Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: BDD | |
Author: Veronika Ortner and Norbert Schirmer, 2004 | |
Maintainer: Norbert Schirmer, norbert.schirmer at web de | |
License: LGPL | |
*) | |
(* | |
General.thy | |
Copyright (C) 2004-2008 Veronika Ortner and Norbert Schirmer | |
Some rights reserved, TU Muenchen | |
This library is free software; you can redistribute it and/or modify | |
it under the terms of the GNU Lesser General Public License as | |
published by the Free Software Foundation; either version 2.1 of the | |
License, or (at your option) any later version. | |
This library is distributed in the hope that it will be useful, but | |
WITHOUT ANY WARRANTY; without even the implied warranty of | |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
Lesser General Public License for more details. | |
You should have received a copy of the GNU Lesser General Public | |
License along with this library; if not, write to the Free Software | |
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |
USA | |
*) | |
section \<open>General Lemmas on BDD Abstractions\<close> | |
theory General imports BinDag begin | |
definition subdag_eq:: "dag \<Rightarrow> dag \<Rightarrow> bool" where | |
"subdag_eq t\<^sub>1 t\<^sub>2 = (t\<^sub>1 = t\<^sub>2 \<or> subdag t\<^sub>1 t\<^sub>2)" | |
(*"subtree_eq Tip t = (if t = Tip then True else False)" | |
"subtree_eq (Node l a r) t = (t=(Node l a r) \<or> subtree_eq l t \<or> subtree_eq r t)"*) | |
primrec root :: "dag \<Rightarrow> ref" | |
where | |
"root Tip = Null" | | |
"root (Node l a r) = a" | |
fun isLeaf :: "dag \<Rightarrow> bool" where | |
"isLeaf Tip = False" | |
| "isLeaf (Node Tip v Tip) = True" | |
| "isLeaf (Node (Node l v\<^sub>1 r) v\<^sub>2 Tip) = False" | |
| "isLeaf (Node Tip v\<^sub>1 (Node l v\<^sub>2 r)) = False" | |
datatype bdt = Zero | One | Bdt_Node bdt nat bdt | |
fun bdt_fn :: "dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bdt option" where | |
"bdt_fn Tip = (\<lambda>bdtvar . None)" | |
| "bdt_fn (Node Tip vref Tip) = | |
(\<lambda>bdtvar . | |
(if (bdtvar vref = 0) | |
then Some Zero | |
else (if (bdtvar vref = 1) | |
then Some One | |
else None)))" | |
| "bdt_fn (Node Tip vref (Node l vref1 r)) = (\<lambda>bdtvar . None)" | |
| "bdt_fn (Node (Node l vref1 r) vref Tip) = (\<lambda>bdtvar . None)" | |
| "bdt_fn (Node (Node l1 vref1 r1) vref (Node l2 vref2 r2)) = | |
(\<lambda>bdtvar . | |
(if (bdtvar vref = 0 \<or> bdtvar vref = 1) | |
then None | |
else | |
(case (bdt_fn (Node l1 vref1 r1) bdtvar) of | |
None \<Rightarrow> None | |
|(Some b1) \<Rightarrow> | |
(case (bdt_fn (Node l2 vref2 r2) bdtvar) of | |
None \<Rightarrow> None | |
|(Some b2) \<Rightarrow> Some (Bdt_Node b1 (bdtvar vref) b2)))))" | |
(* | |
Kongruenzregeln sind das Feintuning für den Simplifier (siehe Kapitel 9 im Isabelle | |
Tutorial). Im Fall von case wird standardmäßig nur die case bedingung nicht | |
aber die einzelnen Fälle simplifiziert, analog dazu beim if. Dies simuliert die | |
Auswertungsstrategie einer Programmiersprache, da wird auch zunächst nur die | |
Bedingung vereinfacht. Will man mehr so kann man die entsprechenden Kongruenz | |
regeln dazunehmen. | |
*) | |
abbreviation "bdt == bdt_fn" | |
primrec eval :: "bdt \<Rightarrow> bool list \<Rightarrow> bool" | |
where | |
"eval Zero env = False" | | |
"eval One env = True" | | |
"eval (Bdt_Node l v r) env = (if (env ! v) then eval r env else eval l env)" | |
(*A given bdt is ordered if it is a One or Zero or its value is smaller than | |
its parents value*) | |
fun ordered_bdt:: "bdt \<Rightarrow> bool" where | |
"ordered_bdt Zero = True" | |
| "ordered_bdt One = True" | |
| "ordered_bdt (Bdt_Node (Bdt_Node l1 v1 r1) v (Bdt_Node l2 v2 r2)) = | |
((v1 < v) \<and> (v2 < v) \<and> | |
(ordered_bdt (Bdt_Node l1 v1 r1)) \<and> (ordered_bdt (Bdt_Node l2 v2 r2)))" | |
| "ordered_bdt (Bdt_Node (Bdt_Node l1 v1 r1) v r) = | |
((v1 < v) \<and> (ordered_bdt (Bdt_Node l1 v1 r1)))" | |
| "ordered_bdt (Bdt_Node l v (Bdt_Node l2 v2 r2)) = | |
((v2 < v) \<and> (ordered_bdt (Bdt_Node l2 v2 r2)))" | |
| "ordered_bdt (Bdt_Node l v r) = True" | |
(*In case t = (Node Tip v Tip) v should have the values 0 or 1. This is not checked by this function*) | |
fun ordered:: "dag \<Rightarrow> (ref\<Rightarrow>nat) \<Rightarrow> bool" where | |
"ordered Tip = (\<lambda> var. True)" | |
| "ordered (Node (Node l\<^sub>1 v\<^sub>1 r\<^sub>1) v (Node l\<^sub>2 v\<^sub>2 r\<^sub>2)) = | |
(\<lambda> var. (var v\<^sub>1 < var v \<and> var v\<^sub>2 < var v) \<and> | |
(ordered (Node l\<^sub>1 v\<^sub>1 r\<^sub>1) var) \<and> (ordered (Node l\<^sub>2 v\<^sub>2 r\<^sub>2) var))" | |
| "ordered (Node Tip v Tip) = (\<lambda> var. (True))" | |
| "ordered (Node Tip v r) = | |
(\<lambda> var. (var (root r) < var v) \<and> (ordered r var))" | |
| "ordered (Node l v Tip) = | |
(\<lambda> var. (var (root l) < var v) \<and> (ordered l var))" | |
(*Calculates maximal value in a non ordered bdt. Does not test parents of the | |
given bdt*) | |
primrec max_var :: "bdt \<Rightarrow> nat" | |
where | |
"max_var Zero = 0" | | |
"max_var One = 1" | | |
"max_var (Bdt_Node l v r) = max v (max (max_var l) (max_var r))" | |
lemma eval_zero: "\<lbrakk>bdt (Node l v r) var = Some x; | |
var (root (Node l v r)) = (0::nat)\<rbrakk> \<Longrightarrow> x = Zero" | |
apply (cases l) | |
apply (cases r) | |
apply simp | |
apply simp | |
apply (cases r) | |
apply simp | |
apply simp | |
done | |
lemma bdt_Some_One_iff [simp]: | |
"(bdt t var = Some One) = (\<exists> p. t = Node Tip p Tip \<and> var p = 1)" | |
apply (induct t rule: bdt_fn.induct) | |
apply (auto split: option.splits) (*in order to split the cases Zero and One*) | |
done | |
lemma bdt_Some_Zero_iff [simp]: | |
"(bdt t var = Some Zero) = (\<exists> p. t = Node Tip p Tip \<and> var p = 0)" | |
apply (induct t rule: bdt_fn.induct) | |
apply (auto split: option.splits) | |
done | |
lemma bdt_Some_Node_iff [simp]: | |
"(bdt t var = Some (Bdt_Node bdt1 v bdt2)) = | |
(\<exists> p l r. t = Node l p r \<and> bdt l var = Some bdt1 \<and> bdt r var = Some bdt2 \<and> | |
1 < v \<and> var p = v )" | |
apply (induct t rule: bdt_fn.induct) | |
prefer 5 | |
apply (fastforce split: if_splits option.splits) | |
apply auto | |
done | |
lemma balanced_bdt: | |
"\<And> p bdt1. \<lbrakk> Dag p low high t; bdt t var = Some bdt1; no \<in> set_of t\<rbrakk> | |
\<Longrightarrow> (low no = Null) = (high no = Null)" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt a rt) | |
note NN= this | |
have bdt1: "bdt (Node lt a rt) var = Some bdt1" by fact | |
have no_in_t: " no \<in> set_of (Node lt a rt)" by fact | |
have p_tree: "Dag p low high (Node lt a rt)" by fact | |
from Node.prems obtain | |
lt: "Dag (low p) low high lt" and | |
rt: "Dag (high p) low high rt" | |
by auto | |
show ?case | |
proof (cases lt) | |
case (Node llt l rlt) | |
note Nlt=this | |
show ?thesis | |
proof (cases rt) | |
case (Node lrt r rrt) | |
note Nrt=this | |
from Nlt Nrt bdt1 obtain lbdt rbdt where | |
lbdt_def: "bdt lt var = Some lbdt" and | |
rbdt_def: "bdt rt var = Some rbdt" and | |
bdt1_def: "bdt1 = Bdt_Node lbdt (var a) rbdt" | |
by (auto split: if_split_asm option.splits) | |
from no_in_t show ?thesis | |
proof (simp, elim disjE) | |
assume " no = a" | |
with p_tree Nlt Nrt show ?thesis | |
by auto | |
next | |
assume "no \<in> set_of lt" | |
with Node.hyps lbdt_def lt show ?thesis | |
by simp | |
next | |
assume "no \<in> set_of rt" | |
with Node.hyps rbdt_def rt show ?thesis | |
by simp | |
qed | |
next | |
case Tip | |
with Nlt bdt1 show ?thesis | |
by simp | |
qed | |
next | |
case Tip | |
note ltTip=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
with ltTip bdt1 no_in_t p_tree show ?thesis | |
by auto | |
