Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, ETH Zurich | |
Author: Joshua Schneider, ETH Zurich *) | |
section \<open>Least and greatest fixpoints\<close> | |
theory Fixpoints imports | |
Axiomatised_BNF_CC | |
begin | |
subsection \<open>Least fixpoint\<close> | |
subsubsection \<open>\BNFCC{} structure\<close> | |
context notes [[typedef_overloaded, bnf_internals]] | |
begin | |
datatype (set_T: 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T = | |
C_T (D_T: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T, 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) G") | |
for | |
map: mapl_T | |
rel: rell_T | |
end | |
inductive rel_T :: "('l1 \<Rightarrow> 'l1' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<Rightarrow> | |
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T \<Rightarrow> bool" | |
for L1 Co1 Co2 Contra1 Contra2 where | |
"rel_T L1 Co1 Co2 Contra1 Contra2 (C_T x) (C_T y)" | |
if "rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 x y" | |
primrec map_T :: "('l1 \<Rightarrow> 'l1') \<Rightarrow> ('co1 \<Rightarrow> 'co1') \<Rightarrow> ('co2 \<Rightarrow> 'co2') \<Rightarrow> | |
('contra1' \<Rightarrow> 'contra1) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2) \<Rightarrow> | |
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<Rightarrow> | |
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T" where | |
"map_T l1 co1 co2 contra1 contra2 (C_T x) = | |
C_T (map_G id id co1 co2 contra1 contra2 (mapl_G (map_T l1 co1 co2 contra1 contra2) l1 x))" | |
text \<open> | |
The mapper and relator generated by the datatype package coincide with our generalised definitions | |
restricted to live arguments. | |
\<close> | |
lemma rell_T_alt_def: "rell_T L1 = rel_T L1 (=) (=) (=) (=)" | |
apply (intro ext iffI) | |
apply (erule T.rel_induct) | |
apply (unfold rell_G_def) | |
apply (erule rel_T.intros) | |
apply (erule rel_T.induct) | |
apply (rule T.rel_intros) | |
apply (unfold rell_G_def) | |
apply (erule rel_G_mono') | |
apply (auto) | |
done | |
lemma mapl_T_alt_def: "mapl_T l1 = map_T l1 id id id id" | |
supply id_apply[simp del] | |
apply (rule ext) | |
subgoal for x | |
apply (induction x) | |
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) | |
apply (fold mapl_G_def) | |
apply (erule mapl_G_cong) | |
apply (rule refl) | |
done | |
done | |
lemma rel_T_mono [mono]: | |
"\<lbrakk> L1 \<le> L1'; Co1 \<le> Co1'; Co2 \<le> Co2'; Contra1' \<le> Contra1; Contra2' \<le> Contra2 \<rbrakk> \<Longrightarrow> | |
rel_T L1 Co1 Co2 Contra1 Contra2 \<le> rel_T L1' Co1' Co2' Contra1' Contra2'" | |
apply (rule predicate2I) | |
apply (erule rel_T.induct) | |
apply (rule rel_T.intros) | |
apply (erule rel_G_mono') | |
apply (auto) | |
done | |
lemma rel_T_eq: "rel_T (=) (=) (=) (=) (=) = (=)" | |
unfolding rell_T_alt_def[symmetric] T.rel_eq .. | |
lemma rel_T_conversep: | |
"rel_T L1\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> = (rel_T L1 Co1 Co2 Contra1 Contra2)\<inverse>\<inverse>" | |
apply (intro ext iffI) | |
apply (simp) | |
apply (erule rel_T.induct) | |
apply (rule rel_T.intros) | |
apply (rewrite conversep_iff[symmetric]) | |
apply (fold rel_G_conversep) | |
apply (erule rel_G_mono'; blast) | |
apply (simp) | |
apply (erule rel_T.induct) | |
apply (rule rel_T.intros) | |
apply (rewrite conversep_iff[symmetric]) | |
apply (unfold rel_G_conversep[symmetric] conversep_conversep) | |
apply (erule rel_G_mono'; blast) | |
done | |
lemma map_T_id0: "map_T id id id id id = id" | |
unfolding mapl_T_alt_def[symmetric] T.map_id0 .. | |
lemma map_T_id: "map_T id id id id id x = x" | |
by (simp add: map_T_id0) | |
lemma map_T_comp: "map_T l1 co1 co2 contra1 contra2 \<circ> map_T l1' co1' co2' contra1' contra2' = | |
map_T (l1 \<circ> l1') (co1 \<circ> co1') (co2 \<circ> co2') (contra1' \<circ> contra1) (contra2' \<circ> contra2)" | |
apply (rule ext) | |
subgoal for x | |
apply (induction x) | |
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) | |
apply (fold comp_def) | |
