Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /Berlekamp_Zassenhaus /Distinct_Degree_Factorization.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
46.2 kB
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
section \<open>Distinct Degree Factorization\<close>
theory Distinct_Degree_Factorization
imports
Finite_Field
Polynomial_Factorization.Square_Free_Factorization
Berlekamp_Type_Based
begin
definition factors_of_same_degree :: "nat \<Rightarrow> 'a :: field poly \<Rightarrow> bool" where
"factors_of_same_degree i f = (i \<noteq> 0 \<and> degree f \<noteq> 0 \<and> monic f \<and> (\<forall> g. irreducible g \<longrightarrow> g dvd f \<longrightarrow> degree g = i))"
lemma factors_of_same_degreeD: assumes "factors_of_same_degree i f"
shows "i \<noteq> 0" "degree f \<noteq> 0" "monic f" "g dvd f \<Longrightarrow> irreducible g = (degree g = i)"
proof -
note * = assms[unfolded factors_of_same_degree_def]
show i: "i \<noteq> 0" and f: "degree f \<noteq> 0" "monic f" using * by auto
assume gf: "g dvd f"
with * have "irreducible g \<Longrightarrow> degree g = i" by auto
moreover
{
assume **: "degree g = i" "\<not> irreducible g"
with irreducible\<^sub>d_factor[of g] i obtain h1 h2 where irr: "irreducible h1" and gh: "g = h1 * h2"
and deg_h2: "degree h2 < degree g" by auto
from ** i have g0: "g \<noteq> 0" by auto
from gf gh g0 have "h1 dvd f" using dvd_mult_left by blast
from * f this irr have deg_h: "degree h1 = i" by auto
from arg_cong[OF gh, of degree] g0 have "degree g = degree h1 + degree h2"
by (simp add: degree_mult_eq gh)
with **(1) deg_h have "degree h2 = 0" by auto
from degree0_coeffs[OF this] obtain c where h2: "h2 = [:c:]" by auto
with gh g0 have g: "g = smult c h1" "c \<noteq> 0" by auto
with irr **(2) irreducible_smult_field[of c h1] have False by auto
}
ultimately show "irreducible g = (degree g = i)" by auto
qed
(* Exercise 16 in Knuth, pages 457 and 682 *)
hide_const order
hide_const up_ring.monom
(*This theorem is field.finite_field_mult_group_has_gen but adding the order of the element.*)
theorem (in field) finite_field_mult_group_has_gen2:
assumes finite:"finite (carrier R)"
shows "\<exists>a \<in> carrier (mult_of R). group.ord (mult_of R) a = order (mult_of R)
\<and> carrier (mult_of R) = {a[^]i | i::nat . i \<in> UNIV}"
proof -
note mult_of_simps[simp]
have finite': "finite (carrier (mult_of R))" using finite by (rule finite_mult_of)
interpret G: group "mult_of R" rewrites
"([^]\<^bsub>mult_of R\<^esub>) = (([^]) :: _ \<Rightarrow> nat \<Rightarrow> _)" and "\<one>\<^bsub>mult_of R\<^esub> = \<one>"
by (rule field_mult_group) (simp_all add: fun_eq_iff nat_pow_def)
let ?N = "\<lambda> x . card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = x}"
have "0 < order R - 1" unfolding Coset.order_def using card_mono[OF finite, of "{\<zero>, \<one>}"] by simp
then have *: "0 < order (mult_of R)" using assms by (simp add: order_mult_of)
have fin: "finite {d. d dvd order (mult_of R) }" using dvd_nat_bounds[OF *] by force
have "(\<Sum>d | d dvd order (mult_of R). ?N d)
= card (UN d:{d . d dvd order (mult_of R) }. {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d})"
(is "_ = card ?U")
using fin finite by (subst card_UN_disjoint) auto
also have "?U = carrier (mult_of R)"
proof
{ fix x assume x:"x \<in> carrier (mult_of R)"
hence x':"x\<in>carrier (mult_of R)" by simp
then have "group.ord (mult_of R) x dvd order (mult_of R)"
using finite' G.ord_dvd_group_order[OF x'] by (simp add: order_mult_of)
hence "x \<in> ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord (mult_of R) x"] x by blast
} thus "carrier (mult_of R) \<subseteq> ?U" by blast
qed auto
also have "card ... = Coset.order (mult_of R)"
using order_mult_of finite' by (simp add: Coset.order_def)
finally have sum_Ns_eq: "(\<Sum>d | d dvd order (mult_of R). ?N d) = order (mult_of R)" .
{ fix d assume d:"d dvd order (mult_of R)"
have "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<le> phi' d"
proof cases
assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} = 0" thus ?thesis by presburger
next
assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<noteq> 0"
hence "\<exists>a \<in> carrier (mult_of R). group.ord (mult_of R) a = d" by (auto simp: card_eq_0_iff)
thus ?thesis using num_elems_of_ord_eq_phi'[OF finite d] by auto
qed
}
hence all_le:"\<And>i. i \<in> {d. d dvd order (mult_of R) }
\<Longrightarrow> (\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}) i \<le> (\<lambda>i. phi' i) i" by fast
hence le:"(\<Sum>i | i dvd order (mult_of R). ?N i)
\<le> (\<Sum>i | i dvd order (mult_of R). phi' i)"
using sum_mono[of "{d . d dvd order (mult_of R)}"
"\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}"] by presburger
have "order (mult_of R) = (\<Sum>d | d dvd order (mult_of R). phi' d)" using *
by (simp add: sum_phi'_factors)
hence eq:"(\<Sum>i | i dvd order (mult_of R). ?N i)
= (\<Sum>i | i dvd order (mult_of R). phi' i)" using le sum_Ns_eq by presburger
have "\<And>i. i \<in> {d. d dvd order (mult_of R) } \<Longrightarrow> ?N i = (\<lambda>i. phi' i) i"
proof (rule ccontr)
fix i
assume i1:"i \<in> {d. d dvd order (mult_of R)}" and "?N i \<noteq> phi' i"
hence "?N i = 0"
using num_elems_of_ord_eq_phi'[OF finite, of i] by (auto simp: card_eq_0_iff)
moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of "order (mult_of R)" i])