next | |
case (Node rlt r rrt) | |
with bdt1 ltTip show ?thesis | |
by simp | |
qed | |
qed | |
qed | |
primrec dag_map :: "(ref \<Rightarrow> ref) \<Rightarrow> dag \<Rightarrow> dag" | |
where | |
"dag_map f Tip = Tip" | | |
"dag_map f (Node l a r) = (Node (dag_map f l) (f a) (dag_map f r))" | |
definition wf_marking :: "dag \<Rightarrow> (ref \<Rightarrow> bool) \<Rightarrow> (ref \<Rightarrow> bool) \<Rightarrow> bool \<Rightarrow> bool" | |
where | |
"wf_marking t mark_old mark_new marked = | |
(case t of Tip \<Rightarrow> mark_new = mark_old | |
| (Node lt p rt) \<Rightarrow> | |
(\<forall> n. n \<notin> set_of t \<longrightarrow> mark_new n = mark_old n) \<and> | |
(\<forall> n. n \<in> set_of t \<longrightarrow> mark_new n = marked))" | |
definition dag_in_levellist:: "dag \<Rightarrow> (ref list list) \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
where "dag_in_levellist t levellist var = (t \<noteq> Tip \<longrightarrow> | |
(\<forall> st. subdag_eq t st \<longrightarrow> root st \<in> set (levellist ! (var (root st)))))" | |
lemma set_of_nn: "\<lbrakk> Dag p low high t; n \<in> set_of t\<rbrakk> \<Longrightarrow> n \<noteq> Null" | |
apply (induct t) | |
apply simp | |
apply auto | |
done | |
lemma subnodes_ordered [rule_format]: | |
"\<forall>p. n \<in> set_of t \<longrightarrow> Dag p low high t \<longrightarrow> ordered t var \<longrightarrow> var n <= var p" | |
apply (induct t) | |
apply simp | |
apply (intro allI) | |
apply (erule_tac x="low p" in allE) | |
apply (erule_tac x="high p" in allE) | |
apply clarsimp | |
apply (case_tac t1) | |
apply (case_tac t2) | |
apply simp | |
apply fastforce | |
apply (case_tac t2) | |
apply fastforce | |
apply fastforce | |
done | |
lemma ordered_set_of: | |
"\<And> x. \<lbrakk>ordered t var; x \<in> set_of t\<rbrakk> \<Longrightarrow> var x <= var (root t)" | |
apply (induct t) | |
apply simp | |
apply simp | |
apply (elim disjE) | |
apply simp | |
apply (case_tac t1) | |
apply simp | |
apply (case_tac t2) | |
apply fastforce | |
apply fastforce | |
apply (case_tac t2) | |
apply simp | |
apply (case_tac t1) | |
apply fastforce | |
apply fastforce | |
done | |
lemma dag_setofD: "\<And> p low high n. \<lbrakk> Dag p low high t; n \<in> set_of t \<rbrakk> \<Longrightarrow> | |
(\<exists> nt. Dag n low high nt) \<and> (\<forall> nt. Dag n low high nt \<longrightarrow> set_of nt \<subseteq> set_of t)" | |
apply (induct t) | |
apply simp | |
apply auto | |
apply fastforce | |
apply (fastforce dest: Dag_unique) | |
apply (fastforce dest: Dag_unique) | |
apply blast | |
apply blast | |
done | |
lemma dag_setof_exD: "\<lbrakk>Dag p low high t; n \<in> set_of t\<rbrakk> \<Longrightarrow> \<exists> nt. Dag n low high nt" | |
apply (simp add: dag_setofD) | |
done | |
lemma dag_setof_subsetD: "\<lbrakk>Dag p low high t; n \<in> set_of t; Dag n low high nt\<rbrakk> \<Longrightarrow> set_of nt \<subseteq> set_of t" | |
apply (simp add: dag_setofD) | |
done | |
lemma subdag_parentdag_low: "not <= lt \<Longrightarrow> not <= (Node lt p rt)" for not | |
apply (cases "not = lt") | |
apply (cases lt) | |
apply simp | |
apply (cases rt) | |
apply simp | |
apply (simp add: le_dag_def less_dag_def) | |
apply (simp add: le_dag_def less_dag_def) | |
apply (simp add: le_dag_def less_dag_def) | |
apply (simp add: le_dag_def less_dag_def) | |
done | |
lemma subdag_parentdag_high: "not <= rt \<Longrightarrow> not <= (Node lt p rt)" for not | |
apply (cases "not = rt") | |
apply (cases lt) | |
apply simp | |
apply (cases rt) | |
apply simp | |
apply (simp add: le_dag_def less_dag_def) | |
apply (simp add: le_dag_def less_dag_def) | |
apply (simp add: le_dag_def less_dag_def) | |
apply (simp add: le_dag_def less_dag_def) | |
done | |
lemma set_of_subdag: "\<And> p not no. | |
\<lbrakk>Dag p low high t; Dag no low high not; no \<in> set_of t\<rbrakk> \<Longrightarrow> not <= t" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt po rt) | |
note rtNode=this | |
from Node.prems have ppo: "p=po" | |
by simp | |
show ?case | |
proof (cases "no = p") | |
case True | |
with ppo Node.prems have "not = (Node lt po rt)" | |
by (simp add: Dag_unique del: Dag_Ref) | |
with Node.prems ppo show ?thesis by (simp add: subdag_eq_def) | |
next | |
assume " no \<noteq> p" | |
with Node.prems have no_in_ltorrt: "no \<in> set_of lt \<or> no \<in> set_of rt" | |
by simp | |
show ?thesis | |
proof (cases "no \<in> set_of lt") | |
case True | |
from Node.prems ppo have "Dag (low po) low high lt" | |
by simp | |
with Node.prems ppo True have "not <= lt" | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
with Node.prems no_in_ltorrt show ?thesis | |
apply - | |
apply (rule subdag_parentdag_low) | |
apply simp | |
done | |
next | |
assume "no \<notin> set_of lt" | |
with no_in_ltorrt have no_in_rt: "no \<in> set_of rt" | |
by simp | |
from Node.prems ppo have "Dag (high po) low high rt" | |
by simp | |
with Node.prems ppo no_in_rt have "not <= rt" | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
with Node.prems no_in_rt show ?thesis | |
apply - | |
apply (rule subdag_parentdag_high) | |
apply simp | |
done | |
qed | |
qed | |
qed | |
lemma children_ordered: "\<lbrakk>ordered (Node lt p rt) var\<rbrakk> \<Longrightarrow> | |
ordered lt var \<and> ordered rt var" | |
proof (cases lt) | |
case Tip | |
note ltTip=this | |
assume orderedNode: "ordered (Node lt p rt) var" | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rtTip = this | |
with ltTip show ?thesis | |
by simp | |
next | |
case (Node lrt r rrt) | |
with orderedNode ltTip show ?thesis | |
by simp | |
qed | |
next | |
case (Node llt l rlt) | |
note ltNode=this | |
assume orderedNode: "ordered (Node lt p rt) var" | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rtTip = this | |
with orderedNode ltNode show ?thesis by simp | |
next | |
case (Node lrt r rrt) | |
note rtNode = this | |
with orderedNode ltNode show ?thesis by simp | |
qed | |
qed | |
lemma ordered_subdag: "\<lbrakk>ordered t var; not <= t\<rbrakk> \<Longrightarrow> ordered not var" for not | |
proof (induct t) | |
case Tip | |
then show ?thesis by (simp add: less_dag_def le_dag_def) | |
next | |
case (Node lt p rt) | |
show ?case | |
proof (cases "not = Node lt p rt") | |
case True | |
with Node.prems show ?thesis by simp | |
next | |
assume notnt: "not \<noteq> Node lt p rt" | |
with Node.prems have notstltorrt: "not <= lt \<or> not <= rt" | |
apply - | |
apply (simp add: less_dag_def le_dag_def) | |
apply fastforce | |
done | |
from Node.prems have ord_lt: "ordered lt var" | |
apply - | |
apply (drule children_ordered) | |
apply simp | |
done | |
from Node.prems have ord_rt: "ordered rt var" | |
apply - | |
apply (drule children_ordered) | |
apply simp | |
done | |
show ?thesis | |
proof (cases "not <= lt") | |
case True | |
with ord_lt show ?thesis | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
next | |
assume "\<not> not \<le> lt" | |
with notstltorrt have notinrt: "not <= rt" | |
by simp | |
from Node.hyps have hyprt: "\<lbrakk>ordered rt var; not \<le> rt\<rbrakk> \<Longrightarrow> ordered not var" by simp | |
from notinrt ord_rt show ?thesis | |
apply - | |
apply (rule hyprt) | |
apply assumption+ | |
done | |
qed | |
qed | |
qed | |
lemma subdag_ordered: | |
"\<And> not no p. \<lbrakk>ordered t var; Dag p low high t; Dag no low high not; | |
no \<in> set_of t\<rbrakk> \<Longrightarrow> ordered not var" | |
proof (induct t) | |
case Tip | |
from Tip.prems show ?case by simp | |
next | |
case (Node lt po rt) | |
note nN=this | |
show ?case | |
proof (cases lt) | |
case Tip | |
note ltTip=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
from Node.prems have ppo: "p=po" | |
by simp | |
from Tip ltTip Node.prems have "no=p" | |
by simp | |
