> {1..m}. x \<in> A y"
using lbE(2)[OF assms(1)] by blast
then have "\<exists>f. \<forall>x \<in> {1..j}. x \<in> A (f x) \<and> f x \<in> {1..m}" by metis
then obtain f where f_def: "\<forall>x \<in> {1..j}. x \<in> A (f x) \<and> f x \<in> {1..m}" ..
then have "card (f ` {1..j}) \<le> card {1..m}"
by (meson card_mono finite_atLeastAtMost image_subset_iff)
also have "... < card {1..j}" using assms(2) by simp
finally have "card (f ` {1..j}) < card {1..j}" .
then have "\<not> inj_on f {1..j}" using pigeonhole by blast
then have "\<exists>x \<in> {1..j}. \<exists>y \<in> {1..j}. x \<noteq> y \<and> f x = f y"
unfolding inj_on_def by blast
then show ?thesis using f_def by metis
qed
text \<open>If \<open>T\<close> and \<open>A\<close> are a correct load balancing for \<open>j\<close> jobs and \<open>m\<close> machines with \<open>j > m\<close>,
and the jobs are sorted in descending order, then there exists a machine \<open>x \<in> {1..m}\<close>
whose load is at least twice as large as the processing time of job \<open>j\<close>.\<close>
lemma sorted_job_lower_bound_machine:
assumes "lb T A j" "j > m" "sorted j"
shows "\<exists>x \<in> {1..m}. 2 * t j \<le> T x"
proof -
\<comment> \<open>Step 1: Obtaining the jobs\<close>
note lbrules = lbE[OF assms(1)]
obtain j\<^sub>1 j\<^sub>2 x where *:
"j\<^sub>1 \<in> {1..j}" "j\<^sub>2 \<in> {1..j}" "x \<in> {1..m}" "j\<^sub>1 \<noteq> j\<^sub>2" "j\<^sub>1 \<in> A x" "j\<^sub>2 \<in> A x"
using j_gt_m_pigeonhole[OF assms(1,2)] by blast
\<comment> \<open>Step 2: Jobs contained in sum\<close>
have "finite (A x)" using assms(1) *(3) by simp
then have SUM: "(\<Sum>i \<in> A x. t i) = t j\<^sub>1 + t j\<^sub>2 + (\<Sum>i \<in> A x - {j\<^sub>1} - {j\<^sub>2}. t i)"
using *(4-6) by (simp add: sum.remove)
\<comment> \<open>Step 3: Proof of lower bound\<close>
have "t j \<le> t j\<^sub>1" "t j \<le> t j\<^sub>2"
using assms(3) *(1-2) unfolding sorted_def by auto
then have "2 * t j \<le> t j\<^sub>1 + t j\<^sub>2" by simp
also have "... \<le> (\<Sum>i \<in> A x. t i)" unfolding SUM by simp
finally have "2 * t j \<le> T x" using lbrules(3) *(3) by simp
then show ?thesis using *(3) by blast
qed
text \<open>Reasoning analogous to @{thm [source] job_lower_bound_makespan}.\<close>
lemma sorted_job_lower_bound_makespan:
assumes "lb T A j" "j > m" "sorted j"
shows "2 * t j \<le> makespan T"
proof -
obtain x where x_def: "x \<in> {1..m}" "2 * t j \<le> T x"
using sorted_job_lower_bound_machine[OF assms] ..
with makespan_correct(1) have "T x \<le> makespan T" by blast
with x_def(2) show ?thesis by simp
qed
lemma min_zero:
assumes "x \<in> {1..k}" "T x = 0"
shows "T (min_arg T k) = 0"
using assms(1)
proof (induction k)
case (Suc k)
show ?case proof (cases \<open>x = Suc k\<close>)
case True
then show ?thesis using assms(2) by (simp add: Let_def)
next
case False
with Suc have "T (min_arg T k) = 0" by simp
then show ?thesis by simp
qed
qed simp
lemma min_zero_index:
assumes "x \<in> {1..k}" "T x = 0"
shows "min_arg T k \<le> x"
using assms(1)
proof (induction k)
case (Suc k)
show ?case proof (cases \<open>x = Suc k\<close>)
case True
then show ?thesis using min_in_range[of "Suc k"] by simp
next
case False
with Suc.prems have "x \<in> {1..k}" by simp
from min_zero[OF this, of T] assms(2) Suc.IH[OF this]
show ?thesis by simp
qed
qed simp
definition inv\<^sub>2 :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat set) \<Rightarrow> nat \<Rightarrow> bool" where
"inv\<^sub>2 T A j = (lb T A j \<and> j \<le> n
\<and> (\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 3 / 2 * makespan T')
\<and> (\<forall>x > j. T x = 0)
\<and> (j \<le> m \<longrightarrow> makespan T = Max\<^sub>0 (t ` {1..j})))"
lemma inv\<^sub>2E:
assumes "inv\<^sub>2 T A j"
shows "lb T A j" "j \<le> n"
"lb T' A' j \<Longrightarrow> makespan T \<le> 3 / 2 * makespan T'"
"\<forall>x > j. T x = 0" "j \<le> m \<Longrightarrow> makespan T = Max\<^sub>0 (t ` {1..j})"
using assms unfolding inv\<^sub>2_def by blast+
lemma inv\<^sub>2I:
assumes "lb T A j" "j \<le> n"
"\<forall>T' A'. lb T' A' j \<longrightarrow> makespan T \<le> 3 / 2 * makespan T'"
