Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: ListSlice.thy | |
Date: Oct 2006 | |
Author: David Trachtenherz | |
*) | |
section \<open>Additional definitions and results for lists\<close> | |
theory ListSlice | |
imports "List-Infinite.ListInf" | |
begin | |
subsection \<open>Slicing lists into lists of lists\<close> | |
definition ilist_slice :: "'a ilist \<Rightarrow> nat \<Rightarrow> 'a list ilist" | |
where "ilist_slice f k \<equiv> \<lambda>x. map f [x * k..<Suc x * k]" | |
primrec list_slice_aux :: "'a list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a list list" | |
where | |
"list_slice_aux xs k 0 = []" | |
| "list_slice_aux xs k (Suc n) = take k xs # list_slice_aux (xs \<up> k) k n" | |
definition list_slice :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list list" | |
where "list_slice xs k \<equiv> list_slice_aux xs k (length xs div k)" | |
definition list_slice2 :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list list" | |
where "list_slice2 xs k \<equiv> | |
list_slice xs k @ (if length xs mod k = 0 then [] else [xs \<up> (length xs div k * k)])" | |
text \<open> | |
No function \<open>list_unslice\<close> for finite lists is needed | |
because the corresponding functionality is already provided by \<open>concat\<close>. | |
Therefore, only a \<open>ilist_unslice\<close> function for infinite lists is defined.\<close> | |
definition ilist_unslice :: "'a list ilist \<Rightarrow> 'a ilist" | |
where "ilist_unslice f \<equiv> \<lambda>n. f (n div length (f 0)) ! (n mod length (f 0))" | |
lemma list_slice_aux_length: "\<And>xs. length (list_slice_aux xs k n) = n" | |
by (induct n, simp+) | |
lemma list_slice_aux_nth: " | |
\<And>m xs. m < n \<Longrightarrow> (list_slice_aux xs k n) ! m = (xs \<up> (m * k) \<down> k)" | |
apply (induct n) | |
apply simp | |
apply (simp add: nth_Cons' diff_mult_distrib) | |
done | |
lemma list_slice_length: "length (list_slice xs k) = length xs div k" | |
by (simp add: list_slice_def list_slice_aux_length) | |
lemma list_slice_0: "list_slice xs 0 = []" | |
by (simp add: list_slice_def) | |
lemma list_slice_1: "list_slice xs (Suc 0) = map (\<lambda>x. [x]) xs" | |
by (fastforce simp: list_eq_iff list_slice_def list_slice_aux_nth list_slice_aux_length) | |
lemma list_slice_less: "length xs < k \<Longrightarrow> list_slice xs k = []" | |
by (simp add: list_slice_def) | |
lemma list_slice_Nil: "list_slice [] k = []" | |
by (simp add: list_slice_def) | |
lemma list_slice_nth: " | |
m < length xs div k \<Longrightarrow> list_slice xs k ! m = xs \<up> (m * k) \<down> k" | |
by (simp add: list_slice_def list_slice_aux_nth) | |
lemma list_slice_nth_length: " | |
m < length xs div k \<Longrightarrow> length ((list_slice xs k) ! m) = k" | |
apply (case_tac "length xs < k") | |
apply simp | |
apply (simp add: list_slice_nth) | |
thm less_div_imp_mult_add_divisor_le | |
apply (drule less_div_imp_mult_add_divisor_le) | |
apply simp | |
done | |
lemma list_slice_nth_eq_sublist_list: " | |
m < length xs div k \<Longrightarrow> list_slice xs k ! m = sublist_list xs [m * k..<m * k + k]" | |
apply (simp add: list_slice_nth) | |
apply (rule take_drop_eq_sublist_list) | |
apply (rule less_div_imp_mult_add_divisor_le, assumption+) | |
done | |
lemma list_slice_nth_nth: " | |
\<lbrakk> m < length xs div k; n < k \<rbrakk> \<Longrightarrow> | |
