Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
20.8 kB
(* Author: Ujkan Sulejmani *)
section \<open>Center Selection\<close>
theory Center_Selection
imports Complex_Main "HOL-Hoare.Hoare_Logic"
begin
text \<open>The Center Selection (or metric k-center) problem. Given a set of \textit{sites} \<open>S\<close>
in a metric space, find a subset \<open>C \<subseteq> S\<close> that minimizes the maximal distance from any \<open>s \<in> S\<close>
to some \<open>c \<in> C\<close>. This theory presents a verified 2-approximation algorithm.
It is based on Section 11.2 in the book by Kleinberg and Tardos \cite{KleinbergT06}.
In contrast to the proof in the book, our proof is a standard invariant proof.\<close>
locale Center_Selection =
fixes S :: "('a :: metric_space) set"
and k :: nat
assumes finite_sites: "finite S"
and non_empty_sites: "S \<noteq> {}"
and non_zero_k: "k > 0"
begin
definition distance :: "('a::metric_space) set \<Rightarrow> ('a::metric_space) \<Rightarrow> real" where
"distance C s = Min (dist s ` C)"
definition radius :: "('a :: metric_space) set \<Rightarrow> real" where
"radius C = Max (distance C ` S)"
lemma distance_mono:
assumes "C\<^sub>1 \<subseteq> C\<^sub>2" and "C\<^sub>1 \<noteq> {}" and "finite C\<^sub>2"
shows "distance C\<^sub>1 s \<ge> distance C\<^sub>2 s"
by (simp add: Min.subset_imp assms distance_def image_mono)
lemma finite_distances: "finite (distance C ` S)"
using finite_sites by simp
lemma non_empty_distances: "distance C ` S \<noteq> {}"
using non_empty_sites by simp
lemma radius_contained: "radius C \<in> distance C ` S"
using finite_distances non_empty_distances Max_in radius_def by simp
lemma radius_def2: "\<exists>s \<in> S. distance C s = radius C"
using radius_contained image_iff by metis
lemma dist_lemmas_aux:
assumes "finite C"
and "C \<noteq> {}"
shows "finite (dist s ` C)"
and "finite (dist s ` C) \<Longrightarrow> distance C s \<in> dist s ` C"
and "distance C s \<in> dist s ` C \<Longrightarrow> \<exists>c \<in> C. dist s c = distance C s"
and "\<exists>c \<in> C. dist s c = distance C s \<Longrightarrow> distance C s \<ge> 0"
proof
show "finite C" using assms(1) by simp
next
assume "finite (dist s ` C)"
then show "distance C s \<in> dist s ` C" using distance_def eq_Min_iff assms(2) by blast
next
assume "distance C s \<in> dist s ` C"
then show "\<exists>c \<in> C. dist s c = distance C s" by auto
next
assume "\<exists>c \<in> C. dist s c = distance C s"
then show "distance C s \<ge> 0" by (metis zero_le_dist)
qed
lemma dist_lemmas:
assumes "finite C"
and "C \<noteq> {}"
shows "finite (dist s ` C)"
and "distance C s \<in> dist s ` C"
and "\<exists>c \<in> C. dist s c = distance C s"
and "distance C s \<ge> 0"
using dist_lemmas_aux assms by auto
lemma radius_max_prop: "(\<forall>s \<in> S. distance C s \<le> r) \<Longrightarrow> (radius C \<le> r)"
by (metis image_iff radius_contained)
lemma dist_ins:
assumes "\<forall>c\<^sub>1 \<in> C. \<forall>c\<^sub>2 \<in> C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> x < dist c\<^sub>1 c\<^sub>2"
and "distance C s > x"
and "finite C"
and "C \<noteq> {}"
shows "\<forall>c\<^sub>1 \<in> (C \<union> {s}). \<forall>c\<^sub>2 \<in> (C \<union> {s}). c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> x < dist c\<^sub>1 c\<^sub>2"
proof (rule+)
fix c\<^sub>1 c\<^sub>2
assume local_assms: "c\<^sub>1\<in>C \<union> {s}" "c\<^sub>2\<in>C \<union> {s}" "c\<^sub>1 \<noteq> c\<^sub>2"
then have "c\<^sub>1 \<in> C \<and> c\<^sub>2 \<in> C \<or> c\<^sub>1 \<in>C \<and> c\<^sub>2\<in> {s} \<or> c\<^sub>2\<in>C \<and> c\<^sub>1 \<in> {s} \<or> c\<^sub>1 \<in> {s} \<and> c\<^sub>2\<in> {s}" by auto
then show "x < dist c\<^sub>1 c\<^sub>2"
proof (elim disjE)
assume "c\<^sub>1 \<in>C \<and> c\<^sub>2\<in>C"
then show ?thesis using assms(1) local_assms(3) by simp
next
assume case_assm: "c\<^sub>1 \<in> C \<and> c\<^sub>2 \<in> {s}"
have "x < distance C c\<^sub>2" using assms(2) case_assm by simp
also have " ... \<le> dist c\<^sub>2 c\<^sub>1"
using Min.coboundedI distance_def assms(3,4) dist_lemmas(1, 2) case_assm by simp
also have " ... = dist c\<^sub>1 c\<^sub>2" using dist_commute by metis
finally show ?thesis .