ultimately have "?N i < phi' i" using phi'_nonzero by presburger
hence "(\<Sum>i | i dvd order (mult_of R). ?N i)
< (\<Sum>i | i dvd order (mult_of R). phi' i)"
using sum_strict_mono_ex1[OF fin, of "?N" "\<lambda> i . phi' i"]
i1 all_le by auto
thus False using eq by force
qed
hence "?N (order (mult_of R)) > 0" using * by (simp add: phi'_nonzero)
then obtain a where a:"a \<in> carrier (mult_of R)" and a_ord:"group.ord (mult_of R) a = order (mult_of R)"
by (auto simp add: card_gt_0_iff)
hence set_eq:"{a[^]i | i::nat. i \<in> UNIV} = (\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}"
using G.ord_elems[OF finite'] by auto
have card_eq:"card ((\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 .. group.ord (mult_of R) a - 1}"
by (intro card_image G.ord_inj finite' a)
hence "card ((\<lambda> x . a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 ..order (mult_of R) - 1}"
using assms by (simp add: card_eq a_ord)
hence card_R_minus_1:"card {a[^]i | i::nat. i \<in> UNIV} = order (mult_of R)"
using * by (subst set_eq) auto
have **:"{a[^]i | i::nat. i \<in> UNIV} \<subseteq> carrier (mult_of R)"
using G.nat_pow_closed[OF a] by auto
with _ have "carrier (mult_of R) = {a[^]i|i::nat. i \<in> UNIV}"
by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite Coset.order_def del: UNIV_I)
thus ?thesis using a a_ord by blast
qed
(*This lemma is a generalization of the theorem add_power_poly_mod_ring
which appears in Belekamp_Type_Based.thy*)
lemma add_power_prime_poly_mod_ring[simp]:
fixes x :: "'a::{prime_card} mod_ring poly"
shows "(x + y) ^ CARD('a)^n = x ^ (CARD('a)^n) + y ^ CARD('a)^n"
proof (induct n arbitrary: x y)
case 0
then show ?case by auto
next
case (Suc n)
define p where p: "p = CARD('a)"
have "(x + y) ^ p ^ Suc n = (x + y) ^ (p * p^n)" by simp
also have "... = ((x + y) ^ p) ^ (p^n)"
by (simp add: power_mult)
also have "... = (x^p + y^p)^ (p^n)"
by (simp add: add_power_poly_mod_ring p)
also have "... = (x^p)^(p^n) + (y^p)^(p^n)" using Suc.hyps unfolding p by auto
also have "... = x^(p^(n+1)) + y^(p^(n+1))" by (simp add: power_mult)
finally show ?case by (simp add: p)
qed
(*This lemma is a generalization of the theorem fermat_theorem_mod_ring
which appears in Berlekamp_Type_Based.thy*)
lemma fermat_theorem_mod_ring2[simp]:
fixes a::"'a::{prime_card} mod_ring"
shows "a ^ (CARD('a)^n) = a"
proof (induct n arbitrary: a)
case (Suc n)
define p where "p = CARD('a)"
have "a ^ p ^ Suc n = a ^ (p * (p ^ n))" by simp
also have "... = (a ^ p) ^(p ^ n)" by (simp add: power_mult)
also have "... = a^(p ^ n)" using fermat_theorem_mod_ring[of "a^p"] unfolding p_def by auto
also have "... = a" using Suc.hyps p_def by auto
finally show ?case by (simp add: p_def)
qed auto
lemma fermat_theorem_power_poly[simp]:
fixes a::"'a::prime_card mod_ring"
shows "[:a:] ^ CARD('a::prime_card) ^ n = [:a:]"
by (auto simp add: Missing_Polynomial.poly_const_pow mod_poly_less)
(* Some previous facts *)
lemma degree_prod_monom: "degree (\<Prod>i = 0..<n. monom 1 1) = n"
by (metis degree_monom_eq prod_pow x_pow_n zero_neq_one)
lemma degree_monom0[simp]: "degree (monom a 0) = 0" using degree_monom_le by auto
lemma degree_monom0'[simp]: "degree (monom 0 b) = 0" by auto
lemma sum_monom_mod:
assumes "b < degree f"
shows "(\<Sum>i\<le>b. monom (g i) i) mod f = (\<Sum>i\<le>b. monom (g i) i)"
using assms
proof (induct b)
case 0
then show ?case by (auto simp add: mod_poly_less)
next
case (Suc b)
have hyp: "(\<Sum>i\<le>b. monom (g i) i) mod f = (\<Sum>i\<le>b. monom (g i) i)"
using Suc.prems Suc.hyps by simp
have rw_monom: "monom (g (Suc b)) (Suc b) mod f = monom (g (Suc b)) (Suc b)"
by (metis Suc.prems degree_monom_eq mod_0 mod_poly_less monom_hom.hom_0_iff)
have rw: "(\<Sum>i\<le>Suc b. monom (g i) i) = (monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i))"
by auto
have "(\<Sum>i\<le>Suc b. monom (g i) i) mod f
= (monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i)) mod f" using rw by presburger
also have "... =((monom (g (Suc b)) (Suc b)) mod f) + ((\<Sum>i\<le>b. monom (g i) i) mod f)"
using poly_mod_add_left by auto
also have "... = monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i)"
using hyp rw_monom by presburger
also have "... = (\<Sum>i\<le>Suc b. monom (g i) i)" using rw by auto
finally show ?case .
qed
lemma x_power_aq_minus_1_rw:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and b: "b > 0"
shows "x ^ (a * q) - 1 = ((x^a) - 1) * sum ((^) (x^a)) {..<q}"
proof -
have xa: "(x ^ a) > 0" using x by auto
have int_rw1: "int (x ^ a) - 1 = int ((x ^ a) - 1)"
using xa by linarith
have int_rw2: "sum ((^) (int (x ^ a))) {..<q} = int (sum ((^) ((x ^ a))) {..<q})"
unfolding int_sum by simp
have "int (x ^ a) ^ q = int (Suc ((x ^ a) ^ q - 1))" using xa by auto
hence "int ((x ^ a) ^ q - 1) = int (x ^ a) ^ q - 1" using xa by presburger
also have "... = (int (x ^ a) - 1) * sum ((^) (int (x ^ a))) {..<q}"
by (rule power_diff_1_eq)
also have "... = (int ((x ^ a) - 1)) * int (sum ((^) ( (x ^ a))) {..<q})"
unfolding int_rw1 int_rw2 by simp
also have "... = int (((x ^ a) - 1) * (sum ((^) ( (x ^ a))) {..<q}))" by auto
finally have aux: "int ((x ^ a) ^ q - 1) = int (((x ^ a) - 1) * sum ((^) (x ^ a)) {..<q})" .
have "x ^ (a * q) - 1 = (x^a)^q - 1"
by (simp add: power_mult)
also have "... = ((x^a) - 1) * sum ((^) (x^a)) {..<q}"
using aux unfolding int_int_eq .
finally show ?thesis .
