Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Authors: Jose Divasón | |
Sebastiaan Joosten | |
René Thiemann | |
Akihisa Yamada | |
*) | |
section \<open>Finite Rings and Fields\<close> | |
text \<open>We start by establishing some preliminary results about finite rings and finite fields\<close> | |
subsection \<open>Finite Rings\<close> | |
theory Finite_Field | |
imports | |
"HOL-Computational_Algebra.Primes" | |
"HOL-Number_Theory.Residues" | |
"HOL-Library.Cardinality" | |
Subresultants.Binary_Exponentiation | |
Polynomial_Interpolation.Ring_Hom_Poly | |
begin | |
typedef ('a::finite) mod_ring = "{0..<int CARD('a)}" by auto | |
setup_lifting type_definition_mod_ring | |
lemma CARD_mod_ring[simp]: "CARD('a mod_ring) = CARD('a::finite)" | |
proof - | |
have "card {y. \<exists>x\<in>{0..<int CARD('a)}. (y::'a mod_ring) = Abs_mod_ring x} = card {0..<int CARD('a)}" | |
proof (rule bij_betw_same_card) | |
have "inj_on Rep_mod_ring {y. \<exists>x\<in>{0..<int CARD('a)}. y = Abs_mod_ring x}" | |
by (meson Rep_mod_ring_inject inj_onI) | |
moreover have "Rep_mod_ring ` {y. \<exists>x\<in>{0..<int CARD('a)}. (y::'a mod_ring) = Abs_mod_ring x} = {0..<int CARD('a)}" | |
proof (auto simp add: image_def Rep_mod_ring_inject) | |
fix xb show "0 \<le> Rep_mod_ring (Abs_mod_ring xb)" | |
using Rep_mod_ring atLeastLessThan_iff by blast | |
assume xb1: "0 \<le> xb" and xb2: "xb < int CARD('a)" | |
thus " Rep_mod_ring (Abs_mod_ring xb) < int CARD('a)" | |
by (metis Abs_mod_ring_inverse Rep_mod_ring atLeastLessThan_iff le_less_trans linear) | |
have xb: "xb \<in> {0..<int CARD('a)}" using xb1 xb2 by simp | |
show "\<exists>xa::'a mod_ring. (\<exists>x\<in>{0..<int CARD('a)}. xa = Abs_mod_ring x) \<and> xb = Rep_mod_ring xa" | |
by (rule exI[of _ "Abs_mod_ring xb"], auto simp add: xb1 xb2, rule Abs_mod_ring_inverse[OF xb, symmetric]) | |
qed | |
ultimately show "bij_betw Rep_mod_ring | |
{y. \<exists>x\<in>{0..<int CARD('a)}. (y::'a mod_ring) = Abs_mod_ring x} | |
{0..<int CARD('a)}" | |
by (simp add: bij_betw_def) | |
qed | |
thus ?thesis | |
unfolding type_definition.univ[OF type_definition_mod_ring] | |
unfolding image_def by auto | |
qed | |
instance mod_ring :: (finite) finite | |
proof (intro_classes) | |
show "finite (UNIV::'a mod_ring set)" | |
unfolding type_definition.univ[OF type_definition_mod_ring] | |
using finite by simp | |
qed | |
instantiation mod_ring :: (finite) equal | |
begin | |
lift_definition equal_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> bool" is "(=)" . | |
instance by (intro_classes, transfer, auto) | |
end | |
instantiation mod_ring :: (finite) comm_ring | |
begin | |
lift_definition plus_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" is | |
"\<lambda> x y. (x + y) mod int (CARD('a))" by simp | |
lift_definition uminus_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" is | |
"\<lambda> x. if x = 0 then 0 else int (CARD('a)) - x" by simp | |
lift_definition minus_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" is | |
"\<lambda> x y. (x - y) mod int (CARD('a))" by simp | |
lift_definition times_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" is | |
"\<lambda> x y. (x * y) mod int (CARD('a))" by simp | |