with ppo Node.prems have "not=(Node lt po rt)" | |
by (simp del: Dag_Ref add: Dag_unique) | |
with Node.prems show ?thesis by simp | |
next | |
case (Node lrnot rn rrnot) | |
from Node.prems ltTip Node have ord_rt: "ordered rt var" | |
by simp | |
from Node.prems have ppo: "p=po" | |
by simp | |
from Node.prems have ponN: "po \<noteq> Null" | |
by auto | |
with ppo ponN ltTip Node.prems have *: "Dag (high po) low high rt" | |
by auto | |
show ?thesis | |
proof (cases "no=po") | |
case True | |
with ppo Node.prems have "not = Node lt po rt" | |
by (simp del: Dag_Ref add: Dag_unique) | |
with Node.prems show ?thesis | |
by simp | |
next | |
case False | |
with Node.prems ltTip have "no \<in> set_of rt" | |
by simp | |
with ord_rt * \<open>Dag no low high not\<close> show ?thesis | |
by (rule Node.hyps) | |
qed | |
qed | |
next | |
case (Node llt l rlt) | |
note ltNode=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
from Node.prems Tip ltNode have ord_lt: "ordered lt var" | |
by simp | |
from Node.prems have ppo: "p=po" | |
by simp | |
from Node.prems have ponN: "po \<noteq> Null" | |
by auto | |
with ppo ponN Tip Node.prems ltNode have *: "Dag (low po) low high lt" | |
by auto | |
show ?thesis | |
proof (cases "no=po") | |
case True | |
with ppo Node.prems have "not = (Node lt po rt)" | |
by (simp del: Dag_Ref add: Dag_unique) | |
with Node.prems show ?thesis by simp | |
next | |
case False | |
with Node.prems Tip have "no \<in> set_of lt" | |
by simp | |
with ord_lt * \<open>Dag no low high not\<close> show ?thesis | |
by (rule Node.hyps) | |
qed | |
next | |
case (Node lrt r rrt) | |
from Node.prems have ppo: "p=po" | |
by simp | |
from Node.prems Node ltNode have ord_lt: "ordered lt var" | |
by simp | |
from Node.prems Node ltNode have ord_rt: "ordered rt var" | |
by simp | |
from Node.prems have ponN: "po \<noteq> Null" | |
by auto | |
with ppo ponN Node Node.prems ltNode have lt_Dag: "Dag (low po) low high lt" | |
by auto | |
with ppo ponN Node Node.prems ltNode have rt_Dag: "Dag (high po) low high rt" | |
by auto | |
show ?thesis | |
proof (cases "no = po") | |
case True | |
with ppo Node.prems have "not = (Node lt po rt)" | |
by (simp del: Dag_Ref add: Dag_unique) | |
with Node.prems show ?thesis by simp | |
next | |
assume "no \<noteq> po" | |
with Node.prems have no_in_lt_or_rt: "no \<in> set_of lt \<or> no \<in> set_of rt" | |
by simp | |
show ?thesis | |
proof (cases "no \<in> set_of lt") | |
case True | |
with ord_lt lt_Dag Node.prems show ?thesis | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
next | |
assume " no \<notin> set_of lt" | |
with no_in_lt_or_rt have no_in_rt: "no \<in> set_of rt" | |
by simp | |
from Node.hyps have hyp2: | |
"\<And>p no not. \<lbrakk>ordered rt var; Dag p low high rt; Dag no low high not; no \<in> set_of rt\<rbrakk> | |
\<Longrightarrow> ordered not var" | |
apply - | |
apply assumption | |
done | |
from no_in_rt ord_rt rt_Dag Node.prems show ?thesis | |
apply - | |
apply (rule hyp2) | |
apply assumption+ | |
done | |
qed | |
qed | |
qed | |
qed | |
qed | |
lemma elem_set_of: "\<And> x st. \<lbrakk>x \<in> set_of st; set_of st \<subseteq> set_of t\<rbrakk> \<Longrightarrow> x \<in> set_of t" | |
by blast | |
(*procedure Levellist converts a dag with root p in a ref list list (levellist) with nodes of var = i in | |
levellist ! i. | |
In order to convert the two datastructures a dag traversal is required using a mark on nodes. m indicates | |
the value which is assumed for a node to be marked. | |
(\<exists> nt. Dag n \<^bsup>\<sigma>\<^esup>low \<^bsup>\<sigma>\<^esup>high nt \<and> | |
{\<^bsup>\<sigma>\<^esup>m} = set_of (dag_map \<^bsup>\<sigma>\<^esup>mark nt))*) | |
definition wf_ll :: "dag \<Rightarrow> ref list list \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
where | |
"wf_ll t levellist var = | |
((\<forall>p. p \<in> set_of t \<longrightarrow> p \<in> set (levellist ! var p)) \<and> | |
(\<forall>k < length levellist. \<forall>p \<in> set (levellist ! k). p \<in> set_of t \<and> var p = k))" | |
definition cong_eval :: "bdt \<Rightarrow> bdt \<Rightarrow> bool" (infix "\<sim>" 60) | |
where "cong_eval bdt\<^sub>1 bdt\<^sub>2 = (eval bdt\<^sub>1 = eval bdt\<^sub>2)" | |
lemma cong_eval_sym: "l \<sim> r = r \<sim> l" | |
by (auto simp add: cong_eval_def) | |
lemma cong_eval_trans: "\<lbrakk> l \<sim> r; r \<sim> t\<rbrakk> \<Longrightarrow> l \<sim> t" | |
by (simp add: cong_eval_def) | |
lemma cong_eval_child_high: " l \<sim> r \<Longrightarrow> r \<sim> (Bdt_Node l v r)" | |
apply (simp add: cong_eval_def ) | |
apply (rule ext) | |
apply auto | |
done | |
lemma cong_eval_child_low: " l \<sim> r \<Longrightarrow> l \<sim> (Bdt_Node l v r)" | |
apply (simp add: cong_eval_def ) | |
apply (rule ext) | |
apply auto | |
done | |
definition null_comp :: "(ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref)" (infix "\<propto>" 60) | |
where "null_comp a b = (\<lambda> p. (if (b p) = Null then Null else ((a \<circ> b) p)))" | |
lemma null_comp_not_Null [simp]: "h q \<noteq> Null \<Longrightarrow> (g \<propto> h) q = g (h q)" | |
by (simp add: null_comp_def) | |
lemma id_trans: "(a \<propto> id) (b (c p)) = (a \<propto> b) (c p)" | |
by (simp add: null_comp_def) | |
definition Nodes :: "nat \<Rightarrow> ref list list \<Rightarrow> ref set" | |
where "Nodes i levellist = (\<Union>k\<in>{k. k < i} . set (levellist ! k))" | |
inductive_set Dags :: "ref set \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> dag set" | |
for "nodes" "low" "high" | |
where | |
DagsI: "\<lbrakk> set_of t \<subseteq> nodes; Dag p low high t; t \<noteq> Tip\<rbrakk> | |
\<Longrightarrow> t \<in> Dags nodes low high" | |
lemma empty_Dags [simp]: "Dags {} low high = {}" | |
apply rule | |
apply rule | |
apply (erule Dags.cases) | |
apply (case_tac t) | |
apply simp | |
apply simp | |
apply rule | |
done | |
definition isLeaf_pt :: "ref \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> bool" | |
where "isLeaf_pt p low high = (low p = Null \<and> high p = Null)" | |
definition repNodes_eq :: "ref \<Rightarrow> ref \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> (ref \<Rightarrow> ref) \<Rightarrow> bool" | |
where | |
"repNodes_eq p q low high rep == | |
(rep \<propto> high) p = (rep \<propto> high) q \<and> (rep \<propto> low) p = (rep \<propto> low) q" | |
definition isomorphic_dags_eq :: "dag \<Rightarrow> dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
where | |
"isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var = | |
(\<forall>bdt\<^sub>1 bdt\<^sub>2. (bdt st\<^sub>1 var = Some bdt\<^sub>1 \<and> bdt st\<^sub>2 var = Some bdt\<^sub>2 \<and> (bdt\<^sub>1 = bdt\<^sub>2)) | |
\<longrightarrow> st\<^sub>1 = st\<^sub>2)" | |
lemma isomorphic_dags_eq_sym: "isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var = isomorphic_dags_eq st\<^sub>2 st\<^sub>1 var" | |
by (auto simp add: isomorphic_dags_eq_def) | |
(*consts subdags_shared :: "dag \<Rightarrow> dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
defs subdags_shared_def : "subdags_shared t1 t2 var == \<forall> st1 st2. (st1 <= t1 \<and> st2 <= t2) \<longrightarrow> shared_prop st1 st2 var" | |
consts shared :: " dag \<Rightarrow> dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
defs shared_def: "shared t1 t2 var == subdags_shared t1 t1 var \<and> subdags_shared t2 t2 var \<and> subdags_shared t1 t2 var"*) | |
definition shared :: "dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
where "shared t var = (\<forall>st\<^sub>1 st\<^sub>2. (st\<^sub>1 <= t \<and> st\<^sub>2 <= t) \<longrightarrow> isomorphic_dags_eq st\<^sub>1 st\<^sub>2 var)" | |
(* shared returns True if the Dag has no different subdags which represent the same | |
bdts. | |