qed
lemma dvd_power_minus_1_conv1:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and xa_dvd: "x ^ a - 1 dvd x^b - 1"
and b0: "b > 0"
shows "a dvd b"
proof -
define r where r[simp]: "r = b mod a"
define q where q[simp]: "q = b div a"
have b: "b = a * q + r" by auto
have ra: "r < a" by (simp add: a)
hence xr_less_xa: "x ^ r - 1 < x ^ a - 1"
using x power_strict_increasing_iff diff_less_mono x by simp
have dvd: "x ^ a - 1 dvd x ^ (a * q) - 1"
using x_power_aq_minus_1_rw[OF x a b0] unfolding dvd_def by auto
have "x^b - 1 = x^b - x^r + x^r - 1"
using assms(1) assms(4) by auto
also have "... = x^r * (x^(a*q) - 1) + x^r - 1"
by (metis (no_types, lifting) b diff_mult_distrib2 mult.commute nat_mult_1_right power_add)
finally have "x^b - 1 = x^r * (x^(a*q) - 1) + x^r - 1" .
hence "x ^ a - 1 dvd x ^ r * (x ^ (a * q) - 1) + x ^ r - 1" using xa_dvd by presburger
hence "x^a - 1 dvd x^r - 1"
by (metis (no_types) diff_add_inverse diff_commute dvd dvd_diff_nat dvd_trans dvd_triv_right)
hence "r = 0"
using xr_less_xa
by (meson nat_dvd_not_less neq0_conv one_less_power x zero_less_diff)
thus ?thesis by auto
qed
lemma dvd_power_minus_1_conv2:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and a_dvd_b: "a dvd b"
and b0: "b > 0"
shows "x ^ a - 1 dvd x^b - 1"
proof -
define q where q[simp]: "q = b div a"
have b: "b = a * q" using a_dvd_b by auto
have "x^b - 1 = ((x ^ a) - 1) * sum ((^) (x ^ a)) {..<q}"
unfolding b by (rule x_power_aq_minus_1_rw[OF x a b0])
thus ?thesis unfolding dvd_def by auto
qed
corollary dvd_power_minus_1_conv:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and b0: "b > 0"
shows "a dvd b = (x ^ a - 1 dvd x^b - 1)"
using assms dvd_power_minus_1_conv1 dvd_power_minus_1_conv2 by blast
(* Proof of part a) of exercise 16: given f(x) an irreducible polynomial modulo a prime p
of degree n, the p^n polynomials of degree less than n form a field under arithmetic
modulo f(x) and p.
*)
locale poly_mod_type_irr = poly_mod_type m "TYPE('a::prime_card)" for m +
fixes f::"'a::{prime_card} mod_ring poly"
assumes irr_f: "irreducible\<^sub>d f"
begin
definition plus_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly \<Rightarrow> 'a mod_ring poly"
where "plus_irr a b = (a + b) mod f"
definition minus_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly \<Rightarrow> 'a mod_ring poly"
where "minus_irr x y \<equiv> (x - y) mod f"
definition uminus_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly "
where "uminus_irr x = -x"
definition mult_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly \<Rightarrow> 'a mod_ring poly"
where "mult_irr x y = ((x*y) mod f)"
definition carrier_irr :: "'a mod_ring poly set"
where "carrier_irr = {x. degree x < degree f}"
definition power_irr :: "'a mod_ring poly \<Rightarrow> nat \<Rightarrow> 'a mod_ring poly"
where "power_irr p n = ((p^n) mod f)"
definition "R = \<lparr>carrier = carrier_irr, monoid.mult = mult_irr, one = 1, zero = 0, add = plus_irr\<rparr>"
lemma degree_f[simp]: "degree f > 0"
using irr_f irreducible\<^sub>dD(1) by blast
lemma element_in_carrier: "(a \<in> carrier R) = (degree a < degree f)"
unfolding R_def carrier_irr_def by auto
lemma f_dvd_ab:
"a = 0 \<or> b = 0" if "f dvd a * b"
and a: "degree a < degree f"
and b: "degree b < degree f"
proof (rule ccontr)
assume "\<not> (a = 0 \<or> b = 0)"
then have "a \<noteq> 0" and "b \<noteq> 0"
by simp_all
with a b have "\<not> f dvd a" and "\<not> f dvd b"
by (auto simp add: mod_poly_less dvd_eq_mod_eq_0)
moreover from \<open>f dvd a * b\<close> irr_f have "f dvd a \<or> f dvd b"
by auto
ultimately show False
by simp
qed
lemma ab_mod_f0:
"a = 0 \<or> b = 0" if "a * b mod f = 0"
and a: "degree a < degree f"
and b: "degree b < degree f"
using that f_dvd_ab by auto
lemma irreducible\<^sub>dD2:
fixes p q :: "'b::{comm_semiring_1,semiring_no_zero_divisors} poly"
assumes "irreducible\<^sub>d p"
and "degree q < degree p" and "degree q \<noteq> 0"
shows "\<not> q dvd p"
using assms irreducible\<^sub>d_dvd_smult by force
lemma times_mod_f_1_imp_0:
assumes x: "degree x < degree f"
and x2: "\<forall>xa. x * xa mod f = 1 \<longrightarrow> \<not> degree xa < degree f"
shows "x = 0"
proof (rule ccontr)
assume x3: "x \<noteq> 0"
let ?u = "fst (bezout_coefficients f x)"
let ?v = "snd (bezout_coefficients f x)"
have "?u * f + ?v * x = gcd f x" using bezout_coefficients_fst_snd by auto
also have "... = 1"
proof (rule ccontr)
assume g: "gcd f x \<noteq> 1"
have "degree (gcd f x) < degree f"
by (metis degree_0 dvd_eq_mod_eq_0 gcd_dvd1 gcd_dvd2 irr_f
irreducible\<^sub>dD(1) mod_poly_less nat_neq_iff x x3)
have "\<not> gcd f x dvd f"
proof (rule irreducible\<^sub>dD2[OF irr_f])
show "degree (gcd f x) < degree f"
by (metis degree_0 dvd_eq_mod_eq_0 gcd_dvd1 gcd_dvd2 irr_f
irreducible\<^sub>dD(1) mod_poly_less nat_neq_iff x x3)
show "degree (gcd f x) \<noteq> 0"
by (metis (no_types, opaque_lifting) g degree_mod_less' gcd.bottom_left_bottom gcd_eq_0_iff
gcd_left_idem gcd_mod_left gr_implies_not0 x)
qed
moreover have "gcd f x dvd f" by auto
ultimately show False by contradiction
qed
finally have "?v*x mod f = 1"
by (metis degree_1 degree_f mod_mult_self3 mod_poly_less)
hence "(x*(?v mod f)) mod f = 1"
by (simp add: mod_mult_right_eq mult.commute)
moreover have "degree (?v mod f) < degree f"
by (metis degree_0 degree_f degree_mod_less' not_gr_zero)
ultimately show False using x2 by auto
qed
sublocale field_R: field R
proof -
have *: "\<exists>y. degree y < degree f \<and> f dvd x + y" if "degree x < degree f"
for x :: "'a mod_ring poly"
proof -
from that have "degree (- x) < degree f"
by simp
moreover have "f dvd (x + - x)"
by simp
ultimately show ?thesis