apply (subst (1 2) map_G_mapl_G) | |
apply (rule arg_cong[where f="map_G _ _ _ _ _ _"]) | |
apply (rule mapl_G_cong) | |
apply (simp_all) | |
done | |
done | |
lemma map_T_parametric: "rel_fun (rel_fun L1 L1') | |
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_T L1 Co1 Co2 Contra1 Contra2) (rel_T L1' Co1' Co2' Contra1' Contra2')))))) | |
map_T map_T" | |
apply (intro rel_funI) | |
apply (erule rel_T.induct) | |
apply (simp) | |
apply (rule rel_T.intros) | |
apply (fold map_G_mapl_G) | |
apply (erule map_G_rel_cong) | |
apply (blast elim: rel_funE)+ | |
done | |
definition rel_T_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_T_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
(rel_T L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) T \<Rightarrow> _) OO | |
rel_T L1' Co1' Co2' Contra1' Contra2' \<le> | |
rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))" | |
definition rel_T_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_T_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \<le> | |
(rel_T L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) T \<Rightarrow> _) OO | |
rel_T L1' Co1' Co2' Contra1' Contra2')" | |
text \<open> | |
We inherit the conditions for subdistributivity over relation composition via | |
a composition witness, which is derived from a witness for the underlying functor @{type G}. | |
\<close> | |
primrec rel_T_witness :: "('l1 \<Rightarrow> 'l1'' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<Rightarrow> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<Rightarrow> | |
('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T" where | |
"rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (C_T x) Cy = C_T | |
(mapl_G (\<lambda>((x, f), y). f y) id | |
(rel_G_witness (\<lambda>(x, f) y. rel_T (\<lambda>x (x', y). x' = x \<and> L1 x y) Co1 Co2 Contra1 Contra2 x (f y) \<and> | |
rel_T (\<lambda>(x, y') y. y' = y \<and> L1 x y) Co1' Co2' Contra1' Contra2' (f y) y) | |
L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' | |
(mapl_G (\<lambda>x. (x, rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x)) id x, | |
D_T Cy)))" | |
lemma rel_T_pos_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times> | |
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<times> 'l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself" | |
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself" | |
assumes "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_T_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" | |
unfolding rel_T_pos_distr_cond_def | |
apply (intro allI predicate2I) | |
apply (erule relcomppE) | |
subgoal premises prems for L1 L1' x z y | |
using prems apply (induction arbitrary: z) | |
apply (erule rel_T.cases) | |
apply (simp) | |
apply (rule rel_T.intros) | |
apply (drule (1) rel_G_pos_distr[THEN predicate2D, OF assms relcomppI]) | |
apply (erule rel_G_mono'; blast) | |
done | |
done | |
lemma | |
fixes L1 :: "'l1 \<Rightarrow> 'l1'' \<Rightarrow> bool" | |
and Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times> | |
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T | |
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times> | |
((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times> | |
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T | |
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<times> | |
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself" | |
and x :: "(_, _, _, _, _, 'f) T" | |
assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
and rel_OO: "rel_T L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" | |
shows rel_T_witness1: "rel_T (\<lambda>x (x', y). x' = x \<and> L1 x y) Co1 Co2 Contra1 Contra2 x | |
(rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y)" | |
and rel_T_witness2: "rel_T (\<lambda>(x, y') y. y' = y \<and> L1 x y) Co1' Co2' Contra1' Contra2' | |
(rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y) y" | |
using rel_OO apply (induction) | |
subgoal premises prems for x y | |
proof- | |