next
assume case_assm: "c\<^sub>2 \<in> C \<and> c\<^sub>1 \<in> {s}"
have "x < distance C c\<^sub>1" using assms(2) case_assm by simp
also have " ... \<le> dist c\<^sub>1 c\<^sub>2"
using Min.coboundedI distance_def assms(3,4) dist_lemmas(1, 2) case_assm by simp
finally show ?thesis .
next
assume "c\<^sub>1 \<in> {s} \<and> c\<^sub>2 \<in> {s}"
then have False using local_assms by simp
then show ?thesis by simp
qed
qed
subsection \<open>A Preliminary Algorithm and Proof\<close>
text \<open>This subsection verifies an auxiliary algorithm by Kleinberg and Tardos.
Our proof of the main algorithm does not does not rely on this auxiliary algorithm at all
but we do reuse part off its invariant proof later on.\<close>
definition inv :: "('a :: metric_space) set \<Rightarrow> ('a :: metric_space set) \<Rightarrow> real \<Rightarrow> bool" where
"inv S' C r =
((\<forall>s \<in> (S - S'). distance C s \<le> 2*r) \<and> S' \<subseteq> S \<and> C \<subseteq> S \<and>
(\<forall>c \<in> C. \<forall>s \<in> S'. S' \<noteq> {} \<longrightarrow> dist c s > 2 * r) \<and> (S' = S \<or> C \<noteq> {}) \<and>
(\<forall>c\<^sub>1 \<in> C. \<forall>c\<^sub>2 \<in> C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> dist c\<^sub>1 c\<^sub>2 > 2 * r))"
lemma inv_init: "inv S {} r"
unfolding inv_def non_empty_sites by simp
lemma inv_step:
assumes "S' \<noteq> {}"
and IH: "inv S' C r"
defines[simp]: "s \<equiv> (SOME s. s \<in> S')"
shows "inv (S' - {s' . s' \<in> S' \<and> dist s s' \<le> 2*r}) (C \<union> {s}) r"
proof -
have s_def: "s \<in> S'" using assms(1) some_in_eq by auto
have "finite (C \<union> {s})" using IH finite_subset[OF _ finite_sites] by (simp add: inv_def)
moreover
have "(\<forall>s' \<in> (S - (S' - {s' . s' \<in> S' \<and> dist s s' \<le> 2*r})). distance (C \<union> {s}) s' \<le> 2*r)"
proof
fix s''
assume "s'' \<in> S - (S' - {s' . s' \<in> S' \<and> dist s s' \<le> 2*r})"
then have "s'' \<in> S - S' \<or> s'' \<in> {s' . s' \<in> S' \<and> dist s s' \<le> 2*r}" by simp
then show "distance (C \<union> {s}) s'' \<le> 2 * r"
proof (elim disjE)
assume local_assm: "s'' \<in> S - S'"
have "S' = S \<or> C \<noteq> {}" using IH by (simp add: inv_def)
then show ?thesis
proof (elim disjE)
assume "S' = S"
then have "s'' \<in> {}" using local_assm by simp
then show ?thesis by simp
next
assume C_not_empty: "C \<noteq> {}"
have "finite C" using IH finite_subset[OF _ finite_sites] by (simp add: inv_def)
then have "distance (C \<union> {s}) s'' \<le> distance C s''"
using distance_mono C_not_empty by (meson Un_upper1 calculation)
also have " ... \<le> 2 * r" using IH local_assm inv_def by simp
finally show ?thesis .