by blast
qed
have **: "degree (x * y mod f) < degree f"
if "degree x < degree f" and "degree y < degree f"
for x y :: "'a mod_ring poly"
using that by (cases "x = 0 \<or> y = 0")
(auto intro: degree_mod_less' dest: f_dvd_ab)
show "field R"
by standard (auto simp add: R_def carrier_irr_def plus_irr_def mult_irr_def Units_def algebra_simps degree_add_less mod_poly_less mod_add_eq mult_poly_add_left mod_mult_left_eq mod_mult_right_eq mod_eq_0_iff_dvd ab_mod_f0 * ** dest: times_mod_f_1_imp_0)
qed
lemma zero_in_carrier[simp]: "0 \<in> carrier_irr" unfolding carrier_irr_def by auto
lemma card_carrier_irr[simp]: "card carrier_irr = CARD('a)^(degree f)"
proof -
let ?A = "(carrier_vec (degree f):: 'a mod_ring vec set)"
have bij_A_carrier: "bij_betw (Poly \<circ> list_of_vec) ?A carrier_irr"
proof (unfold bij_betw_def, rule conjI)
show "inj_on (Poly \<circ> list_of_vec) ?A" by (rule inj_Poly_list_of_vec)
show "(Poly \<circ> list_of_vec) ` ?A = carrier_irr"
proof (unfold image_def o_def carrier_irr_def, auto)
fix xa assume "xa \<in> ?A" thus "degree (Poly (list_of_vec xa)) < degree f"
using degree_Poly_list_of_vec irr_f by blast
next
fix x::"'a mod_ring poly"
assume deg_x: "degree x < degree f"
let ?xa = "vec_of_list (coeffs x @ replicate (degree f - length (coeffs x)) 0)"
show "\<exists>xa\<in>carrier_vec (degree f). x = Poly (list_of_vec xa)"
by (rule bexI[of _ "?xa"], unfold carrier_vec_def, insert deg_x)
(auto simp add: degree_eq_length_coeffs)
qed
qed
have "CARD('a)^(degree f) = card ?A"
by (simp add: card_carrier_vec)
also have "... = card carrier_irr" using bij_A_carrier bij_betw_same_card by blast
finally show ?thesis ..
qed
lemma finite_carrier_irr[simp]: "finite (carrier_irr)"
proof -
have "degree f > degree 0" using degree_0 by auto
hence "carrier_irr \<noteq> {}" using degree_0 unfolding carrier_irr_def
by blast
moreover have "card carrier_irr \<noteq> 0" by auto
ultimately show ?thesis using card_eq_0_iff by metis
qed
lemma finite_carrier_R[simp]: "finite (carrier R)" unfolding R_def by simp
lemma finite_carrier_mult_of[simp]: "finite (carrier (mult_of R))"
unfolding carrier_mult_of by auto
lemma constant_in_carrier[simp]: "[:a:] \<in> carrier R"
unfolding R_def carrier_irr_def by auto
lemma mod_in_carrier[simp]: "a mod f \<in> carrier R"
unfolding R_def carrier_irr_def
by (auto, metis degree_0 degree_f degree_mod_less' less_not_refl)
lemma order_irr: "Coset.order (mult_of R) = CARD('a)^degree f - 1"
by (simp add: card_Diff_singleton Coset.order_def carrier_mult_of R_def)
lemma element_power_order_eq_1:
assumes x: "x \<in> carrier (mult_of R)"
shows "x [^]\<^bsub>(mult_of R)\<^esub> Coset.order (mult_of R) = \<one>\<^bsub>(mult_of R)\<^esub>"
by (meson field_R.field_mult_group finite_carrier_mult_of group.pow_order_eq_1 x)
corollary element_power_order_eq_1':
assumes x: "x \<in> carrier (mult_of R)"
shows"x [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = x"
proof -
have "x [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f
= x \<otimes>\<^bsub>(mult_of R)\<^esub> x [^]\<^bsub>(mult_of R)\<^esub> (CARD('a)^degree f - 1)"
by (metis Diff_iff One_nat_def Suc_pred field_R.m_comm field_R.nat_pow_Suc field_R.nat_pow_closed
mult_of_simps(1) mult_of_simps(2) nat_pow_mult_of neq0_conv power_eq_0_iff x zero_less_card_finite)
also have "x \<otimes>\<^bsub>(mult_of R)\<^esub> x [^]\<^bsub>(mult_of R)\<^esub> (CARD('a)^degree f - 1) = x"
by (metis carrier_mult_of element_power_order_eq_1 field_R.Units_closed field_R.field_Units
field_R.r_one monoid.simps(2) mult_mult_of mult_of_def order_irr x)
finally show ?thesis .
qed
lemma pow_irr[simp]: "x [^]\<^bsub>(R)\<^esub> n= x^n mod f"
by (induct n, auto simp add: mod_poly_less nat_pow_def R_def mult_of_def mult_irr_def
carrier_irr_def mod_mult_right_eq mult.commute)
lemma pow_irr_mult_of[simp]: "x [^]\<^bsub>(mult_of R)\<^esub> n= x^n mod f"
by (induct n, auto simp add: mod_poly_less nat_pow_def R_def mult_of_def mult_irr_def
carrier_irr_def mod_mult_right_eq mult.commute)
lemma fermat_theorem_power_poly_R[simp]: "[:a:] [^]\<^bsub>R\<^esub> CARD('a) ^ n = [:a:]"
by (auto simp add: Missing_Polynomial.poly_const_pow mod_poly_less)
lemma times_mod_expand:
"(a \<otimes>\<^bsub>(R)\<^esub> b) = ((a mod f) \<otimes>\<^bsub>(R)\<^esub> (b mod f))"
by (simp add: mod_mult_eq R_def mult_irr_def)
(*Elements that satisfy y^p^m = y in the field are closed under addition and multiplication.*)
lemma mult_closed_power:
assumes x: "x \<in> carrier R" and y: "y \<in> carrier R"
and "x [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = x"
and "y [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = y"
shows "(x \<otimes>\<^bsub>(R)\<^esub> y) [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = (x \<otimes>\<^bsub>(R)\<^esub> y)"
using assms assms field_R.nat_pow_distrib by auto
lemma add_closed_power:
assumes x1: "x [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = x"
and y1: "y [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = y"
shows "(x \<oplus>\<^bsub>(R)\<^esub> y) [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = (x \<oplus>\<^bsub>(R)\<^esub> y)"
proof -
have "(x + y) ^ CARD('a) ^ m' = x^(CARD('a) ^ m') + y ^ (CARD('a) ^ m')" by auto
hence "(x + y) ^ CARD('a) ^ m' mod f = (x^(CARD('a) ^ m') + y ^ (CARD('a) ^ m')) mod f" by auto
hence "(x \<oplus>\<^bsub>(R)\<^esub> y) [^]\<^bsub>(R)\<^esub> CARD('a) ^ m'
= (x [^]\<^bsub>(R)\<^esub> CARD('a)^m') \<oplus>\<^bsub>(R)\<^esub> (y [^]\<^bsub>(R)\<^esub> CARD('a)^m')"
by (auto, unfold R_def plus_irr_def, auto simp add: mod_add_eq power_mod)
also have "... = x \<oplus>\<^bsub>(R)\<^esub> y" unfolding x1 y1 by simp
finally show ?thesis .