have x_expansion: "x = mapl_G fst id (mapl_G (\<lambda>x. | |
(x, rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x)) id x)" | |
by (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified] map_G_id[unfolded id_def] comp_def) | |
show ?thesis | |
apply (simp) | |
apply (rule rel_T.intros) | |
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" x_expansion) | |
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" mapl_G_def) | |
apply (subst mapl_G_def) | |
apply (rule map_G_rel_cong) | |
apply (rule rel_G_witness1[OF cond]) | |
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" mapl_G_def) | |
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric]) | |
apply (rule map_G_rel_cong[OF prems]) | |
apply (clarsimp)+ | |
done | |
qed | |
subgoal for x y | |
apply (simp) | |
apply (rule rel_T.intros) | |
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" mapl_G_def) | |
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric]) | |
apply (rule map_G_rel_cong) | |
apply (rule rel_G_witness2[OF cond[unfolded rel_T_neg_distr_cond_def]]) | |
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" mapl_G_def) | |
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric]) | |
apply (erule map_G_rel_cong) | |
apply (clarsimp)+ | |
done | |
done | |
lemma rel_T_neg_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times> | |
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T | |
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times> | |
((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times> | |
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T | |
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<times> | |
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself" | |
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself" | |
assumes "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_T_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" | |
unfolding rel_T_neg_distr_cond_def | |
proof (intro allI predicate2I relcomppI) | |
fix L1 :: "'l1 \<Rightarrow> 'l1' \<Rightarrow> bool" and L1' :: "'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool" | |
and x :: "(_, _, _, _, _, 'f) T" and y :: "(_, _, _, _, _, 'f) T" | |
assume *: "rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') x y" | |
let ?z = "map_T (relcompp_witness L1 L1') id id id id | |
(rel_T_witness (L1 OO L1') Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y)" | |
show "rel_T L1 Co1 Co2 Contra1 Contra2 x ?z" | |
apply(subst map_T_id[symmetric]) | |
apply(rule map_T_parametric[unfolded rel_fun_def, rule_format, rotated -1]) | |
apply(rule rel_T_witness1[OF assms *]) | |
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) | |
done | |
show "rel_T L1' Co1' Co2' Contra1' Contra2' ?z y" | |
apply(rewrite in "rel_T _ _ _ _ _ _ \<hole>" map_T_id[symmetric]) | |
apply(rule map_T_parametric[unfolded rel_fun_def, rule_format, rotated -1]) | |
apply(rule rel_T_witness2[OF assms *]) | |
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) | |
done | |
qed | |
lemma rel_T_pos_distr_cond_eq: | |
"\<And>tytok. rel_T_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (intro rel_T_pos_distr_imp rel_G_pos_distr_cond_eq) | |
lemma rel_T_neg_distr_cond_eq: | |
"\<And>tytok. rel_T_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (intro rel_T_neg_distr_imp rel_G_neg_distr_cond_eq) | |
text \<open>The BNF axioms are proved by the datatype package.\<close> | |
thm T.set_map T.bd_card_order T.bd_cinfinite T.set_bd T.map_cong[OF refl] | |
T.rel_mono_strong T.wit | |
subsubsection \<open>Parametricity laws\<close> | |
context includes lifting_syntax begin | |
lemma C_T_parametric: "(rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 ===> | |
rel_T L1 Co1 Co2 Contra1 Contra2) C_T C_T" | |
by (fast elim: rel_T.intros) | |
lemma D_T_parametric: "(rel_T L1 Co1 Co2 Contra1 Contra2 ===> | |
rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2) D_T D_T" | |
by (fastforce elim: rel_T.cases) | |
lemma rec_T_parametric: | |