qed
next
assume local_assm: "s'' \<in> {s' . s' \<in> S' \<and> dist s s' \<le> 2*r}"
then have "distance (C \<union> {s}) s'' \<le> dist s'' s"
using Min.coboundedI distance_def dist_lemmas calculation by auto
also have " ... \<le> 2 * r" using local_assm by (smt dist_self dist_triangle2 mem_Collect_eq)
finally show ?thesis .
qed
qed
moreover
have "S' - {s' . s' \<in> S' \<and> dist s s' \<le> 2*r} \<subseteq> S" using IH by (auto simp: inv_def)
moreover
{
have "s \<in> S" using IH inv_def s_def by auto
then have "C \<union> {s} \<subseteq> S" using IH by (simp add: inv_def)
}
moreover
have "(\<forall>c\<in>C \<union> {s}. \<forall>c\<^sub>2\<in>C \<union> {s}. c \<noteq> c\<^sub>2 \<longrightarrow> 2 * r < dist c c\<^sub>2)"
proof (rule+)
fix c\<^sub>1 c\<^sub>2
assume local_assms: "c\<^sub>1 \<in> C \<union> {s}" "c\<^sub>2 \<in> C \<union> {s}" "c\<^sub>1 \<noteq> c\<^sub>2"
then have "(c\<^sub>1 \<in> C \<and> c\<^sub>2 \<in> C) \<or> (c\<^sub>1 = s \<and> c\<^sub>2 \<in> C) \<or> (c\<^sub>1 \<in> C \<and> c\<^sub>2 = s) \<or> (c\<^sub>1 = s \<and> c\<^sub>2 = s)"
using assms by auto
then show "2 * r < dist c\<^sub>1 c\<^sub>2"
proof (elim disjE)
assume "c\<^sub>1 \<in> C \<and> c\<^sub>2 \<in> C"
then show "2 * r < dist c\<^sub>1 c\<^sub>2" using IH inv_def local_assms by simp
next
assume case_assm: "c\<^sub>1 = s \<and> c\<^sub>2 \<in> C"
have "(\<forall>c \<in> C. \<forall>s\<in>S'. S' \<noteq> {} \<longrightarrow> 2 * r < dist c s)" using IH inv_def by simp
then show ?thesis by (smt case_assm s_def assms(1) dist_self dist_triangle3 singletonD)
next
assume case_assm: "c\<^sub>1 \<in> C \<and> c\<^sub>2 = s"
have "(\<forall>c \<in> C. \<forall>s\<in>S'. S' \<noteq> {} \<longrightarrow> 2 * r < dist c s)" using IH inv_def by simp
then show ?thesis by (smt case_assm s_def assms(1) dist_self dist_triangle3 singletonD)
next
assume "c\<^sub>1 = s \<and> c\<^sub>2 = s"
then have False using local_assms(3) by simp
then show ?thesis by simp
qed
qed
moreover
have "(\<forall>c\<in>C \<union> {s}. \<forall>s'' \<in> S' - {s' \<in> S'. dist s s' \<le> 2 * r}.