qed
lemma x_power_pm_minus_1:
assumes x: "x \<in> carrier (mult_of R)"
and "x [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = x"
shows "x [^]\<^bsub>(R)\<^esub> (CARD('a) ^ m' - 1) = \<one>\<^bsub>(R)\<^esub>"
by (metis (no_types, lifting) One_nat_def Suc_pred assms(2) carrier_mult_of field_R.Units_closed
field_R.Units_l_cancel field_R.field_Units field_R.l_one field_R.m_rcancel field_R.nat_pow_Suc
field_R.nat_pow_closed field_R.one_closed field_R.r_null field_R.r_one x zero_less_card_finite
zero_less_power)
context
begin
private lemma monom_a_1_P:
assumes m: "monom 1 1 \<in> carrier R"
and eq: "monom 1 1 [^]\<^bsub>(R)\<^esub> (CARD('a) ^ m') = monom 1 1"
shows "monom a 1 [^]\<^bsub>(R)\<^esub> (CARD('a) ^ m') = monom a 1"
proof -
have "monom a 1 = [:a:] * (monom 1 1)"
by (metis One_nat_def monom_0 monom_Suc mult.commute pCons_0_as_mult)
also have "... = [:a:] \<otimes>\<^bsub>(R)\<^esub> (monom 1 1)"
by (auto simp add: R_def mult_irr_def)
(metis One_nat_def assms(2) mod_mod_trivial mod_smult_left pow_irr)
finally have eq2: "monom a 1 = [:a:] \<otimes>\<^bsub>R\<^esub> monom 1 1" .
show ?thesis unfolding eq2
by (rule mult_closed_power[OF _ m _ eq], insert fermat_theorem_power_poly_R, auto)
qed
private lemma prod_monom_1_1:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and eq: "P (monom 1 1) n"
shows "P ((\<Prod>i = 0..<b::nat. monom 1 1) mod f) n"
proof (induct b)
case 0
then show ?case unfolding P_def
by (simp add: power_mod)
next
case (Suc b)
let ?N = "(\<Prod>i = 0..<b. monom 1 1)"
have eq2: "(\<Prod>i = 0..<Suc b. monom 1 1) mod f = monom 1 1 \<otimes>\<^bsub>(R)\<^esub> (\<Prod>i = 0..<b. monom 1 1)"
by (metis field_R.m_comm field_R.nat_pow_Suc mod_in_carrier mod_mod_trivial
pow_irr prod_pow times_mod_expand)
also have "... = (monom 1 1 mod f) \<otimes>\<^bsub>(R)\<^esub> ((\<Prod>i = 0..<b. monom 1 1) mod f)"
by (rule times_mod_expand)
finally have eq2: "(\<Prod>i = 0..<Suc b. monom 1 1) mod f
= (monom 1 1 mod f) \<otimes>\<^bsub>(R)\<^esub> ((\<Prod>i = 0..<b. monom 1 1) mod f)" .
show ?case
unfolding eq2 P_def
proof (rule mult_closed_power)
show "(monom 1 1 mod f) [^]\<^bsub>R\<^esub> CARD('a) ^ n = monom 1 1 mod f"
using P_def element_in_carrier eq m mod_poly_less by force
show "((\<Prod>i = 0..<b. monom 1 1) mod f) [^]\<^bsub>R\<^esub> CARD('a) ^ n = (\<Prod>i = 0..<b. monom 1 1) mod f"
using P_def Suc.hyps by blast
qed (auto)
qed
private lemma monom_1_b:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and monom_1_1: "P (monom 1 1) m'"
and b: "b < degree f"
shows "P (monom 1 b) m'"
proof -
have "monom 1 b = (\<Prod>i = 0..<b. monom 1 1)"
by (metis prod_pow x_pow_n)
also have "... = (\<Prod>i = 0..<b. monom 1 1) mod f"
by (rule mod_poly_less[symmetric], auto)
(metis One_nat_def b degree_linear_power x_as_monom)
finally have eq2: "monom 1 b = (\<Prod>i = 0..<b. monom 1 1) mod f" .
show ?thesis unfolding eq2 P_def
by (rule prod_monom_1_1[OF m monom_1_1[unfolded P_def]])
qed
private lemma monom_a_b:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and m1: "P (monom 1 1) m'"
and b: "b < degree f"
shows "P (monom a b) m'"
proof -
have "monom a b = smult a (monom 1 b)"
by (simp add: smult_monom)
also have "... = [:a:] * (monom 1 b)" by auto
also have "... = [:a:] \<otimes>\<^bsub>(R)\<^esub> (monom 1 b)"
unfolding R_def mult_irr_def
by (simp add: b degree_monom_eq mod_poly_less)
finally have eq: "monom a b = [:a:] \<otimes>\<^bsub>(R)\<^esub> (monom 1 b)" .
show ?thesis unfolding eq P_def
proof (rule mult_closed_power)
show "[:a:] [^]\<^bsub>R\<^esub> CARD('a) ^ m' = [:a:]" by (rule fermat_theorem_power_poly_R)
show "monom 1 b [^]\<^bsub>R\<^esub> CARD('a) ^ m' = monom 1 b"
unfolding P_def by (rule monom_1_b[OF m m1[unfolded P_def] b])
show "monom 1 b \<in> carrier R" unfolding element_in_carrier using b
by (simp add: degree_monom_eq)
qed (auto)
qed
private lemma sum_monoms_P:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and monom_1_1: "P (monom 1 1) n"
and b: "b < degree f"
shows "P ((\<Sum>i\<le>b. monom (g i) i)) n"
using b
proof (induct b)
case 0
then show ?case unfolding P_def
by (simp add: poly_const_pow mod_poly_less monom_0)
next
case (Suc b)
have b: "b < degree f" using Suc.prems by auto
have rw: "(\<Sum>i\<le>b. monom (g i) i) mod f = (\<Sum>i\<le>b. monom (g i) i)" by (rule sum_monom_mod[OF b])
have rw2: "(monom (g (Suc b)) (Suc b) mod f) = monom (g (Suc b)) (Suc b)"
by (metis Suc.prems field_R.nat_pow_eone m monom_a_b pow_irr power_0 power_one_right)
have hyp: "P (\<Sum>i\<le>b. monom (g i) i) n" using Suc.prems Suc.hyps by auto
have "(\<Sum>i\<le>Suc b. monom (g i) i) = monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i)"
by simp
also have "... = (monom (g (Suc b)) (Suc b) mod f) + ((\<Sum>i\<le>b. monom (g i) i) mod f)"
using rw rw2 by argo
also have "... = monom (g (Suc b)) (Suc b) \<oplus>\<^bsub>R\<^esub> (\<Sum>i\<le>b. monom (g i) i)"
unfolding R_def plus_irr_def
by (simp add: poly_mod_add_left)
finally have eq: "(\<Sum>i\<le>Suc b. monom (g i) i)
= monom (g (Suc b)) (Suc b) \<oplus>\<^bsub>R\<^esub> (\<Sum>i\<le>b. monom (g i) i)" .