Note: The two subdags can have different references and code the same bdt nevertheless! | |
consts shared :: "dag \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
defs shared_def: "shared t bdtvar \<equiv> \<forall> st1 st2. (subdag t st1 \<and> subdag t st2 \<and> | |
(bdt st1 bdtvar = bdt st2 bdtvar \<longrightarrow> st1 = st2))" | |
consts shared_lower_levels :: "dag \<Rightarrow> nat \<Rightarrow> (ref \<Rightarrow> nat) \<Rightarrow> bool" | |
defs shared_lower_levels_def : "shared_lower_levels t i bdtvar == \<forall> st1 st2. (st1 < t \<and> st2 < t \<and> bdtvar (root st1) < i \<and> bdtvar (root st2) < i \<and> | |
(bdt st1 bdtvar = bdt st2 bdtvar \<longrightarrow> st1 = st2))" | |
*) | |
fun reduced :: "dag \<Rightarrow> bool" where | |
"reduced Tip = True" | |
| "reduced (Node Tip v Tip) = True" | |
| "reduced (Node l v r) = (l \<noteq> r \<and> reduced l \<and> reduced r)" | |
primrec reduced_bdt :: "bdt \<Rightarrow> bool" | |
where | |
"reduced_bdt Zero = True" | |
| "reduced_bdt One = True" | |
| "reduced_bdt (Bdt_Node lbdt v rbdt) = | |
(if lbdt = rbdt then False | |
else (reduced_bdt lbdt \<and> reduced_bdt rbdt))" | |
lemma replicate_elem: "i < n ==> (replicate n x !i) = x" | |
apply (induct n) | |
apply simp | |
apply (cases i) | |
apply auto | |
done | |
lemma no_in_one_ll: | |
"\<lbrakk>wf_ll pret levellista var; i<length levellista; j < length levellista; | |
no \<in> set (levellista ! i); i\<noteq>j\<rbrakk> | |
\<Longrightarrow> no \<notin> set (levellista ! j) " | |
apply (unfold wf_ll_def) | |
apply (erule conjE) | |
apply (rotate_tac 5) | |
apply (frule_tac x = i and ?R= "no \<in> set_of pret \<and> var no = i" in allE) | |
apply (erule impE) | |
apply simp | |
apply (rotate_tac 6) | |
apply (erule_tac x=no in ballE) | |
apply assumption | |
apply simp | |
apply (cases "no \<notin> set (levellista ! j)") | |
apply assumption | |
apply (erule_tac x=j in allE) | |
apply (erule impE) | |
apply assumption | |
apply (rotate_tac 7) | |
apply (erule_tac x=no in ballE) | |
prefer 2 | |
apply assumption | |
apply (elim conjE) | |
apply (thin_tac "\<forall>q. q \<in> set_of pret \<longrightarrow> q \<in> set (levellista ! var q)") | |
apply fastforce | |
done | |
lemma nodes_in_wf_ll: | |
"\<lbrakk>wf_ll pret levellista var; i < length levellista; no \<in> set (levellista ! i)\<rbrakk> | |
\<Longrightarrow> var no = i \<and> no \<in> set_of pret" | |
apply (simp add: wf_ll_def) | |
done | |
lemma subelem_set_of_low: | |
"\<And> p. \<lbrakk> x \<in> set_of t; x \<noteq> Null; low x \<noteq> Null; Dag p low high t \<rbrakk> | |
\<Longrightarrow> (low x) \<in> set_of t" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt po rt) | |
note tNode=this | |
then have ppo: "p=po" by simp | |
show ?case | |
proof (cases "x=p") | |
case True | |
with Node.prems have lxrootlt: "low x = root lt" | |
proof (cases lt) | |
case Tip | |
with True Node.prems show ?thesis | |
by auto | |
next | |
case (Node llt l rlt) | |
with Node.prems True show ?thesis | |
by auto | |
qed | |
with True Node.prems have "low x \<in> set_of (Node lt p rt)" | |
proof (cases lt) | |
case Tip | |
with lxrootlt Node.prems show ?thesis | |
by simp | |
next | |
case (Node llt l rlt) | |
with lxrootlt Node.prems show ?thesis | |
by simp | |
qed | |
with ppo show ?thesis | |
by simp | |
next | |
assume xnp: " x \<noteq> p" | |
with Node.prems have "x \<in> set_of lt \<or> x \<in> set_of rt" | |
by simp | |
show ?thesis | |
proof (cases "x \<in> set_of lt") | |
case True | |
note xinlt=this | |
from Node.prems have "Dag (low p) low high lt" | |
by fastforce | |
with Node.prems True have "low x \<in> set_of lt" | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
with Node.prems show ?thesis | |
by auto | |
next | |
assume xnotinlt: " x \<notin> set_of lt" | |
with xnp Node.prems have xinrt: "x \<in> set_of rt" | |
by simp | |
from Node.prems have "Dag (high p) low high rt" | |
by fastforce | |
with Node.prems xinrt have "low x \<in> set_of rt" | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
with Node.prems show ?thesis | |
by auto | |
qed | |
qed | |
qed | |
lemma subelem_set_of_high: | |
"\<And> p. \<lbrakk> x \<in> set_of t; x \<noteq> Null; high x \<noteq> Null; Dag p low high t \<rbrakk> | |
\<Longrightarrow> (high x) \<in> set_of t" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt po rt) | |
note tNode=this | |
then have ppo: "p=po" by simp | |
show ?case | |
proof (cases "x=p") | |
case True | |
with Node.prems have lxrootlt: "high x = root rt" | |
proof (cases rt) | |
case Tip | |
with True Node.prems show ?thesis | |
by auto | |
next | |
case (Node lrt l rrt) | |
with Node.prems True show ?thesis | |
by auto | |
qed | |
with True Node.prems have "high x \<in> set_of (Node lt p rt)" | |
proof (cases rt) | |
case Tip | |
with lxrootlt Node.prems show ?thesis | |
by simp | |
next | |
case (Node lrt l rrt) | |
with lxrootlt Node.prems show ?thesis | |
by simp | |
qed | |
with ppo show ?thesis | |
by simp | |
next | |
assume xnp: " x \<noteq> p" | |
with Node.prems have "x \<in> set_of lt \<or> x \<in> set_of rt" | |
by simp | |
show ?thesis | |
proof (cases "x \<in> set_of lt") | |
case True | |
note xinlt=this | |
from Node.prems have "Dag (low p) low high lt" | |
by fastforce | |
with Node.prems True have "high x \<in> set_of lt" | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
with Node.prems show ?thesis | |
by auto | |
next | |
assume xnotinlt: " x \<notin> set_of lt" | |
with xnp Node.prems have xinrt: "x \<in> set_of rt" | |
by simp | |
from Node.prems have "Dag (high p) low high rt" | |
by fastforce | |
with Node.prems xinrt have "high x \<in> set_of rt" | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
with Node.prems show ?thesis | |
by auto | |
qed | |
qed | |
qed | |
lemma set_split: "{k. k<(Suc n)} = {k. k<n} \<union> {n}" | |
apply auto | |
done | |
lemma Nodes_levellist_subset_t: | |
"\<lbrakk>wf_ll t levellist var; i<= length levellist\<rbrakk> \<Longrightarrow> Nodes i levellist \<subseteq> set_of t" | |
proof (induct i) | |
case 0 | |
show ?case by (simp add: Nodes_def) | |
next | |
case (Suc n) | |
from Suc.prems Suc.hyps have Nodesn_in_t: "Nodes n levellist \<subseteq> set_of t" | |
by simp | |
from Suc.prems have "\<forall> x \<in> set (levellist ! n). x \<in> set_of t" | |
apply - | |
apply (rule ballI) | |
apply (simp add: wf_ll_def) | |
apply (erule conjE) | |
apply (thin_tac " \<forall>q. q \<in> set_of t \<longrightarrow> q \<in> set (levellist ! var q)") | |
apply (erule_tac x=n in allE) | |
apply (erule impE) | |
apply simp | |
apply fastforce | |
done | |
with Suc.prems have "set (levellist ! n) \<subseteq> set_of t" | |
apply blast | |
done | |
with Suc.prems Nodesn_in_t show ?case | |
apply (simp add: Nodes_def) | |
apply (simp add: set_split) | |
done | |
qed | |
lemma bdt_child: | |
"\<lbrakk> bdt (Node (Node llt l rlt) p (Node lrt r rrt)) var = Some bdt1\<rbrakk> | |
\<Longrightarrow> \<exists> lbdt rbdt. bdt (Node llt l rlt) var = Some lbdt \<and> | |
bdt (Node lrt r rrt) var = Some rbdt" | |
by (simp split: option.splits) | |
lemma subbdt_ex_dag_def: | |
"\<And> bdt1 p. \<lbrakk>Dag p low high t; bdt t var = Some bdt1; Dag no low high not; | |
no \<in> set_of t\<rbrakk> \<Longrightarrow> \<exists> bdt2. bdt not var = Some bdt2" for not | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt po rt) | |
note pNode=this | |
with Node.prems have p_po: "p=po" by simp | |
show ?case | |
proof (cases "no = po") | |
case True | |
note no_eq_po=this | |
from p_po Node.prems no_eq_po have "not = (Node lt po rt)" by (simp add: Dag_unique del: Dag_Ref) | |
with Node.prems have "bdt not var = Some bdt1" by (simp add: le_dag_def) | |
then show ?thesis by simp | |
next | |
assume "no \<noteq> po" | |