"((rel_G (rel_prod (rel_T L1 Co1 Co2 Contra1 Contra2) A) L1 Co1 Co2 Contra1 Contra2 ===> A) ===> | |
rel_T L1 Co1 Co2 Contra1 Contra2 ===> A) rec_T rec_T" | |
apply (intro rel_funI) | |
subgoal premises prems for f g x y | |
using prems(2) apply (induction) | |
apply (simp) | |
apply (rule prems(1)[THEN rel_funD]) | |
apply (unfold mapl_G_def) | |
apply (erule map_G_rel_cong) | |
apply (auto) | |
done | |
done | |
end | |
subsection \<open>Greatest fixpoints\<close> | |
subsubsection \<open>\BNFCC{} structure\<close> | |
context notes [[typedef_overloaded, bnf_internals]] | |
begin | |
codatatype (set_U: 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U = | |
C_U (D_U: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U, 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) G") | |
for | |
map: mapl_U | |
rel: rell_U | |
end | |
coinductive rel_U :: "('l1 \<Rightarrow> 'l1' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<Rightarrow> | |
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U \<Rightarrow> bool" | |
for L1 Co1 Co2 Contra1 Contra2 where | |
"rel_U L1 Co1 Co2 Contra1 Contra2 x y" | |
if "rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 (D_U x) (D_U y)" | |
primcorec map_U :: "('l1 \<Rightarrow> 'l1') \<Rightarrow> ('co1 \<Rightarrow> 'co1') \<Rightarrow> ('co2 \<Rightarrow> 'co2') \<Rightarrow> | |
('contra1' \<Rightarrow> 'contra1) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2) \<Rightarrow> | |
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<Rightarrow> | |
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U" where | |
"D_U (map_U l1 co1 co2 contra1 contra2 x) = | |
mapl_G (map_U l1 co1 co2 contra1 contra2) l1 (map_G id id co1 co2 contra1 contra2 (D_U x))" | |
lemma rell_U_alt_def: "rell_U L1 = rel_U L1 (=) (=) (=) (=)" | |
apply (intro ext iffI) | |
apply (erule rel_U.coinduct) | |
apply (erule U.rel_cases) | |
apply (simp add: rell_G_def) | |
apply (erule rel_G_mono'; blast) | |
apply (erule U.rel_coinduct) | |
apply (erule rel_U.cases) | |
apply (simp add: rell_G_def) | |
done | |
lemma mapl_U_alt_def: "mapl_U l1 = map_U l1 id id id id" | |
supply id_apply[simp del] | |
apply (rule ext) | |
subgoal for x | |
apply (coinduction arbitrary: x) | |
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified] U.map_sel) | |
apply (unfold rell_G_def) | |
apply (rule map_G_rel_cong[OF rel_G_eq_refl]) | |
apply (auto) | |
done | |
done | |
lemma rel_U_mono [mono]: | |
"\<lbrakk> L1 \<le> L1'; Co1 \<le> Co1'; Co2 \<le> Co2'; Contra1' \<le> Contra1; Contra2' \<le> Contra2 \<rbrakk> \<Longrightarrow> | |
rel_U L1 Co1 Co2 Contra1 Contra2 \<le> rel_U L1' Co1' Co2' Contra1' Contra2'" | |
apply (rule predicate2I) | |
apply (erule rel_U.coinduct[of "rel_U L1 Co1 Co2 Contra1 Contra2"]) | |
apply (erule rel_U.cases) | |
apply (simp) | |
apply (erule rel_G_mono') | |
apply (blast)+ | |
done | |
lemma rel_U_eq: "rel_U (=) (=) (=) (=) (=) = (=)" | |
unfolding rell_U_alt_def[symmetric] U.rel_eq .. | |
lemma rel_U_conversep: | |
"rel_U L1\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> = (rel_U L1 Co1 Co2 Contra1 Contra2)\<inverse>\<inverse>" | |
apply (intro ext iffI) | |
apply (simp) | |
apply (erule rel_U.coinduct) | |
apply (erule rel_U.cases) | |
apply (simp del: conversep_iff) | |
apply (rewrite conversep_iff[symmetric]) | |
apply (fold rel_G_conversep) | |
apply (erule rel_G_mono'; blast) | |
apply (erule rel_U.coinduct) | |
apply (subst (asm) conversep_iff) | |
apply (erule rel_U.cases) | |
apply (simp del: conversep_iff) | |
apply (rewrite conversep_iff[symmetric]) | |
apply (unfold rel_G_conversep[symmetric] conversep_conversep) | |
apply (erule rel_G_mono'; blast) | |
done | |
lemma map_U_id0: "map_U id id id id id = id" | |
unfolding mapl_U_alt_def[symmetric] U.map_id0 .. | |
lemma map_U_id: "map_U id id id id id x = x" | |
by (simp add: map_U_id0) | |
lemma map_U_comp: "map_U l1 co1 co2 contra1 contra2 \<circ> map_U l1' co1' co2' contra1' contra2' = | |