show ?case unfolding eq P_def
proof (rule add_closed_power)
show "monom (g (Suc b)) (Suc b) [^]\<^bsub>R\<^esub> CARD('a) ^ n = monom (g (Suc b)) (Suc b)"
by (rule monom_a_b[OF m monom_1_1[unfolded P_def] Suc.prems])
show "(\<Sum>i\<le>b. monom (g i) i) [^]\<^bsub>R\<^esub> CARD('a) ^ n = (\<Sum>i\<le>b. monom (g i) i)"
using hyp unfolding P_def by simp
qed
qed
lemma element_carrier_P:
defines "P \<equiv> (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and monom_1_1: "P (monom 1 1) m'"
and a: "a \<in> carrier R"
shows "P a m'"
proof -
have degree_a: "degree a < degree f" using a element_in_carrier by simp
have "P (\<Sum>i\<le>degree a. monom (poly.coeff a i) i) m'"
unfolding P_def
by (rule sum_monoms_P[OF m monom_1_1[unfolded P_def] degree_a])
thus ?thesis unfolding poly_as_sum_of_monoms by simp
qed
end
end
(* First part of the result that we need *)
lemma degree_divisor1:
assumes f: "irreducible (f :: 'a :: prime_card mod_ring poly)"
and d: "degree f = d"
shows "f dvd (monom 1 1)^(CARD('a)^d) - monom 1 1"
proof -
interpret poly_mod_type_irr "CARD('a)" f by (unfold_locales, auto simp add: f)
show ?thesis
proof (cases "d = 1")
case True
show ?thesis
proof (cases "monom 1 1 mod f = 0")
case True
then show ?thesis
by (metis Suc_pred dvd_diff dvd_mult2 mod_eq_0_iff_dvd power.simps(2)
zero_less_card_finite zero_less_power)
next
case False note mod_f_not0 = False
have "monom 1 (CARD('a)) mod f = monom 1 1 mod f"
proof -
let ?g1 = "(monom 1 (CARD('a))) mod f"
let ?g2 = "(monom 1 1) mod f"
have deg_g1: "degree ?g1 < degree f" and deg_g2: "degree ?g2 < degree f"
by (metis True card_UNIV_unit d degree_0 degree_mod_less' zero_less_card_finite zero_neq_one)+
have g2: "?g2 [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = ?g2 ^ (CARD('a)^degree f) mod f"
by (rule pow_irr_mult_of)
have "?g2 [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = ?g2"
by (rule element_power_order_eq_1', insert mod_f_not0 deg_g2,
auto simp add: carrier_mult_of R_def carrier_irr_def )
hence "?g2 ^ CARD('a) mod f = ?g2 mod f" using True d by auto
hence "?g1 mod f = ?g2 mod f" by (metis mod_mod_trivial power_mod x_pow_n)
thus ?thesis by simp
qed
thus ?thesis by (metis True mod_eq_dvd_iff_poly power_one_right x_pow_n)
qed
next
case False
have deg_f1: "1 < degree f"
using False d degree_f by linarith
have "monom 1 1 [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = monom 1 1"
by (rule element_power_order_eq_1', insert deg_f1)
(auto simp add: carrier_mult_of R_def carrier_irr_def degree_monom_eq)
hence "monom 1 1^CARD('a)^degree f mod f = monom 1 1 mod f"
using deg_f1 by (auto, metis mod_mod_trivial)
thus ?thesis using d mod_eq_dvd_iff_poly by blast
qed
qed
(* Second part *)
lemma degree_divisor2:
assumes f: "irreducible (f :: 'a :: prime_card mod_ring poly)"
and d: "degree f = d"
and c_ge_1: "1 \<le> c" and cd: "c < d"
shows "\<not> f dvd monom 1 1 ^ CARD('a) ^ c - monom 1 1"
proof (rule ccontr)
interpret poly_mod_type_irr "CARD('a)" f by (unfold_locales, auto simp add: f)
have field_R: "field R"
by (simp add: field_R.field_axioms)
assume "\<not> \<not> f dvd monom 1 1 ^ CARD('a) ^ c - monom 1 1"
hence f_dvd: "f dvd monom 1 1 ^ CARD('a) ^ c - monom 1 1" by simp
obtain a where a_R: "a \<in> carrier (mult_of R)"
and ord_a: "group.ord (mult_of R) a = order (mult_of R)"
and gen: "carrier (mult_of R) = {a [^]\<^bsub>R\<^esub> i |i. i \<in> (UNIV::nat set)}"
using field.finite_field_mult_group_has_gen2[OF field_R] by auto
have d_not1: "d>1" using c_ge_1 cd by auto
have monom_in_carrier: "monom 1 1 \<in> carrier (mult_of R)"
using d_not1 unfolding carrier_mult_of R_def carrier_irr_def
by (simp add: d degree_monom_eq)
then have "monom 1 1 \<notin> {\<zero>\<^bsub>R\<^esub>}"
by auto
then obtain k where "monom 1 1 = a ^ k mod f"
using gen monom_in_carrier by auto
then have k: "a [^]\<^bsub>R\<^esub> k = monom 1 1"
by simp
have a_m_1: "a [^]\<^bsub>R\<^esub> (CARD('a)^c - 1) = \<one>\<^bsub>R\<^esub>"
proof (rule x_power_pm_minus_1[OF a_R])
let ?x = "monom 1 1::'a mod_ring poly"
show "a [^]\<^bsub>R\<^esub> CARD('a) ^ c = a"
proof (rule element_carrier_P)
show "?x \<in> carrier R"
by (metis k mod_in_carrier pow_irr)
have "?x ^ CARD('a)^ c mod f = ?x mod f" using f_dvd
using mod_eq_dvd_iff_poly by blast
thus "?x [^]\<^bsub>R\<^esub> CARD('a)^ c = ?x"
by (metis d d_not1 degree_monom_eq mod_poly_less one_neq_zero pow_irr)
show "a \<in> carrier R" using a_R unfolding carrier_mult_of by auto
qed
qed
have "Group.group (mult_of R)"
by (simp add: field_R.field_mult_group)
moreover have "finite (carrier (mult_of R))" by auto