with Node.prems have no_in_lt_or_rt: "no \<in> set_of lt \<or> no \<in> set_of rt" by simp | |
show ?thesis | |
proof (cases "no \<in> set_of lt") | |
case True | |
note no_in_lt=this | |
from Node.prems p_po have lt_dag: "Dag (low po) low high lt" by simp | |
from Node.prems have lbdt_def: "\<exists> lbdt. bdt lt var = Some lbdt" | |
proof (cases lt) | |
case Tip | |
with Node.prems no_in_lt show ?thesis by (simp add: le_dag_def) | |
next | |
case (Node llt l rlt) | |
note lNode=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rNode=this | |
with lNode Node.prems show ?thesis by simp | |
next | |
case (Node lrt r rrt) | |
note rNode=this | |
with lNode Node.prems show ?thesis by (simp split: option.splits) | |
qed | |
qed | |
then obtain lbdt where "bdt lt var = Some lbdt".. | |
with Node.prems lt_dag no_in_lt show ?thesis | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
next | |
assume "no \<notin> set_of lt" | |
with no_in_lt_or_rt have no_in_rt: "no \<in> set_of rt" by simp | |
from Node.prems p_po have rt_dag: "Dag (high po) low high rt" by simp | |
from Node.hyps have hyp2: "\<And> rbdt. \<lbrakk>Dag (high po) low high rt; bdt rt var = Some rbdt; Dag no low high not; no \<in> set_of rt\<rbrakk> \<Longrightarrow> \<exists>bdt2. bdt not var = Some bdt2" | |
by simp | |
from Node.prems have lbdt_def: "\<exists> rbdt. bdt rt var = Some rbdt" | |
proof (cases rt) | |
case Tip | |
with Node.prems no_in_rt show ?thesis by (simp add: le_dag_def) | |
next | |
case (Node lrt l rrt) | |
note rNode=this | |
show ?thesis | |
proof (cases lt) | |
case Tip | |
note lTip=this | |
with rNode Node.prems show ?thesis by simp | |
next | |
case (Node llt r rlt) | |
note lNode=this | |
with rNode Node.prems show ?thesis by (simp split: option.splits) | |
qed | |
qed | |
then obtain rbdt where "bdt rt var = Some rbdt".. | |
with Node.prems rt_dag no_in_rt show ?thesis | |
apply - | |
apply (rule hyp2) | |
apply assumption+ | |
done | |
qed | |
qed | |
qed | |
lemma subbdt_ex: | |
"\<And> bdt1. \<lbrakk> (Node lst stp rst) <= t; bdt t var = Some bdt1\<rbrakk> | |
\<Longrightarrow> \<exists> bdt2. bdt (Node lst stp rst) var = Some bdt2" | |
proof (induct t) | |
case Tip | |
then show ?case by (simp add: le_dag_def) | |
next | |
case (Node lt p rt) | |
note pNode=this | |
show ?case | |
proof (cases "Node lst stp rst = Node lt p rt") | |
case True | |
with Node.prems show ?thesis by simp | |
next | |
assume " Node lst stp rst \<noteq> Node lt p rt" | |
with Node.prems have "Node lst stp rst < Node lt p rt" apply (simp add: le_dag_def) apply auto done | |
then have in_ltrt: "Node lst stp rst <= lt \<or> Node lst stp rst <= rt" | |
by (simp add: less_dag_Node) | |
show ?thesis | |
proof (cases "Node lst stp rst <= lt") | |
case True | |
note in_lt=this | |
from Node.prems have lbdt_def: "\<exists> lbdt. bdt lt var = Some lbdt" | |
proof (cases lt) | |
case Tip | |
with Node.prems in_lt show ?thesis by (simp add: le_dag_def) | |
next | |
case (Node llt l rlt) | |
note lNode=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rNode=this | |
with lNode Node.prems show ?thesis by simp | |
next | |
case (Node lrt r rrt) | |
note rNode=this | |
with lNode Node.prems show ?thesis by (simp split: option.splits) | |
qed | |
qed | |
then obtain lbdt where "bdt lt var = Some lbdt".. | |
with Node.prems in_lt show ?thesis | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
next | |
assume " \<not> Node lst stp rst \<le> lt" | |
with in_ltrt have in_rt: "Node lst stp rst <= rt" by simp | |
from Node.hyps have hyp2: "\<And> rbdt. \<lbrakk>Node lst stp rst <= rt; bdt rt var = Some rbdt\<rbrakk> \<Longrightarrow> \<exists>bdt2. bdt (Node lst stp rst) var = Some bdt2" | |
by simp | |
from Node.prems have rbdt_def: "\<exists> rbdt. bdt rt var = Some rbdt" | |
proof (cases rt) | |
case Tip | |
with Node.prems in_rt show ?thesis by (simp add: le_dag_def) | |
next | |
case (Node lrt l rrt) | |
note rNode=this | |
show ?thesis | |
proof (cases lt) | |
case Tip | |
note lNode=this | |
with rNode Node.prems show ?thesis by simp | |
next | |
case (Node lrt r rrt) | |
note lNode=this | |
with rNode Node.prems show ?thesis by (simp split: option.splits) | |
qed | |
qed | |
then obtain rbdt where "bdt rt var = Some rbdt".. | |
with Node.prems in_rt show ?thesis | |
apply - | |
apply (rule hyp2) | |
apply assumption+ | |
done | |
qed | |
qed | |
qed | |
lemma var_ordered_children: | |
"\<And> p. \<lbrakk> Dag p low high t; ordered t var; no \<in> set_of t; | |
low no \<noteq> Null; high no \<noteq> Null\<rbrakk> | |
\<Longrightarrow> var (low no) < var no \<and> var (high no) < var no" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt po rt) | |
then have ppo: "p=po" by simp | |
show ?case | |
proof (cases "no = po") | |
case True | |
note no_po=this | |
from Node.prems have "var (low po) < var po \<and> var (high po) < var po" | |
proof (cases lt) | |
case Tip | |
note ltTip=this | |
with Node.prems no_po ppo show ?thesis by simp | |
next | |
case (Node llt l rlt) | |
note lNode=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rTip=this | |
with Node.prems no_po ppo show ?thesis by simp | |
next | |
case (Node lrt r rrt) | |
note rNode=this | |
with Node.prems ppo no_po lNode show ?thesis by (simp del: Dag_Ref) | |
qed | |
qed | |
with no_po show ?thesis by simp | |
next | |
assume " no \<noteq> po" | |
with Node.prems have no_in_ltrt: "no \<in> set_of lt \<or> no \<in> set_of rt" | |
by simp | |
show ?thesis | |
proof (cases "no \<in> set_of lt") | |
case True | |
note no_in_lt=this | |
from Node.prems ppo have lt_dag: "Dag (low po) low high lt" | |
by simp | |
from Node.prems have ord_lt: "ordered lt var" | |
apply - | |
apply (drule children_ordered) | |
apply simp | |
done | |
from no_in_lt lt_dag ord_lt Node.prems show ?thesis | |
apply - | |
apply (rule Node.hyps) | |
apply assumption+ | |
done | |
next | |
assume " no \<notin> set_of lt" | |
with no_in_ltrt have no_in_rt: "no \<in> set_of rt" by simp | |
from Node.prems ppo have rt_dag: "Dag (high po) low high rt" by simp | |
from Node.hyps have hyp2: " \<lbrakk>Dag (high po) low high rt; ordered rt var; no \<in> set_of rt; low no \<noteq> Null; high no \<noteq> Null\<rbrakk> | |
\<Longrightarrow> var (low no) < var no \<and> var (high no) < var no" | |
by simp | |
from Node.prems have ord_rt: "ordered rt var" | |
apply - | |
apply (drule children_ordered) | |
apply simp | |
done | |
from rt_dag ord_rt no_in_rt Node.prems show ?thesis | |
apply - | |
apply (rule hyp2) | |
apply assumption+ | |
done | |
qed | |
qed | |
qed | |
lemma nort_null_comp: | |
assumes pret_dag: "Dag p low high pret" and | |
prebdt_pret: "bdt pret var = Some prebdt" and | |
nort_dag: "Dag (repc no) (repb \<propto> low) (repb \<propto> high) nort" and | |
ord_pret: "ordered pret var" and | |
wf_llb: "wf_ll pret levellistb var" and | |
nbsll: "nb < length levellistb" and | |
repbc_nc: "\<forall> nt. nt \<notin> set (levellistb ! nb) \<longrightarrow> repb nt = repc nt" and | |
xsnb_in_pret: "\<forall> x \<in> set_of nort. var x < nb \<and> x \<in> set_of pret" | |
shows "\<forall> x \<in> set_of nort. ((repc \<propto> low) x = (repb \<propto> low) x \<and> | |
(repc \<propto> high) x = (repb \<propto> high) x)" | |
proof (rule ballI) | |
fix x | |
assume x_in_nort: "x \<in> set_of nort" | |
with nort_dag have xnN: "x \<noteq> Null" | |
apply - | |
apply (rule set_of_nn [rule_format]) | |
apply auto | |
done | |
from x_in_nort xsnb_in_pret have xsnb: "var x <nb" | |
by simp | |
from x_in_nort xsnb_in_pret have x_in_pret: "x \<in> set_of pret" | |
by blast | |
show " (repc \<propto> low) x = (repb \<propto> low) x \<and> (repc \<propto> high) x = (repb \<propto> high) x" | |
proof (cases "(low x) \<noteq> Null") | |