(list_slice xs k) ! m ! n = xs ! (m * k + n)" | |
apply (frule list_slice_nth_length[of m xs k]) | |
apply (simp add: list_slice_nth) | |
done | |
lemma list_slice_nth_nth_rev: " | |
n < length xs div k * k \<Longrightarrow> | |
(list_slice xs k) ! (n div k) ! (n mod k) = xs ! n" | |
apply (case_tac "k = 0", simp) | |
apply (simp add: list_slice_nth_nth div_less_conv) | |
done | |
lemma list_slice_eq_list_slice_take: " | |
list_slice (xs \<down> (length xs div k * k)) k = list_slice xs k" | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice_0) | |
apply (simp add: list_eq_iff list_slice_length) | |
apply (simp add: div_mult_le min_eqR list_slice_nth) | |
apply (clarify, rename_tac i) | |
apply (subgoal_tac "k \<le> length xs div k * k - i * k") | |
prefer 2 | |
apply (drule_tac m=i in Suc_leI) | |
apply (drule mult_le_mono1[of _ _ k]) | |
apply simp | |
apply (subgoal_tac "length xs div k * k - i * k \<le> length xs - i * k") | |
prefer 2 | |
apply (simp add: div_mult_cancel) | |
apply (simp add: min_eqR) | |
by (simp add: less_diff_conv) | |
lemma list_slice_append_mult: " | |
\<And>xs. length xs = m * k \<Longrightarrow> | |
list_slice (xs @ ys) k = list_slice xs k @ list_slice ys k" | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice_0) | |
apply (induct m) | |
apply (simp add: list_slice_Nil) | |
apply (simp add: list_slice_def) | |
apply (simp add: list_slice_def add.commute[of _ "length ys"] add.assoc[symmetric]) | |
done | |
lemma list_slice_append_mod: " | |
length xs mod k = 0 \<Longrightarrow> | |
list_slice (xs @ ys) k = list_slice xs k @ list_slice ys k" | |
by (auto intro: list_slice_append_mult elim!: dvdE) | |
lemma list_slice_div_eq_1[rule_format]: " | |
length xs div k = Suc 0 \<Longrightarrow> list_slice xs k = [take k xs]" | |
by (simp add: list_slice_def) | |
lemma list_slice_div_eq_Suc[rule_format]: " | |
length xs div k = Suc n \<Longrightarrow> | |
list_slice xs k = list_slice (xs \<down> (n * k)) k @ [xs \<up> (n * k) \<down> k]" | |
apply (case_tac "k = 0", simp) | |
apply (subgoal_tac "n * k < length xs") | |
prefer 2 | |
apply (case_tac "length xs = 0", simp) | |
apply (drule_tac arg_cong[where f="\<lambda>x. x - Suc 0"], drule sym) | |
apply (simp add: diff_mult_distrib div_mult_cancel) | |
apply (insert list_slice_append_mult[of "take (n * k) xs" n k "drop (n * k) xs"]) | |
apply (simp add: min_eqR) | |
apply (rule list_slice_div_eq_1) | |
apply (simp add: div_diff_mult_self1) | |
done | |
lemma list_slice2_mod_0: " | |
length xs mod k = 0 \<Longrightarrow> list_slice2 xs k = list_slice xs k" | |
by (simp add: list_slice2_def) | |
lemma list_slice2_mod_gr0: " | |
0 < length xs mod k \<Longrightarrow> list_slice2 xs k = list_slice xs k @ [xs \<up> (length xs div k * k)]" | |
by (simp add: list_slice2_def) | |
lemma list_slice2_length: " | |
length (list_slice2 xs k) = ( | |
if length xs mod k = 0 then length xs div k else Suc (length xs div k))" | |
by (simp add: list_slice2_def list_slice_length) | |
lemma list_slice2_0: " | |
list_slice2 xs 0 = (if (length xs = 0) then [] else [xs])" | |
by (simp add: list_slice2_def list_slice_0) | |
lemma list_slice2_1: "list_slice2 xs (Suc 0) = map (\<lambda>x. [x]) xs" | |
by (simp add: list_slice2_def list_slice_1) | |
lemma list_slice2_le: " | |