moreover have "a \<in> carrier (mult_of R)" by (rule a_R )
moreover have "a [^]\<^bsub>mult_of R\<^esub> (CARD('a) ^ c - 1) = \<one>\<^bsub>mult_of R\<^esub>"
using a_m_1 unfolding mult_of_def
by (auto, metis mult_of_def pow_irr_mult_of nat_pow_mult_of)
ultimately have ord_dvd: "group.ord (mult_of R) a dvd (CARD('a)^c - 1)"
by (meson group.pow_eq_id)
have "d dvd c"
proof (rule dvd_power_minus_1_conv1[OF nontriv])
show "0 < d" using cd by auto
show "CARD('a) ^ d - 1 dvd CARD('a) ^ c - 1"
using ord_dvd by (simp add: d ord_a order_irr)
show "0 < c" using c_ge_1 by auto
qed
thus False using c_ge_1 cd
using nat_dvd_not_less by auto
qed
lemma degree_divisor: assumes "irreducible (f :: 'a :: prime_card mod_ring poly)" "degree f = d"
shows "f dvd (monom 1 1)^(CARD('a)^d) - monom 1 1"
and "1 \<le> c \<Longrightarrow> c < d \<Longrightarrow> \<not> f dvd (monom 1 1)^(CARD('a)^c) - monom 1 1"
using assms degree_divisor1 degree_divisor2 by blast+
context
assumes "SORT_CONSTRAINT('a :: prime_card)"
begin
function dist_degree_factorize_main ::
"'a mod_ring poly \<Rightarrow> 'a mod_ring poly \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a mod_ring poly) list
\<Rightarrow> (nat \<times> 'a mod_ring poly) list" where
"dist_degree_factorize_main v w d res = (if v = 1 then res else if d + d > degree v
then (degree v, v) # res else let
w = w^(CARD('a)) mod v;
d = Suc d;
gd = gcd (w - monom 1 1) v
in if gd = 1 then dist_degree_factorize_main v w d res else
let v' = v div gd in
dist_degree_factorize_main v' (w mod v') d ((d,gd) # res))"
by pat_completeness auto
termination
proof (relation "measure (\<lambda> (v,w,d,res). Suc (degree v) - d)", goal_cases)
case (3 v w d res x xa xb xc)
have "xb dvd v" unfolding 3 by auto
hence "xc dvd v" unfolding 3 by (metis dvd_def dvd_div_mult_self)
from divides_degree[OF this] 3
show ?case by auto
qed auto
declare dist_degree_factorize_main.simps[simp del]
lemma dist_degree_factorize_main: assumes
dist: "dist_degree_factorize_main v w d res = facts" and
w: "w = (monom 1 1)^(CARD('a)^d) mod v" and
sf: "square_free u" and
mon: "monic u" and
prod: "u = v * prod_list (map snd res)" and
deg: "\<And> f. irreducible f \<Longrightarrow> f dvd v \<Longrightarrow> degree f > d" and
res: "\<And> i f. (i,f) \<in> set res \<Longrightarrow> i \<noteq> 0 \<and> degree f \<noteq> 0 \<and> monic f \<and> (\<forall> g. irreducible g \<longrightarrow> g dvd f \<longrightarrow> degree g = i)"
shows "u = prod_list (map snd facts) \<and> (\<forall> i f. (i,f) \<in> set facts \<longrightarrow> factors_of_same_degree i f)"
using dist w prod res deg unfolding factors_of_same_degree_def
proof (induct v w d res rule: dist_degree_factorize_main.induct)
case (1 v w d res)
note IH = 1(1-2)
note result = 1(3)
note w = 1(4)
note u = 1(5)
note res = 1(6)
note fact = 1(7)
note [simp] = dist_degree_factorize_main.simps[of _ _ d]
let ?x = "monom 1 1 :: 'a mod_ring poly"
show ?case
proof (cases "v = 1")
case True
thus ?thesis using result u mon res by auto
next
case False note v = this
note IH = IH[OF this]
have mon_prod: "monic (prod_list (map snd res))" by (rule monic_prod_list, insert res, auto)
with mon[unfolded u] have mon_v: "monic v" by (simp add: coeff_degree_mult)
with False have deg_v: "degree v \<noteq> 0" by (simp add: monic_degree_0)
show ?thesis
proof (cases "degree v < d + d")
case True
with result False have facts: "facts = (degree v, v) # res" by simp
show ?thesis
proof (intro allI conjI impI)
fix i f g
assume *: "(i,f) \<in> set facts" "irreducible g" "g dvd f"
show "degree g = i"
proof (cases "(i,f) \<in> set res")
case True
from res[OF this] * show ?thesis by auto
next
case False
with * facts have id: "i = degree v" "f = v" by auto
note * = *(2-3)[unfolded id]
from fact[OF *] have dg: "d < degree g" by auto
from divides_degree[OF *(2)] mon_v have deg_gv: "degree g \<le> degree v" by auto
from *(2) obtain h where vgh: "v = g * h" unfolding dvd_def by auto
from arg_cong[OF this, of degree] mon_v have dvgh: "degree v = degree g + degree h"
by (metis deg_v degree_mult_eq degree_mult_eq_0)
with dg deg_gv dg True have deg_h: "degree h < d" by auto
{
assume "degree h = 0"
with dvgh have "degree g = degree v" by simp
}
moreover
{
assume deg_h0: "degree h \<noteq> 0"
hence "\<exists> k. irreducible\<^sub>d k \<and> k dvd h"
using dvd_triv_left irreducible\<^sub>d_factor by blast
then obtain k where irr: "irreducible k" and "k dvd h" by auto
from dvd_trans[OF this(2), of v] vgh have "k dvd v" by auto
from fact[OF irr this] have dk: "d < degree k" .