S' - {s' \<in> S'. dist s s' \<le> 2 * r} \<noteq> {} \<longrightarrow> 2 * r < dist c s'')"
using IH inv_def by fastforce
moreover
have "(S' - {s' \<in> S'. dist s s' \<le> 2 * r} = S \<or> C \<union> {s} \<noteq> {})" by simp
ultimately show ?thesis unfolding inv_def by blast
qed
lemma inv_last_1:
assumes "\<forall>s \<in> (S - S'). distance C s \<le> 2*r"
and "S' = {}"
shows "radius C \<le> 2*r"
by (metis Diff_empty assms image_iff radius_contained)
lemma inv_last_2:
assumes "finite C"
and "card C > n"
and "C \<subseteq> S"
and "\<forall>c\<^sub>1 \<in> C. \<forall>c\<^sub>2 \<in> C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> dist c\<^sub>1 c\<^sub>2 > 2*r"
shows "\<forall>C'. card C' \<le> n \<and> card C' > 0 \<longrightarrow> radius C' > r" (is ?P)
proof (rule ccontr)
assume "\<not> ?P"
then obtain C' where card_C': "card C' \<le> n \<and> card C' > 0" and radius_C': "radius C' \<le> r" by auto
have "\<forall>c \<in> C. (\<exists>c'. c' \<in> C' \<and> dist c c' \<le> r)"
proof
fix c
assume "c \<in> C"
then have "c \<in> S" using assms(3) by blast
then have "distance C' c \<le> radius C'" using finite_distances by (simp add: radius_def)
then have "distance C' c \<le> r" using radius_C' by simp
then show "\<exists>c'. c' \<in> C' \<and> dist c c' \<le> r" using dist_lemmas
by (metis card_C' card_gt_0_iff)
qed
then obtain f where f: "\<forall>c\<in>C. f c \<in> C' \<and> dist c (f c) \<le> r" by metis
have "\<not>inj_on f C"
proof
assume "inj_on f C"
then have "card C' \<ge> card C" using \<open>inj_on f C\<close> card_inj_on_le card_ge_0_finite card_C' f by blast
then show False using card_C' \<open>n < card C\<close> by linarith
qed
then obtain c1 c2 where defs: "c1 \<in> C \<and> c2 \<in> C \<and> c1 \<noteq> c2 \<and> f c1 = f c2" using inj_on_def by blast
then have *: "dist c1 (f c1) \<le> r \<and> dist c2 (f c1) \<le> r" using f by auto
have "2 * r < dist c1 c2" using assms defs by simp
also have " ... \<le> dist c1 (f c1) + dist (f c1) c2" by(rule dist_triangle)
also have " ... = dist c1 (f c1) + dist c2 (f c1)" using dist_commute by simp
also have " ... \<le> 2 * r" using * by simp
finally show False by simp
qed
lemma inv_last:
assumes "inv {} C r"
shows "(card C \<le> k \<longrightarrow> radius C \<le> 2*r) \<and> (card C > k \<longrightarrow> (\<forall>C'. card C' > 0 \<and> card C' \<le> k \<longrightarrow> radius C' > r))"
using assms inv_def inv_last_1 inv_last_2 finite_subset[OF _ finite_sites] by auto
theorem Center_Selection_r:
"VARS (S' :: ('a :: metric_space) set) (C :: ('a :: metric_space) set) (r :: real) (s :: 'a)
{True}
S' := S;
C := {};
WHILE S' \<noteq> {} INV {inv S' C r} DO
s := (SOME s. s \<in> S');
C := C \<union> {s};
S' := S' - {s' . s' \<in> S' \<and> dist s s' \<le> 2*r}
OD
{(card C \<le> k \<longrightarrow> radius C \<le> 2*r) \<and> (card C > k \<longrightarrow> (\<forall>C'. card C' > 0 \<and> card C' \<le> k \<longrightarrow> radius C' > r))}"
proof (vcg, goal_cases)
case (1 S' C r)
then show ?case using inv_init by simp
next
case (2 S' C r)
then show ?case using inv_step by simp
next
case (3 S' C r)
then show ?case using inv_last by blast
qed
subsection \<open>The Main Algorithm\<close>
definition invar :: "('a :: metric_space) set \<Rightarrow> bool" where
"invar C = (C \<noteq> {} \<and> card C \<le> k \<and> C \<subseteq> S \<and>
(\<forall>C'. (\<forall>c\<^sub>1 \<in> C. \<forall>c\<^sub>2 \<in> C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> dist c\<^sub>1 c\<^sub>2 > 2 * radius C')
\<or> (\<forall>s \<in> S. distance C s \<le> 2 * radius C')))"