case True | |
with pret_dag prebdt_pret x_in_pret have highnN: "(high x) \<noteq> Null" | |
apply - | |
apply (drule balanced_bdt) | |
apply assumption+ | |
apply simp | |
done | |
from x_in_pret ord_pret highnN True have children_var_smaller: "var (low x) < var x \<and> var (high x) < var x" | |
apply - | |
apply (rule var_ordered_children) | |
apply (rule pret_dag) | |
apply (rule ord_pret) | |
apply (rule x_in_pret) | |
apply (rule True) | |
apply (rule highnN) | |
done | |
with xsnb have lowxsnb: "var (low x) < nb" | |
by arith | |
from children_var_smaller xsnb have highxsnb: "var (high x) < nb" | |
by arith | |
from x_in_pret xnN True pret_dag have lowxinpret: "(low x) \<in> set_of pret" | |
apply - | |
apply (drule subelem_set_of_low) | |
apply assumption | |
apply (thin_tac "x \<noteq> Null") | |
apply assumption+ | |
done | |
with wf_llb have "low x \<in> set (levellistb ! (var (low x)))" | |
by (simp add: wf_ll_def) | |
with wf_llb nbsll lowxsnb have "low x \<notin> set (levellistb ! nb)" | |
apply - | |
apply (rule_tac ?i="(var (low x))" and ?j=nb in no_in_one_ll) | |
apply auto | |
done | |
with repbc_nc have repclow: "repc (low x) = repb (low x)" | |
by auto | |
from x_in_pret xnN highnN pret_dag have highxinpret: "(high x) \<in> set_of pret" | |
apply - | |
apply (drule subelem_set_of_high) | |
apply assumption | |
apply (thin_tac "x \<noteq> Null") | |
apply assumption+ | |
done | |
with wf_llb have "high x \<in> set (levellistb ! (var (high x)))" | |
by (simp add: wf_ll_def) | |
with wf_llb nbsll highxsnb have "high x \<notin> set (levellistb ! nb)" | |
apply - | |
apply (rule_tac ?i="(var (high x))" and ?j=nb in no_in_one_ll) | |
apply auto | |
done | |
with repbc_nc have repchigh: "repc (high x) = repb (high x)" | |
by auto | |
with repclow show ?thesis | |
by (simp add: null_comp_def) | |
next | |
assume " \<not> low x \<noteq> Null" | |
then have lowxNull: "low x = Null" by simp | |
with pret_dag x_in_pret prebdt_pret have highxNull: "high x =Null" | |
apply - | |
apply (drule balanced_bdt) | |
apply simp | |
apply simp | |
apply simp | |
done | |
from lowxNull have repclowNull: "(repc \<propto> low) x = Null" | |
by (simp add: null_comp_def) | |
from lowxNull have repblowNull: "(repb \<propto> low) x = Null" | |
by (simp add: null_comp_def) | |
with repclowNull have lowxrepbc: "(repc \<propto> low) x = (repb \<propto> low) x" | |
by simp | |
from highxNull have repchighNull: "(repc \<propto> high) x = Null" | |
by (simp add: null_comp_def) | |
from highxNull have "(repb \<propto> high) x = Null" | |
by (simp add: null_comp_def) | |
with repchighNull have highxrepbc: "(repc \<propto> high) x = (repb \<propto> high) x" | |
by simp | |
with lowxrepbc show ?thesis | |
by simp | |
qed | |
qed | |
lemma wf_ll_Nodes_pret: | |
"\<lbrakk>wf_ll pret levellista var; nb < length levellista; x \<in> Nodes nb levellista\<rbrakk> | |
\<Longrightarrow> x \<in> set_of pret \<and> var x < nb" | |
apply (simp add: wf_ll_def Nodes_def) | |
apply (erule conjE) | |
apply (thin_tac " \<forall>q. q \<in> set_of pret \<longrightarrow> q \<in> set (levellista ! var q)") | |
apply (erule exE) | |
apply (elim conjE) | |
apply (erule_tac x=xa in allE) | |
apply (erule impE) | |
apply arith | |
apply (erule_tac x=x in ballE) | |
apply auto | |
done | |
lemma bdt_Some_var1_One: | |
"\<And> x. \<lbrakk> bdt t var = Some x; var (root t) = 1\<rbrakk> | |
\<Longrightarrow> x = One \<and> t = (Node Tip (root t) Tip)" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt p rt) | |
note tNode = this | |
show ?case | |
proof (cases lt) | |
case Tip | |
note ltTip=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rtTip = this | |
with ltTip Node.prems show ?thesis by auto | |
next | |
case (Node lrt r rrt) | |
note rtNode=this | |
with Node.prems ltTip show ?thesis by auto | |
qed | |
next | |
case (Node llt l rlt) | |
note ltNode=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
with ltNode Node.prems show ?thesis by auto | |
next | |
case (Node lrt r rrt) | |
note rtNode=this | |
with ltNode Node.prems show ?thesis by auto | |
qed | |
qed | |
qed | |
lemma bdt_Some_var0_Zero: | |
"\<And> x. \<lbrakk> bdt t var = Some x; var (root t) = 0\<rbrakk> | |
\<Longrightarrow> x = Zero \<and> t = (Node Tip (root t) Tip)" | |
proof (induct t) | |
case Tip | |
then show ?case by simp | |
next | |
case (Node lt p rt) | |
note tNode = this | |
show ?case | |
proof (cases lt) | |
case Tip | |
note ltTip=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
note rtTip = this | |
with ltTip Node.prems show ?thesis by auto | |
next | |
case (Node lrt r rrt) | |
note rtNode=this | |
with Node.prems ltTip show ?thesis by auto | |
qed | |
next | |
case (Node llt l rlt) | |
note ltNode=this | |
show ?thesis | |
proof (cases rt) | |
case Tip | |
with ltNode Node.prems show ?thesis by auto | |
next | |
case (Node lrt r rrt) | |
note rtNode=this | |
with ltNode Node.prems show ?thesis by auto | |
qed | |
qed | |
qed | |
lemma reduced_children_parent: | |
"\<lbrakk> reduced l; l= (Node llt lp rlt); reduced r; r=(Node lrt rp rrt); | |
lp \<noteq> rp \<rbrakk> | |
\<Longrightarrow> reduced (Node l p r)" | |
by simp | |
(*Die allgemeine Form mit i <=j \<Longrightarrow> Nodes i levellista \<subseteq> Nodes j levellista wäre schöner, aber wie beweist man das? *) | |
lemma Nodes_subset: "Nodes i levellista \<subseteq> Nodes (Suc i) levellista" | |
apply (simp add: Nodes_def) | |
apply (simp add: set_split) | |
done | |
lemma Nodes_levellist: | |
"\<lbrakk> wf_ll pret levellista var; nb < length levellista; p \<in> Nodes nb levellista\<rbrakk> | |
\<Longrightarrow> p \<notin> set (levellista ! nb)" | |
apply (simp add: Nodes_def) | |
apply (erule exE) | |
apply (rule_tac i=x and j=nb in no_in_one_ll) | |
apply auto | |
done | |
lemma Nodes_var_pret: | |
"\<lbrakk>wf_ll pret levellista var; nb < length levellista; p \<in> Nodes nb levellista\<rbrakk> | |
\<Longrightarrow> var p < nb \<and> p \<in> set_of pret" | |
apply (simp add: Nodes_def wf_ll_def) | |
apply (erule conjE) | |
apply (thin_tac "\<forall>q. q \<in> set_of pret \<longrightarrow> q \<in> set (levellista ! var q)") | |
apply (erule exE) | |
apply (erule_tac x=x in allE) | |
apply (erule impE) | |
apply arith | |
apply (erule_tac x=p in ballE) | |
apply arith | |
apply simp | |
done | |
lemma Dags_root_in_Nodes: | |
assumes t_in_DagsSucnb: "t \<in> Dags (Nodes (Suc nb) levellista) low high" | |
shows "\<exists> p . Dag p low high t \<and> p \<in> Nodes (Suc nb) levellista" | |
proof - | |
from t_in_DagsSucnb obtain p where t_dag: "Dag p low high t" and t_subset_Nodes: "set_of t \<subseteq> Nodes (Suc nb) levellista" and t_nTip: "t\<noteq> Tip" | |
by (fastforce elim: Dags.cases) | |
from t_dag t_nTip have "p\<noteq>Null" by (cases t) auto | |
with t_subset_Nodes t_dag have "p \<in> Nodes (Suc nb) levellista" | |
by (cases t) auto | |
with t_dag show ?thesis | |
by auto | |
qed | |
lemma subdag_dag: | |
"\<And> p. \<lbrakk>Dag p low high t; st <= t\<rbrakk> \<Longrightarrow> \<exists> stp. Dag stp low high st" | |
proof (induct t) | |
case Tip | |
then show ?case | |
by (simp add: less_dag_def le_dag_def) | |
next | |
case (Node lt po rt) | |
note t_Node=this | |
with Node.prems have p_po: "p=po" | |
by simp | |
show ?case | |
proof (cases "st = Node lt po rt") | |
case True | |
note st_t=this | |
with Node.prems show ?thesis | |
by auto | |
next | |
assume st_nt: "st \<noteq> Node lt po rt" | |
with Node.prems p_po have st_subdag_lt_rt: "st<=lt \<or> st <=rt" | |
by (auto simp add:le_dag_def less_dag_def) | |
from Node.prems p_po obtain lp rp where lt_dag: "Dag lp low high lt" and rt_dag: "Dag rp low high rt" | |
by auto | |
show ?thesis | |
proof (cases "st<=lt") | |
case True | |