from divides_degree[OF \<open>k dvd h\<close>] deg_h0 have "degree k \<le> degree h" by auto
with deg_h have "degree k < d" by auto
with dk have False by auto
}
ultimately have "degree g = degree v" by auto
thus ?thesis unfolding id by auto
qed
qed (insert v mon_v deg_v u facts res, force+)
next
case False
note IH = IH[OF this refl refl refl]
let ?p = "CARD('a)"
let ?w = "w ^ ?p mod v"
let ?g = "gcd (?w - ?x) v"
let ?v = "v div ?g"
let ?d = "Suc d"
from result[simplified] v False
have result: "(if ?g = 1 then dist_degree_factorize_main v ?w ?d res
else dist_degree_factorize_main ?v (?w mod ?v) ?d ((?d, ?g) # res)) = facts"
by (auto simp: Let_def)
from mon_v have mon_g: "monic ?g" by (metis deg_v degree_0 poly_gcd_monic)
have ww: "?w = ?x ^ ?p ^ ?d mod v" unfolding w
by simp (metis (mono_tags, opaque_lifting) One_nat_def mult.commute power_Suc power_mod power_mult x_pow_n)
have gv: "?g dvd v" by auto
hence gv': "v div ?g dvd v"
by (metis dvd_def dvd_div_mult_self)
{
fix f
assume irr: "irreducible f" and fv: "f dvd v" and "degree f = ?d"
from degree_divisor(1)[OF this(1,3)]
have "f dvd ?x ^ ?p ^ ?d - ?x" by auto
hence "f dvd (?x ^ ?p ^ ?d - ?x) mod v" using fv by (rule dvd_mod)
also have "(?x ^ ?p ^ ?d - ?x) mod v = ?x ^ ?p ^ ?d mod v - ?x mod v" by (rule poly_mod_diff_left)
also have "?x ^ ?p ^ ?d mod v = ?w mod v" unfolding ww by auto
also have "\<dots> - ?x mod v = (w ^ ?p mod v - ?x) mod v" by (metis poly_mod_diff_left)
finally have "f dvd (w^?p mod v - ?x)" using fv by (rule dvd_mod_imp_dvd)
with fv have "f dvd ?g" by auto
} note deg_d_dvd_g = this
show ?thesis
proof (cases "?g = 1")
case True
with result have dist: "dist_degree_factorize_main v ?w ?d res = facts" by auto
show ?thesis
proof (rule IH(1)[OF True dist ww u res])
fix f
assume irr: "irreducible f" and fv: "f dvd v"
from fact[OF this] have "d < degree f" .
moreover have "degree f \<noteq> ?d"
proof
assume "degree f = ?d"
from divides_degree[OF deg_d_dvd_g[OF irr fv this]] mon_v
have "degree f \<le> degree ?g" by auto
with irr have "degree ?g \<noteq> 0" unfolding irreducible\<^sub>d_def by auto
with True show False by auto
qed
ultimately show "?d < degree f" by auto
qed
next
case False
with result
have result: "dist_degree_factorize_main ?v (?w mod ?v) ?d ((?d, ?g) # res) = facts"
by auto
from False mon_g have deg_g: "degree ?g \<noteq> 0" by (simp add: monic_degree_0)
have www: "?w mod ?v = monom 1 1 ^ ?p ^ ?d mod ?v" using gv'
by (simp add: mod_mod_cancel ww)
from square_free_factor[OF _ sf, of v] u have sfv: "square_free v" by auto
have u: "u = ?v * prod_list (map snd ((?d, ?g) # res))"
unfolding u by simp
show ?thesis
proof (rule IH(2)[OF False refl result www u], goal_cases)
case (1 i f)
show ?case
proof (cases "(i,f) \<in> set res")
case True
from res[OF this] show ?thesis by auto
next
case False
with 1 have id: "i = ?d" "f = ?g" by auto
show ?thesis unfolding id
proof (intro conjI impI allI)
fix g
assume *: "irreducible g" "g dvd ?g"
hence gv: "g dvd v" using dvd_trans[of g ?g v] by simp
from fact[OF *(1) this] have dg: "d < degree g" .
{
assume "degree g > ?d"
from degree_divisor(2)[OF *(1) refl _ this]
have ndvd: "\<not> g dvd ?x ^ ?p ^ ?d - ?x" by auto
from *(2) have "g dvd ?w - ?x" by simp
from this[unfolded ww]
have "g dvd ?x ^ ?p ^ ?d mod v - ?x" .
with gv have "g dvd (?x ^ ?p ^ ?d mod v - ?x) mod v" by (metis dvd_mod)
also have "(?x ^ ?p ^ ?d mod v - ?x) mod v = (?x ^ ?p ^ ?d - ?x) mod v"
by (metis mod_diff_left_eq)
finally have "g dvd ?x ^ ?p ^ ?d - ?x" using gv by (rule dvd_mod_imp_dvd)
with ndvd have False by auto
}
with dg show "degree g = ?d" by presburger
qed (insert mon_g deg_g, auto)
qed
next
case (2 f)
note irr = 2(1)
from dvd_trans[OF 2(2) gv'] have fv: "f dvd v" .
from fact[OF irr fv] have df: "d < degree f" "degree f \<noteq> 0" by auto
{
assume "degree f = ?d"
from deg_d_dvd_g[OF irr fv this] have fg: "f dvd ?g" .
from gv have id: "v = (v div ?g) * ?g" by simp
from sfv id have "square_free (v div ?g * ?g)" by simp
from square_free_multD(1)[OF this 2(2) fg] have "degree f = 0" .
with df have False by auto
}
with df show "?d < degree f" by presburger
qed
qed
qed
qed
qed
definition distinct_degree_factorization
:: "'a mod_ring poly \<Rightarrow> (nat \<times> 'a mod_ring poly) list" where
"distinct_degree_factorization f =
(if degree f = 1 then [(1,f)] else dist_degree_factorize_main f (monom 1 1) 0 [])"
lemma distinct_degree_factorization: assumes
dist: "distinct_degree_factorization f = facts" and
u: "square_free f" and
mon: "monic f"
shows "f = prod_list (map snd facts) \<and> (\<forall> i f. (i,f) \<in> set facts \<longrightarrow> factors_of_same_degree i f)"
proof -
note dist = dist[unfolded distinct_degree_factorization_def]
show ?thesis
proof (cases "degree f \<le> 1")
case False
hence "degree f > 1" and dist: "dist_degree_factorize_main f (monom 1 1) 0 [] = facts"
using dist by auto
hence *: "monom 1 (Suc 0) = monom 1 (Suc 0) mod f"
by (simp add: degree_monom_eq mod_poly_less)
show ?thesis
by (rule dist_degree_factorize_main[OF dist _ u mon], insert *, auto simp: irreducible\<^sub>d_def)
next
case True
hence "degree f = 0 \<or> degree f = 1" by auto
thus ?thesis
proof
assume "degree f = 0"
with mon have f: "f = 1" using monic_degree_0 by blast
hence "facts = []" using dist unfolding dist_degree_factorize_main.simps[of _ _ 0]
by auto
thus ?thesis using f by auto
next
assume deg: "degree f = 1"
hence facts: "facts = [(1,f)]" using dist by auto
show ?thesis unfolding facts factors_of_same_degree_def
proof (intro conjI allI impI; clarsimp)
fix g
assume "irreducible g" "g dvd f"
thus "degree g = Suc 0" using deg divides_degree[of g f] by (auto simp: irreducible\<^sub>d_def)
qed (insert mon deg, auto)
qed
qed
qed
end
end