map_U (l1 \<circ> l1') (co1 \<circ> co1') (co2 \<circ> co2') (contra1' \<circ> contra1) (contra2' \<circ> contra2)" | |
apply (rule ext) | |
subgoal for x | |
apply (coinduction arbitrary: x) | |
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) | |
apply (unfold rell_G_def) | |
apply (rule map_G_rel_cong[OF rel_G_eq_refl]) | |
apply (auto) | |
done | |
done | |
lemma map_U_parametric: "rel_fun (rel_fun L1 L1') | |
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') | |
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) | |
(rel_fun (rel_U L1 Co1 Co2 Contra1 Contra2) (rel_U L1' Co1' Co2' Contra1' Contra2')))))) | |
map_U map_U" | |
apply (intro rel_funI) | |
apply (coinduction) | |
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) | |
apply (erule rel_U.cases) | |
apply (hypsubst) | |
apply (erule map_G_rel_cong) | |
apply (blast elim: rel_funE)+ | |
done | |
definition rel_U_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_U_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
(rel_U L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) U \<Rightarrow> _) OO | |
rel_U L1' Co1' Co2' Contra1' Contra2' \<le> | |
rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))" | |
definition rel_U_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where | |
"rel_U_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow> | |
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool). | |
rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \<le> | |
(rel_U L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) U \<Rightarrow> _) OO | |
rel_U L1' Co1' Co2' Contra1' Contra2')" | |
primcorec rel_U_witness :: "('l1 \<Rightarrow> 'l1'' \<Rightarrow> bool) \<Rightarrow> | |
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow> | |
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow> | |
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow> | |
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow> | |
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<Rightarrow> | |
('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) U" where | |
"D_U (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' xy) = | |
mapl_G (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2') id | |
(rel_G_witness (rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2')) | |
L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (D_U (fst xy), D_U (snd xy)))" | |
lemma rel_U_pos_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times> 'l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself" | |
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself" | |
assumes "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_U_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" | |
unfolding rel_U_pos_distr_cond_def | |
apply (intro allI predicate2I) | |
apply (erule relcomppE) | |
subgoal premises prems for L1 L1' x z y | |
using prems apply (coinduction arbitrary: x y z) | |
apply (simp) | |
apply (rule rel_G_pos_distr[THEN predicate2D, | |
OF assms relcomppI, THEN rel_G_mono']) | |
apply (auto elim: rel_U.cases) | |
done | |
done | |
lemma rel_U_witness1: | |
fixes L1 :: "'l1 \<Rightarrow> 'l1'' \<Rightarrow> bool" | |
and Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times> | |
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself" | |
and x :: "(_, _, _, _, _, 'f) U" | |
assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
and rel_OO: "rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" | |
shows "rel_U (\<lambda>x (x', y). x' = x \<and> L1 x y) Co1 Co2 Contra1 Contra2 x | |
(rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))" | |
using rel_OO apply (coinduction arbitrary: x y) | |
apply (erule rel_U.cases) | |
apply (clarsimp) | |
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" map_G_id[symmetric]) | |
apply (subst mapl_G_def) | |
apply (rule map_G_rel_cong) | |
apply (erule rel_G_witness1[OF cond]) | |
apply (auto) | |
done | |
lemma rel_U_witness2: | |
fixes L1 :: "'l1 \<Rightarrow> 'l1'' \<Rightarrow> bool" | |
and Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times> | |