note st_lt=this | |
with lt_dag show ?thesis | |
apply- | |
apply (rule Node.hyps) | |
apply auto | |
done | |
next | |
assume "\<not> st \<le> lt" | |
with st_subdag_lt_rt have st_rt: "st <= rt" | |
by simp | |
from Node.hyps have rhyp: "\<lbrakk>Dag rp low high rt; st \<le> rt\<rbrakk> \<Longrightarrow> \<exists>stp. Dag stp low high st" | |
by simp | |
from st_rt rt_dag show ?thesis | |
apply - | |
apply (rule rhyp) | |
apply auto | |
done | |
qed | |
qed | |
qed | |
lemma Dags_subdags: | |
assumes t_in_Dags: "t \<in> Dags nodes low high" and | |
st_t: "st <= t" and | |
st_nTip: "st \<noteq> Tip" | |
shows "st \<in> Dags nodes low high" | |
proof - | |
from t_in_Dags obtain p where t_dag: "Dag p low high t" and t_subset_Nodes: "set_of t \<subseteq> nodes" and t_nTip: "t\<noteq> Tip" | |
by (fastforce elim: Dags.cases) | |
from st_t have "set_of st \<subseteq> set_of t" | |
by (simp add: le_dag_set_of) | |
with t_subset_Nodes have st_subset_fnctNodes: "set_of st \<subseteq> nodes" | |
by blast | |
from st_t t_dag obtain stp where "Dag stp low high st" | |
apply - | |
apply (drule subdag_dag) | |
apply auto | |
done | |
with st_subset_fnctNodes st_nTip show ?thesis | |
apply - | |
apply (rule DagsI) | |
apply auto | |
done | |
qed | |
lemma Dags_Nodes_cases: | |
assumes P_sym: "\<And> t1 t2. P t1 t2 var = P t2 t1 var" and | |
dags_in_lower_levels: | |
"\<And> t1 t2. \<lbrakk>t1 \<in> Dags (fnct `(Nodes n levellista)) low high; | |
t2 \<in> Dags (fnct `(Nodes n levellista)) low high\<rbrakk> | |
\<Longrightarrow> P t1 t2 var" and | |
dags_in_mixed_levels: | |
"\<And> t1 t2. \<lbrakk>t1 \<in> Dags (fnct `(Nodes n levellista)) low high; | |
t2 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high; | |
t2 \<notin> Dags (fnct `(Nodes n levellista)) low high\<rbrakk> | |
\<Longrightarrow> P t1 t2 var" and | |
dags_in_high_level: | |
"\<And> t1 t2. \<lbrakk>t1 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high; | |
t1 \<notin> Dags (fnct `(Nodes n levellista)) low high; | |
t2 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high; | |
t2 \<notin> Dags (fnct `(Nodes n levellista)) low high\<rbrakk> | |
\<Longrightarrow> P t1 t2 var" | |
shows "\<forall> t1 t2. t1 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high \<and> | |
t2 \<in> Dags (fnct `(Nodes (Suc n) levellista)) low high | |
\<longrightarrow> P t1 t2 var" | |
proof (intro allI impI , elim conjE) | |
fix t1 t2 | |
assume t1_in_higher_levels: "t1 \<in> Dags (fnct ` Nodes (Suc n) levellista) low high" | |
assume t2_in_higher_levels: "t2 \<in> Dags (fnct ` Nodes (Suc n) levellista) low high" | |
show "P t1 t2 var" | |
proof (cases "t1 \<in> Dags (fnct ` Nodes n levellista) low high") | |
case True | |
note t1_in_ll = this | |
show ?thesis | |
proof (cases "t2 \<in> Dags (fnct ` Nodes n levellista) low high") | |
case True | |
note t2_in_ll=this | |
with t1_in_ll dags_in_lower_levels show ?thesis | |
by simp | |
next | |
assume t2_notin_ll: "t2 \<notin> Dags (fnct ` Nodes n levellista) low high" | |
with t1_in_ll t2_in_higher_levels dags_in_mixed_levels show ?thesis | |
by simp | |
qed | |
next | |
assume t1_notin_ll: "t1 \<notin> Dags (fnct ` Nodes n levellista) low high" | |
show ?thesis | |
proof (cases "t2 \<in> Dags (fnct ` Nodes n levellista) low high") | |
case True | |
note t2_in_ll=this | |
with dags_in_mixed_levels t1_in_higher_levels t1_notin_ll P_sym show ?thesis | |
by auto | |
next | |
assume t2_notin_ll: "t2 \<notin> Dags (fnct ` Nodes n levellista) low high" | |
with t1_notin_ll t1_in_higher_levels t2_in_higher_levels dags_in_high_level show ?thesis | |
by simp | |
qed | |
qed | |
qed | |
lemma Null_notin_Nodes: "\<lbrakk>Dag p low high t; nb <= length levellista; wf_ll t levellista var\<rbrakk> \<Longrightarrow> Null \<notin> Nodes nb levellista" | |
apply (simp add: Nodes_def wf_ll_def del: Dag_Ref) | |
apply (rule allI) | |
apply (rule impI) | |
apply (elim conjE) | |
apply (thin_tac "\<forall>q. P q" for P) | |
apply (erule_tac x=x in allE) | |
apply (erule impE) | |
apply simp | |
apply (erule_tac x=Null in ballE) | |
apply (erule conjE) | |
apply (drule set_of_nn [rule_format]) | |
apply auto | |
done | |
lemma Nodes_in_pret: "\<lbrakk>wf_ll t levellista var; nb <= length levellista\<rbrakk> \<Longrightarrow> Nodes nb levellista \<subseteq> set_of t" | |
apply - | |
apply rule | |
apply (simp add: wf_ll_def Nodes_def) | |
apply (erule exE) | |
apply (elim conjE) | |
apply (thin_tac "\<forall>q. q \<in> set_of t \<longrightarrow> q \<in> set (levellista ! var q)") | |
apply (erule_tac x=xa in allE) | |
apply (erule impE) | |
apply simp | |
apply (erule_tac x=x in ballE) | |
apply auto | |
done | |
lemma restrict_root_Node: | |
"\<lbrakk>t \<in> Dags (repc `Nodes (Suc nb) levellista) (repc \<propto> low) (repc \<propto> high); t \<notin> Dags (repc `Nodes nb levellista) (repc \<propto> low) (repc \<propto> high); | |
ordered t var; \<forall> no \<in> Nodes (Suc nb) levellista. var (repc no) <= var no \<and> repc (repc no) = repc no; wf_ll pret levellista var; nb < length levellista;repc `Nodes (Suc nb) levellista \<subseteq> Nodes (Suc nb) levellista\<rbrakk> | |
\<Longrightarrow> \<exists> q. Dag (repc q) (repc \<propto> low) (repc \<propto> high) t \<and> q \<in> set (levellista ! nb)" | |
proof (elim Dags.cases) | |
fix p and ta :: "dag" | |
assume t_notin_DagsNodesnb: "t \<notin> Dags (repc ` Nodes nb levellista) (repc \<propto> low) (repc \<propto> high)" | |
assume t_ta: "t = ta" | |
assume ta_in_repc_NodesSucnb: "set_of ta \<subseteq> repc ` Nodes (Suc nb) levellista" | |
assume ta_dag: "Dag p (repc \<propto> low) (repc \<propto> high) ta" | |
assume ta_nTip: "ta \<noteq> Tip" | |
assume ord_t: "ordered t var" | |
assume varrep_prop: "\<forall> no \<in> Nodes (Suc nb) levellista. var (repc no) <= var no \<and> repc (repc no) = repc no" | |
assume wf_lla: "wf_ll pret levellista var" | |
assume nbslla: "nb < length levellista" | |
assume repcNodes_in_Nodes: "repc `Nodes (Suc nb) levellista \<subseteq> Nodes (Suc nb) levellista" | |
from ta_nTip ta_dag have p_nNull: "p\<noteq> Null" | |
by auto | |
with ta_nTip ta_dag obtain lt rt where ta_Node: " ta = Node lt p rt" | |
by auto | |
with ta_nTip ta_dag have p_in_ta: "p \<in> set_of ta" | |
by auto | |
with ta_in_repc_NodesSucnb have p_in_repcNodes_Sucnb: "p \<in> repc `Nodes (Suc nb) levellista" | |
by auto | |
show ?thesis | |
proof (cases "p \<in> repc `(set (levellista ! nb))") | |
case True | |
then obtain q where | |
p_repca: "p=repc q" and | |
a_in_llanb: "q \<in> set (levellista ! nb)" | |
by auto | |
with ta_dag t_ta show ?thesis | |
apply - | |
apply (rule_tac x=q in exI) | |
apply simp | |
done | |
next | |
assume p_notin_repc_llanb: "p \<notin> repc ` set (levellista ! nb)" | |
with p_in_repcNodes_Sucnb have p_in_repc_Nodesnb: "p \<in> repc `Nodes nb levellista" | |
apply - | |
apply (erule imageE) | |
apply rule | |
apply (simp add: Nodes_def) | |
apply (simp add: Nodes_def) | |
apply (erule exE conjE) | |
apply (case_tac "xa=nb") | |
apply simp | |
apply (rule_tac x=xa in exI) | |
apply auto | |
done | |
have "t \<in> Dags (repc `Nodes nb levellista) (repc \<propto> low) (repc \<propto> high)" | |
proof - | |
have "set_of t \<subseteq> repc `Nodes nb levellista" | |
proof (rule) | |
fix x :: ref | |
assume x_in_t: "x \<in> set_of t" | |
with ord_t have "var x <= var (root t)" | |
apply - | |
apply (rule ordered_set_of) | |
apply auto | |
done | |
with t_ta ta_Node have varx_varp: "var x <= var p" | |
by auto | |
from p_in_repc_Nodesnb obtain k where ksnb: "k < nb" and p_in_repc_llak: "p \<in> repc `(set (levellista ! k))" | |
by (auto simp add: Nodes_def ImageE) | |
then obtain q where p_repcq: "p=repc q" and q_in_llak: "q \<in> set (levellista ! k)" | |