length xs \<le> k \<Longrightarrow> list_slice2 xs k = (if length xs = 0 then [] else [xs])" | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice2_0) | |
apply (drule order_le_less[THEN iffD1], erule disjE) | |
apply (simp add: list_slice2_def list_slice_def) | |
apply (simp add: list_slice2_def list_slice_div_eq_1) | |
done | |
lemma list_slice2_Nil: "list_slice2 [] k = []" | |
by (simp add: list_slice2_def list_slice_Nil) | |
lemma list_slice2_list_slice_nth: " | |
m < length xs div k \<Longrightarrow> list_slice2 xs k ! m = list_slice xs k ! m" | |
by (simp add: list_slice2_def list_slice_length nth_append) | |
lemma list_slice2_last: " | |
\<lbrakk> length xs mod k > 0; m = length xs div k \<rbrakk> \<Longrightarrow> | |
list_slice2 xs k ! m = xs \<up> (length xs div k * k)" | |
by (simp add: list_slice2_def nth_append list_slice_length) | |
lemma list_slice2_nth: " | |
\<lbrakk> m < length xs div k \<rbrakk> \<Longrightarrow> | |
list_slice2 xs k ! m = xs \<up> (m * k) \<down> k" | |
by (simp add: list_slice2_def list_slice_length nth_append list_slice_nth) | |
lemma list_slice2_nth_length_eq1: " | |
m < length xs div k \<Longrightarrow> length (list_slice2 xs k ! m) = k" | |
by (simp add: list_slice2_def nth_append list_slice_length list_slice_nth_length) | |
lemma list_slice2_nth_length_eq2: " | |
\<lbrakk> length xs mod k > 0; m = length xs div k \<rbrakk> \<Longrightarrow> | |
length (list_slice2 xs k ! m) = length xs mod k" | |
by (simp add: list_slice2_def list_slice_length nth_append minus_div_mult_eq_mod [symmetric]) | |
lemma list_slice2_nth_nth_eq1: " | |
\<lbrakk> m < length xs div k; n < k \<rbrakk> \<Longrightarrow> | |
(list_slice2 xs k) ! m ! n = xs ! (m * k + n)" | |
by (simp add: list_slice2_list_slice_nth list_slice_nth_nth) | |
lemma list_slice2_nth_nth_eq2: " | |
\<lbrakk> m = length xs div k; n < length xs mod k \<rbrakk> \<Longrightarrow> | |
(list_slice2 xs k) ! m ! n = xs ! (m * k + n)" | |
by (simp add: mult.commute[of _ k] minus_mod_eq_mult_div [symmetric] list_slice2_last) | |
lemma list_slice2_nth_nth_rev: " | |
n < length xs \<Longrightarrow> (list_slice2 xs k) ! (n div k) ! (n mod k) = xs ! n" | |
apply (case_tac "k = 0") | |
apply (clarsimp simp: list_slice2_0) | |
apply (case_tac "n div k < length xs div k") | |
apply (simp add: list_slice2_nth_nth_eq1) | |
apply (frule div_le_mono[OF less_imp_le, of _ _ k]) | |
apply simp | |
apply (drule sym) | |
apply (subgoal_tac "n mod k < length xs mod k") | |
prefer 2 | |
apply (rule ccontr) | |
apply (simp add: linorder_not_less) | |
apply (drule less_mod_ge_imp_div_less[of n "length xs" k], simp+) | |
apply (simp add: list_slice2_nth_nth_eq2) | |
done | |
lemma list_slice2_append_mult: " | |
length xs = m * k \<Longrightarrow> | |
list_slice2 (xs @ ys) k = list_slice2 xs k @ list_slice2 ys k" | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice2_0) | |
apply (clarsimp simp: list_slice2_def list_slice_append_mult) | |
apply (simp add: add.commute[of "m * k"] add_mult_distrib) | |
done | |
lemma list_slice2_append_mod: " | |
length xs mod k = 0 \<Longrightarrow> | |
list_slice2 (xs @ ys) k = list_slice2 xs k @ list_slice2 ys k" | |
by (auto intro: list_slice2_append_mult elim!: dvdE) | |
lemma ilist_slice_nth: " | |
(ilist_slice f k) m = map f [m * k..<Suc m * k]" | |
by (simp add: ilist_slice_def) | |
lemma ilist_slice_nth_length: "length ((ilist_slice f k) m) = k" | |