abbreviation some where "some A \<equiv> (SOME s. s \<in> A)"
lemma invar_init: "invar {some S}"
proof -
let ?s = "some S"
have s_in_S: "?s \<in> S" using some_in_eq non_empty_sites by blast
have "{?s} \<noteq> {}" by simp
moreover
have "{SOME s. s \<in> S} \<subseteq> S" using s_in_S by simp
moreover
have "card {SOME s. s \<in> S} \<le> k" using non_zero_k by simp
ultimately show ?thesis by (auto simp: invar_def)
qed
abbreviation furthest_from where
"furthest_from C \<equiv> (SOME s. s \<in> S \<and> distance C s = Max (distance C ` S))"
lemma invar_step:
assumes "invar C"
and "card C < k"
shows "invar (C \<union> {furthest_from C})"
proof -
have furthest_from_C_props: "furthest_from C \<in> S \<and> distance C (furthest_from C) = radius C "
using someI_ex[of "\<lambda>x. x \<in> S \<and> distance C x = radius C"] radius_def2 radius_def by auto
have C_props: "finite C \<and> C \<noteq> {}"
using finite_subset[OF _ finite_sites] assms(1) unfolding invar_def by blast
{
have "card (C \<union> {furthest_from C}) \<le> card C + 1"
using assms(1) C_props unfolding invar_def by (simp add: card_insert_if)
then have "card (C \<union> {furthest_from C}) < k + 1" using assms(2) by simp
then have "card (C \<union> {furthest_from C}) \<le> k" by simp
}
moreover
have "C \<union> {furthest_from C} \<noteq> {}" by simp
moreover
have "(C \<union> {furthest_from C}) \<subseteq> S" using assms(1) furthest_from_C_props unfolding invar_def by simp
moreover
have "\<forall>C'. (\<forall>s \<in> S. distance (C \<union> {furthest_from C}) s \<le> 2 * radius C')
\<or> (\<forall>c\<^sub>1 \<in> C \<union> {furthest_from C}. \<forall>c\<^sub>2 \<in> C \<union> {furthest_from C}. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> 2 * radius C' < dist c\<^sub>1 c\<^sub>2)"
proof
fix C'
have "distance C (furthest_from C) > 2 * radius C' \<or> distance C (furthest_from C) \<le> 2 * radius C'" by auto
then show "(\<forall>s \<in> S. distance (C \<union> {furthest_from C}) s \<le> 2 * radius C')
\<or> (\<forall>c\<^sub>1 \<in> C \<union> {furthest_from C}. \<forall>c\<^sub>2 \<in> C \<union> {furthest_from C}. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> 2 * radius C' < dist c\<^sub>1 c\<^sub>2)"
proof (elim disjE)
assume asm: "distance C (furthest_from C) > 2 * radius C'"
then have "\<not>(\<forall>s \<in> S. distance C s \<le> 2 * radius C')" using furthest_from_C_props by force
then have IH: "\<forall>c\<^sub>1 \<in> C. \<forall>c\<^sub>2 \<in> C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> 2 * radius C' < dist c\<^sub>1 c\<^sub>2"
using assms(1) unfolding invar_def by blast
have "(\<forall>c\<^sub>1 \<in> C \<union> {furthest_from C}. (\<forall>c\<^sub>2 \<in> C \<union> {furthest_from C}. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> 2 * radius C' < dist c\<^sub>1 c\<^sub>2))"
using dist_ins[of "C" "2 * radius C'" "furthest_from C"] IH C_props asm by simp
then show ?thesis by simp
next
assume main_assm: "2 * radius C' \<ge> distance C (furthest_from C)"
have "(\<forall>s \<in> S. distance (C \<union> {furthest_from C}) s \<le> 2 * radius C')"
proof
fix s
assume local_assm: "s \<in> S"
then show "distance (C \<union> {furthest_from C}) s \<le> 2 * radius C'"
proof -
have "distance (C \<union> {furthest_from C}) s \<le> distance C s"
using distance_mono[of C "C \<union> {furthest_from C}"] C_props by auto
also have " ... \<le> distance C (furthest_from C)"
using Max.coboundedI local_assm finite_distances radius_def furthest_from_C_props by auto
also have " ... \<le> 2 * radius C'" using main_assm by simp
finally show ?thesis .