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself" | |
and x :: "(_, _, _, _, _, 'f) U" | |
assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
and rel_OO: "rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" | |
shows "rel_U (\<lambda>(x, y') y. y' = y \<and> L1 x y) Co1' Co2' Contra1' Contra2' | |
(rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y)) y" | |
using rel_OO apply (coinduction arbitrary: x y) | |
apply (erule rel_U.cases) | |
apply (clarsimp) | |
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric]) | |
apply (subst mapl_G_def) | |
apply (rule map_G_rel_cong) | |
apply (erule rel_G_witness2[OF cond]) | |
apply (auto) | |
done | |
lemma rel_U_neg_distr_imp: | |
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool" | |
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool" | |
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool" | |
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool" | |
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \<times> | |
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times> | |
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself" | |
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself" | |
assumes "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" | |
shows "rel_U_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" | |
unfolding rel_U_neg_distr_cond_def | |
proof (intro allI predicate2I relcomppI) | |
fix L1 :: "'l1 \<Rightarrow> 'l1' \<Rightarrow> bool" and L1' :: "'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool" | |
and x :: "(_, _, _, _, _, 'f) U" and y :: "(_, _, _, _, _, 'f) U" | |
assume *: "rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') | |
(Contra1 OO Contra1') (Contra2 OO Contra2') x y" | |
let ?z = "map_U (relcompp_witness L1 L1') id id id id | |
(rel_U_witness (L1 OO L1') Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))" | |
show "rel_U L1 Co1 Co2 Contra1 Contra2 x ?z" | |
apply(subst map_U_id[symmetric]) | |
apply(rule map_U_parametric[unfolded rel_fun_def, rule_format, rotated -1]) | |
apply(rule rel_U_witness1[OF assms *]) | |
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) | |
done | |
show "rel_U L1' Co1' Co2' Contra1' Contra2' ?z y" | |
apply(rewrite in "rel_U _ _ _ _ _ _ \<hole>" map_U_id[symmetric]) | |
apply(rule map_U_parametric[unfolded rel_fun_def, rule_format, rotated -1]) | |
apply(rule rel_U_witness2[OF assms *]) | |
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) | |
done | |
qed | |
lemma rel_U_pos_distr_cond_eq: | |
"\<And>tytok. rel_U_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (intro rel_U_pos_distr_imp rel_G_pos_distr_cond_eq) | |
lemma rel_U_neg_distr_cond_eq: | |
"\<And>tytok. rel_U_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" | |
by (intro rel_U_neg_distr_imp rel_G_neg_distr_cond_eq) | |
text \<open>The BNF axioms are proved by the datatype package.\<close> | |
thm U.set_map U.bd_card_order U.bd_cinfinite U.set_bd U.map_cong[OF refl] | |
U.rel_mono_strong U.wit | |
subsubsection \<open>Parametricity laws\<close> | |
context includes lifting_syntax begin | |
lemma C_U_parametric: "(rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 ===> | |
rel_U L1 Co1 Co2 Contra1 Contra2) C_U C_U" | |
by (fastforce intro: rel_U.intros) | |
lemma D_U_parametric: "(rel_U L1 Co1 Co2 Contra1 Contra2 ===> | |
rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2) D_U D_U" | |
by (fast elim: rel_U.cases) | |
lemma corec_U_parametric: | |
"((A ===> rel_G (rel_sum (rel_U L1 Co1 Co2 Contra1 Contra2) A) L1 Co1 Co2 Contra1 Contra2) ===> | |
A ===> rel_U L1 Co1 Co2 Contra1 Contra2) corec_U corec_U" | |
apply (intro rel_funI) | |
subgoal premises prems for f g x y | |
using prems(2) apply (coinduction arbitrary: x y) | |
apply (simp) | |
apply (unfold mapl_G_def) | |
apply (rule map_G_rel_cong) | |
apply (erule prems(1)[THEN rel_funD]) | |
apply (fastforce elim: rel_sum.cases) | |
apply (simp_all) | |
done | |
done | |
end | |
end | |