by (simp add: ilist_slice_def) | |
lemma ilist_slice_nth_nth: " | |
n < k \<Longrightarrow> (ilist_slice f k) m ! n = f (m * k + n)" | |
by (simp add: ilist_slice_def) | |
lemma ilist_slice_nth_nth_rev: " | |
0 < k \<Longrightarrow> (ilist_slice f k) (n div k) ! (n mod k) = f n" | |
by (simp add: ilist_slice_nth_nth) | |
lemma list_slice_concat: " | |
concat (list_slice xs k) = xs \<down> (length xs div k * k)" | |
(is "?P xs k") | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice_0) | |
apply simp | |
apply (subgoal_tac "\<And>m. \<forall>xs. length xs div k = m \<longrightarrow> ?P xs k", simp) | |
apply (induct_tac m) | |
apply (intro allI impI) | |
apply (simp add: in_set_conv_nth div_eq_0_conv' list_slice_less) | |
apply clarify | |
apply (simp add: add.commute[of k]) | |
apply (subgoal_tac "n * k + k \<le> length xs") | |
prefer 2 | |
apply (simp add: le_less_div_conv[symmetric]) | |
apply (simp add: list_slice_div_eq_Suc) | |
apply (drule_tac x="xs \<down> (n * k)" in spec) | |
apply (simp add: min_eqR) | |
apply (simp add: take_add) | |
done | |
lemma list_slice_unslice_mult: " | |
length xs = m * k \<Longrightarrow> concat (list_slice xs k) = xs" | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice_Nil) | |
apply (simp add: list_slice_concat) | |
done | |
lemma ilist_slice_unslice: "0 < k \<Longrightarrow> ilist_unslice (ilist_slice f k) = f" | |
by (simp add: ilist_unslice_def ilist_slice_nth_length ilist_slice_nth_nth) | |
lemma i_take_ilist_slice_eq_list_slice: " | |
0 < k \<Longrightarrow> ilist_slice f k \<Down> n = list_slice (f \<Down> (n * k)) k" | |
apply (simp add: list_eq_iff list_slice_length ilist_slice_nth list_slice_nth) | |
apply (clarify, rename_tac i) | |
apply (subgoal_tac "k \<le> n * k - i * k") | |
prefer 2 | |
apply (drule_tac m=i in Suc_leI) | |
apply (drule mult_le_mono1[of _ _ k]) | |
apply simp | |
apply simp | |
done | |
lemma list_slice_i_take_eq_i_take_ilist_slice: " | |
list_slice (f \<Down> n) k = ilist_slice f k \<Down> (n div k)" | |
apply (case_tac "k = 0") | |
apply (simp add: list_slice_0) | |
apply (simp add: i_take_ilist_slice_eq_list_slice) | |
apply (subst list_slice_eq_list_slice_take[of "f \<Down> n", symmetric]) | |
apply (simp add: div_mult_le min_eqR) | |
done | |
lemma ilist_slice_i_append_mod: " | |
length xs mod k = 0 \<Longrightarrow> | |
ilist_slice (xs \<frown> f) k = list_slice xs k \<frown> ilist_slice f k" | |
apply (simp add: ilist_eq_iff ilist_slice_nth i_append_nth list_slice_length) | |
apply (clarsimp simp: mult.commute[of k] elim!: dvdE, rename_tac n i) | |
apply (intro conjI impI) | |
apply (simp add: list_slice_nth) | |
apply (subgoal_tac "k \<le> n * k - i * k") | |
prefer 2 | |
apply (drule_tac m=i in Suc_leI) | |
apply (drule mult_le_mono1[of _ _ k]) | |
apply simp | |
apply (fastforce simp: list_eq_iff i_append_nth min_eqR) | |
apply (simp add: ilist_eq_iff list_eq_iff i_append_nth linorder_not_less) | |
apply (clarify, rename_tac j) | |
apply (subgoal_tac "n * k \<le> i * k + j") | |
prefer 2 | |
apply (simp add: trans_le_add1) | |
apply (simp add: diff_mult_distrib) | |
done | |
corollary ilist_slice_append_mult: " | |
length xs = m * k \<Longrightarrow> | |
ilist_slice (xs \<frown> f) k = list_slice xs k \<frown> ilist_slice f k" | |
by (simp add: ilist_slice_i_append_mod) | |
end | |