"\<forall>x > j. T x = 0"
"j \<le> m \<Longrightarrow> makespan T = Max\<^sub>0 (t ` {1..j})"
shows "inv\<^sub>2 T A j"
unfolding inv\<^sub>2_def using assms by blast
lemma inv\<^sub>2_step:
assumes "sorted n" "inv\<^sub>2 T A j" "j < n"
shows "inv\<^sub>2 (T (min_arg T m := T(min_arg T m) + t(Suc j)))
(A (min_arg T m := A(min_arg T m) \<union> {Suc j})) (Suc j)"
(is \<open>inv\<^sub>2 ?T ?A _\<close>)
proof (cases \<open>Suc j > m\<close>)
case True note invrules = inv\<^sub>2E[OF assms(2)]
\<comment> \<open>Greedy is correct\<close>
have LB: "lb ?T ?A (Suc j)"
using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast
\<comment> \<open>Greedy maintains approximation factor\<close>
have MK: "\<forall>T' A'. lb T' A' (Suc j) \<longrightarrow> makespan ?T \<le> 3 / 2 * makespan T'"
proof rule+
fix T\<^sub>1 A\<^sub>1 assume "lb T\<^sub>1 A\<^sub>1 (Suc j)"
from smaller_optimum[OF this]
obtain T\<^sub>0 A\<^sub>0 where "lb T\<^sub>0 A\<^sub>0 j" "makespan T\<^sub>0 \<le> makespan T\<^sub>1" by blast
then have IH: "makespan T \<le> 3 / 2 * makespan T\<^sub>1"
using invrules(3) by force
show "makespan ?T \<le> 3 / 2 * makespan T\<^sub>1"
proof (cases \<open>makespan ?T = T (min_arg T m) + t (Suc j)\<close>)
case True
have "m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..m}. T i)" by (rule min_avg)
also have "... = (\<Sum>i \<in> {1..j}. t i)" by (rule lb_impl_job_sum[OF invrules(1)])
finally have "real m * T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i)"
by (auto dest: of_nat_mono)
with m_gt_0 have "T (min_arg T m) \<le> (\<Sum>i \<in> {1..j}. t i) / m"
by (simp add: field_simps)
then have "T (min_arg T m) \<le> makespan T\<^sub>1"
using job_dist_lower_bound_makespan[OF \<open>lb T\<^sub>0 A\<^sub>0 j\<close>]
and \<open>makespan T\<^sub>0 \<le> makespan T\<^sub>1\<close> by linarith
moreover have "2 * t (Suc j) \<le> makespan T\<^sub>1"
using sorted_job_lower_bound_makespan[OF \<open>lb T\<^sub>1 A\<^sub>1 (Suc j)\<close> \<open>Suc j > m\<close>]
and assms(1,3) by simp
ultimately show ?thesis unfolding True by simp
next
case False show ?thesis using remove_small_job[OF False] IH by simp
qed
qed
have "\<forall>x > Suc j. ?T x = 0"
using invrules(4) min_in_range[OF m_gt_0, of T] True by simp
with inv\<^sub>2I[OF LB _ MK] show ?thesis using assms(3) True by simp
next
case False
then have IN_RANGE: "Suc j \<in> {1..m}" by simp
note invrules = inv\<^sub>2E[OF assms(2)]
then have "T (Suc j) = 0" by blast
\<comment> \<open>Greedy is correct\<close>
have LB: "lb ?T ?A (Suc j)"
using add_job[OF invrules(1) min_in_range[OF m_gt_0]] by blast
\<comment> \<open>Greedy is trivially optimal\<close>
from IN_RANGE \<open>T (Suc j) = 0\<close> have "min_arg T m \<le> Suc j"
using min_zero_index by blast
with invrules(4) have EMPTY: "\<forall>x > Suc j. ?T x = 0" by simp
from IN_RANGE \<open>T (Suc j) = 0\<close> have "T (min_arg T m) = 0"
using min_zero by blast
with fun_upd_f_Max\<^sub>0[OF min_in_range[OF m_gt_0]] invrules(5) False
have TRIV: "makespan ?T = Max\<^sub>0 (t ` {1..Suc j})" unfolding f_Max\<^sub>0_equiv[symmetric] by simp
have MK: "\<forall>T' A'. lb T' A' (Suc j) \<longrightarrow> makespan ?T \<le> 3 / 2 * makespan T'"
by (auto simp: TRIV[folded f_Max\<^sub>0_equiv]
dest!: max_job_lower_bound_makespan[folded f_Max\<^sub>0_equiv])
from inv\<^sub>2I[OF LB _ MK EMPTY TRIV] show ?thesis using assms(3) by simp
qed
lemma sorted_greedy_approximation:
"sorted n \<Longrightarrow> VARS T A i j
{True}
T := (\<lambda>_. 0);
A := (\<lambda>_. {});
j := 0;
WHILE j < n INV {inv\<^sub>2 T A j} DO
i := min_arg T m;
j := (Suc j);
A := A (i := A(i) \<union> {j});
T := T (i := T(i) + t j)
OD
{lb T A n \<and> (\<forall>T' A'. lb T' A' n \<longrightarrow> makespan T \<le> 3 / 2 * makespan T')}"
proof (vcg, goal_cases)
case (1 T A i j)
then show ?case by (simp add: lb_def inv\<^sub>2_def)
next
case (2 T A i j)
then show ?case using inv\<^sub>2_step by simp
next
case (3 T A i j)
then show ?case unfolding inv\<^sub>2_def by force
qed
end (* LoadBalancing *)
end (* Theory *)