by auto | |
from q_in_llak wf_lla nbslla ksnb have varqk: "var q = k" | |
by (simp add: wf_ll_def) | |
have Nodesnb_in_NodesSucnb: "Nodes nb levellista \<subseteq> Nodes (Suc nb) levellista" | |
by (rule Nodes_subset) | |
from q_in_llak ksnb have "q \<in> Nodes nb levellista" | |
by (auto simp add: Nodes_def) | |
with varrep_prop Nodesnb_in_NodesSucnb have "var (repc q) <= var q" | |
by auto | |
with varqk ksnb p_repcq have "var p < nb" | |
by auto | |
with varx_varp have varx_snb: "var x < nb" | |
by auto | |
from x_in_t t_ta ta_in_repc_NodesSucnb obtain a where | |
x_repca: "x= repc a" and | |
a_in_NodesSucnb: "a \<in> Nodes (Suc nb) levellista" | |
by auto | |
with varrep_prop have rx_x: "repc x = x" | |
by auto | |
have "x \<in> set_of pret" | |
proof - | |
from wf_lla nbslla have "Nodes (Suc nb) levellista \<subseteq> set_of pret" | |
apply - | |
apply (rule Nodes_in_pret) | |
apply auto | |
done | |
with x_in_t t_ta ta_in_repc_NodesSucnb repcNodes_in_Nodes show ?thesis | |
by auto | |
qed | |
with wf_lla have "x \<in> set (levellista ! (var x))" | |
by (auto simp add: wf_ll_def) | |
with varx_snb have "x \<in> Nodes nb levellista" | |
by (auto simp add: Nodes_def) | |
with rx_x show "x \<in> repc `Nodes nb levellista" | |
apply - | |
apply rule | |
apply (subgoal_tac "x=repc x") | |
apply auto | |
done | |
qed | |
with ta_nTip ta_dag t_ta show ?thesis | |
apply - | |
apply (rule DagsI) | |
apply auto | |
done | |
qed | |
with t_notin_DagsNodesnb show ?thesis | |
by auto | |
qed | |
qed | |
lemma same_bdt_var: "\<lbrakk>bdt (Node lt1 p1 rt1) var = Some bdt1; bdt (Node lt2 p2 rt2) var = Some bdt1\<rbrakk> | |
\<Longrightarrow> var p1 = var p2" | |
proof (induct bdt1) | |
case Zero | |
then obtain var_p1: "var p1 = 0" and var_p2: "var p2 = 0" | |
by simp | |
then show ?case | |
by simp | |
next | |
case One | |
then obtain var_p1: "var p1 = 1" and var_p2: "var p2 = 1" | |
by simp | |
then show ?case | |
by simp | |
next | |
case (Bdt_Node lbdt v rbdt) | |
then obtain var_p1: "var p1 = v" and var_p2: "var p2 = v" | |
by simp | |
then show ?case by simp | |
qed | |
lemma bdt_Some_Leaf_var_le_1: | |
"\<lbrakk>Dag p low high t; bdt t var = Some x; isLeaf_pt p low high\<rbrakk> | |
\<Longrightarrow> var p <= 1" | |
proof (induct t) | |
case Tip | |
thus ?case by simp | |
next | |
case (Node lt p rt) | |
note tNode=this | |
from Node.prems tNode show ?case | |
apply (simp add: isLeaf_pt_def) | |
apply (case_tac "var p = 0") | |
apply simp | |
apply (case_tac "var p = Suc 0") | |
apply simp | |
apply simp | |
done | |
qed | |
lemma subnode_dag_cons: | |
"\<And> p. \<lbrakk>Dag p low high t; no \<in> set_of t\<rbrakk> \<Longrightarrow> \<exists> not. Dag no low high not" | |
proof (induct t) | |
case Tip | |
thus ?case by simp | |
next | |
case (Node lt q rt) | |
with Node.prems have q_p: "p = q" | |
by simp | |
from Node.prems have lt_dag: "Dag (low p) low high lt" | |
by auto | |
from Node.prems have rt_dag: "Dag (high p) low high rt" | |
by auto | |
show ?case | |
proof (cases "no \<in> set_of lt") | |
case True | |
with Node.hyps lt_dag show ?thesis | |
by simp | |
next | |
assume no_notin_lt: "no \<notin> set_of lt" | |
show ?thesis | |
proof (cases "no=p") | |
case True | |
with Node.prems q_p show ?thesis | |
by auto | |
next | |
assume no_neq_p: "no \<noteq> p" | |
with Node.prems no_notin_lt have no_in_rt: "no \<in> set_of rt" | |
by simp | |
with rt_dag Node.hyps show ?thesis | |
by auto | |
qed | |
qed | |
qed | |
(*theorems for the proof of share_reduce_rep_list*) | |
lemma nodes_in_taken_in_takeSucn: "no \<in> set (take n nodeslist) \<Longrightarrow> no \<in> set (take (Suc n) nodeslist) " | |
proof - | |
assume no_in_taken: "no \<in> set (take n nodeslist)" | |
have "set (take n nodeslist) \<subseteq> set (take (Suc n) nodeslist)" | |
apply - | |
apply (rule set_take_subset_set_take) | |
apply simp | |
done | |
with no_in_taken show ?thesis | |
by blast | |
qed | |
lemma ind_in_higher_take: "\<And>n k. \<lbrakk>n < k; n < length xs\<rbrakk> | |
\<Longrightarrow> xs ! n \<in> set (take k xs)" | |
apply (induct xs) | |
apply simp | |
apply simp | |
apply (case_tac n) | |
apply simp | |
apply (case_tac k) | |
apply simp | |
apply simp | |
apply simp | |
apply (case_tac k) | |
apply simp | |
apply simp | |
done | |
lemma take_length_set: "\<And>n. n=length xs \<Longrightarrow> set (take n xs) = set xs" | |
apply (induct xs) | |
apply (auto simp add: take_Cons split: nat.splits) | |
done | |
lemma repNodes_eq_ext_rep: "\<lbrakk>low no \<noteq> nodeslist! n; high no \<noteq> nodeslist ! n; | |
low sn \<noteq> nodeslist ! n; high sn \<noteq> nodeslist ! n\<rbrakk> | |
\<Longrightarrow> repNodes_eq sn no low high repa = repNodes_eq sn no low high (repa(nodeslist ! n := repa (low (nodeslist ! n))))" | |
by (simp add: repNodes_eq_def null_comp_def) | |
lemma filter_not_empty: "\<lbrakk>x \<in> set xs; P x\<rbrakk> \<Longrightarrow> filter P xs \<noteq> []" | |
by (induct xs) auto | |
lemma "x \<in> set (filter P xs) \<Longrightarrow> P x" | |
by auto | |
lemma hd_filter_in_list: "filter P xs \<noteq> [] \<Longrightarrow> hd (filter P xs) \<in> set xs" | |
by (induct xs) auto | |
lemma hd_filter_in_filter: "filter P xs \<noteq> [] \<Longrightarrow> hd (filter P xs) \<in> set (filter P xs)" | |
by (induct xs) auto | |
lemma hd_filter_prop: | |
assumes non_empty: "filter P xs \<noteq> []" | |
shows "P (hd (filter P xs))" | |
proof - | |
from non_empty have "hd (filter P xs) \<in> set (filter P xs)" | |
by (rule hd_filter_in_filter) | |
thus ?thesis | |
by auto | |
qed | |
lemma index_elem: "x \<in> set xs \<Longrightarrow> \<exists>i<length xs. x = xs ! i" | |
apply (induct xs) | |
apply simp | |
apply (case_tac "x=a") | |
apply auto | |
done | |
lemma filter_hd_P_rep_indep: | |
"\<lbrakk>\<forall>x. P x x; \<forall>a b. P x a \<longrightarrow> P a b \<longrightarrow> P x b; filter (P x) xs \<noteq> []\<rbrakk> \<Longrightarrow> | |
hd (filter (P (hd (filter (P x) xs))) xs) = hd (filter (P x) xs)" | |
apply (induct xs) | |
apply simp | |
apply (case_tac "P x a") | |
using [[simp_depth_limit=2]] | |
apply (simp) | |
apply clarsimp | |
apply (fastforce dest: hd_filter_prop) | |
done | |
lemma take_Suc_not_last: | |
"\<And>n. \<lbrakk>x \<in> set (take (Suc n) xs); x\<noteq>xs!n; n < length xs\<rbrakk> \<Longrightarrow> x \<in> set (take n xs)" | |
apply (induct xs) | |
apply simp | |
apply (case_tac n) | |
apply simp | |
using [[simp_depth_limit=2]] | |
apply fastforce | |
done | |
lemma P_eq_list_filter: "\<forall>x \<in> set xs. P x = Q x \<Longrightarrow> filter P xs = filter Q xs" | |
apply (induct xs) | |
apply auto | |
done | |
lemma hd_filter_take_more: "\<And>n m.\<lbrakk>filter P (take n xs) \<noteq> []; n \<le> m\<rbrakk> \<Longrightarrow> | |
hd (filter P (take n xs)) = hd (filter P (take m xs))" | |
apply (induct xs) | |
apply simp | |
apply (case_tac n) | |
apply simp | |
apply (case_tac m) | |
apply simp | |
apply clarsimp | |
done | |
(* | |
consts wf_levellist :: "dag \<Rightarrow> ref list list \<Rightarrow> ref list list \<Rightarrow> | |
(ref \<Rightarrow> nat) \<Rightarrow> bool" | |
defs wf_levellist_def: "wf_levellist t levellist_old levellist_new var \<equiv> | |
case t of Tip \<Rightarrow> levellist_old = levellist_new | |
| (Node lt p rt) \<Rightarrow> | |
(\<forall> q. q \<in> set_of t \<longrightarrow> q \<in> set (levellist_new ! (var q))) \<and> | |
(\<forall> i \<le> var p. (\<exists> prx. (levellist_new ! i) = prx@(levellist_old ! i) | |
\<and> (\<forall> pt \<in> set prx. pt \<in> set_of t \<and> var pt = i))) \<and> | |
(\<forall> i. (var p) < i \<longrightarrow> (levellist_new ! i) = (levellist_old ! i)) \<and> | |
(length levellist_new = length levellist_old)" | |
*) | |
end | |