qed
qed
then show ?thesis by blast
qed
qed
ultimately show ?thesis unfolding invar_def by blast
qed
lemma invar_last:
assumes "invar C" and "\<not>card C < k"
shows "card C = k" and "card C' > 0 \<and> card C' \<le> k \<longrightarrow> radius C \<le> 2 * radius C'"
proof -
show "card C = k" using assms(1, 2) unfolding invar_def by simp
next
have C_props: "finite C \<and> C \<noteq> {}" using finite_sites assms(1) unfolding invar_def by (meson finite_subset)
show "card C' > 0 \<and> card C' \<le> k \<longrightarrow> radius C \<le> 2 * radius C'"
proof (rule impI)
assume C'_assms: "0 < card (C' :: 'a set) \<and> card C' \<le> k"
let ?r = "radius C'"
have "(\<forall>c\<^sub>1 \<in> C. \<forall>c\<^sub>2 \<in> C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> 2 * ?r < dist c\<^sub>1 c\<^sub>2) \<or> (\<forall>s \<in> S. distance C s \<le> 2 * ?r)"
using assms(1) unfolding invar_def by simp
then show "radius C \<le> 2 * ?r"
proof
assume case_assm: "\<forall>c\<^sub>1\<in>C. \<forall>c\<^sub>2\<in>C. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> 2 * ?r < dist c\<^sub>1 c\<^sub>2"
obtain s where s_def: "radius C = distance C s \<and> s \<in> S" using radius_def2 by metis
show ?thesis
proof (rule ccontr)
assume contr_assm: "\<not> radius C \<le> 2 * ?r"
then have s_prop: "distance C s > 2 * ?r" using s_def by simp
then have \<open>\<forall>c\<^sub>1 \<in> C \<union> {s}. \<forall>c\<^sub>2 \<in> C \<union> {s}. c\<^sub>1 \<noteq> c\<^sub>2 \<longrightarrow> dist c\<^sub>1 c\<^sub>2 > 2 * ?r\<close>
using C_props dist_ins[of "C" "2*?r" "s"] case_assm by blast
moreover
{
have "s \<notin> C"
proof
assume "s \<in> C"
then have "distance C s \<le> dist s s" using Min.coboundedI[of "distance C ` S" "dist s s"]
by (simp add: distance_def C_props)
also have " ... = 0" by simp
finally have "distance C s = 0" using dist_lemmas(4) by (smt C_props)
then have radius_le_zero: "2 * ?r < 0" using contr_assm s_def by simp
obtain x where x_def: "?r = distance C' x" using radius_def2 by metis
obtain l where l_def: "distance C' x = dist x l" using dist_lemmas(3) by (metis C'_assms card_gt_0_iff)
then have "dist x l = ?r" by (simp add: x_def)
also have "... < 0" using C'_assms radius_le_zero by simp
finally show False by simp
qed
then have "card (C \<union> {s}) > k" using assms(1,2) C_props unfolding invar_def by simp
}
moreover
have "C \<union> {s} \<subseteq> S" using assms(1) s_def unfolding invar_def by simp
moreover
have "finite (C \<union> {s})" using calculation(3) finite_subset finite_sites by auto
ultimately have "\<forall>C. card C \<le> k \<and> card C > 0 \<longrightarrow> radius C > ?r" using inv_last_2 by metis
then have "?r > ?r" using C'_assms by blast
then show False by simp
qed
next
assume "\<forall>s\<in>S. distance C s \<le> 2 * radius C'"
then show ?thesis by (metis image_iff radius_contained)
qed
qed
qed
theorem Center_Selection:
"VARS (C :: ('a :: metric_space) set) (s :: ('a :: metric_space))
{k \<le> card S}
C := {some S};
WHILE card C < k INV {invar C} DO
C := C \<union> {furthest_from C}
OD
{card C = k \<and> (\<forall>C'. card C' > 0 \<and> card C' \<le> k \<longrightarrow> radius C \<le> 2 * radius C')}"
proof (vcg, goal_cases)
case (1 C s)
show ?case using invar_init by simp
next
case (2 C s)
then show ?case using invar_step by blast
next
case (3 C s)
then show ?case using invar_last by blast
qed
end
end