lift_definition zero_mod_ring :: "'a mod_ring" is 0 by simp | |
instance | |
by standard | |
(transfer; auto simp add: mod_simps algebra_simps intro: mod_diff_cong)+ | |
end | |
lift_definition to_int_mod_ring :: "'a::finite mod_ring \<Rightarrow> int" is "\<lambda> x. x" . | |
lift_definition of_int_mod_ring :: "int \<Rightarrow> 'a::finite mod_ring" is | |
"\<lambda> x. x mod int (CARD('a))" by simp | |
interpretation to_int_mod_ring_hom: inj_zero_hom to_int_mod_ring | |
by (unfold_locales; transfer, auto) | |
lemma int_nat_card[simp]: "int (nat CARD('a::finite)) = CARD('a)" by auto | |
interpretation of_int_mod_ring_hom: zero_hom of_int_mod_ring | |
by (unfold_locales, transfer, auto) | |
lemma of_int_mod_ring_to_int_mod_ring[simp]: | |
"of_int_mod_ring (to_int_mod_ring x) = x" by (transfer, auto) | |
lemma to_int_mod_ring_of_int_mod_ring[simp]: "0 \<le> x \<Longrightarrow> x < int CARD('a :: finite) \<Longrightarrow> | |
to_int_mod_ring (of_int_mod_ring x :: 'a mod_ring) = x" | |
by (transfer, auto) | |
lemma range_to_int_mod_ring: | |
"range (to_int_mod_ring :: ('a :: finite mod_ring \<Rightarrow> int)) = {0 ..< CARD('a)}" | |
apply (intro equalityI subsetI) | |
apply (elim rangeE, transfer, force) | |
by (auto intro!: range_eqI to_int_mod_ring_of_int_mod_ring[symmetric]) | |
subsection \<open>Nontrivial Finite Rings\<close> | |
class nontriv = assumes nontriv: "CARD('a) > 1" | |
subclass(in nontriv) finite by(intro_classes,insert nontriv,auto intro:card_ge_0_finite) | |
instantiation mod_ring :: (nontriv) comm_ring_1 | |
begin | |
lift_definition one_mod_ring :: "'a mod_ring" is 1 using nontriv[where ?'a='a] by auto | |
instance by (intro_classes; transfer, simp) | |
end | |
interpretation to_int_mod_ring_hom: inj_one_hom to_int_mod_ring | |
by (unfold_locales, transfer, simp) | |
lemma of_nat_of_int_mod_ring [code_unfold]: | |
"of_nat = of_int_mod_ring o int" | |
proof (rule ext, unfold o_def) | |
show "of_nat n = of_int_mod_ring (int n)" for n | |
proof (induct n) | |
case (Suc n) | |
show ?case | |
by (simp only: of_nat_Suc Suc, transfer) (simp add: mod_simps) | |
qed simp | |
qed | |
lemma of_nat_card_eq_0[simp]: "(of_nat (CARD('a::nontriv)) :: 'a mod_ring) = 0" | |
by (unfold of_nat_of_int_mod_ring, transfer, auto) | |
lemma of_int_of_int_mod_ring[code_unfold]: "of_int = of_int_mod_ring" | |
proof (rule ext) | |
fix x :: int | |
obtain n1 n2 where x: "x = int n1 - int n2" by (rule int_diff_cases) | |
show "of_int x = of_int_mod_ring x" | |
unfolding x of_int_diff of_int_of_nat_eq of_nat_of_int_mod_ring o_def | |
by (transfer, simp add: mod_diff_right_eq mod_diff_left_eq) | |
qed | |
unbundle lifting_syntax | |
lemma pcr_mod_ring_to_int_mod_ring: "pcr_mod_ring = (\<lambda>x y. x = to_int_mod_ring y)" | |
unfolding mod_ring.pcr_cr_eq unfolding cr_mod_ring_def to_int_mod_ring.rep_eq .. | |
lemma [transfer_rule]: | |
"((=) ===> pcr_mod_ring) (\<lambda> x. int x mod int (CARD('a :: nontriv))) (of_nat :: nat \<Rightarrow> 'a mod_ring)" | |
by (intro rel_funI, unfold pcr_mod_ring_to_int_mod_ring of_nat_of_int_mod_ring, transfer, auto) | |
lemma [transfer_rule]: | |
"((=) ===> pcr_mod_ring) (\<lambda> x. x mod int (CARD('a :: nontriv))) (of_int :: int \<Rightarrow> 'a mod_ring)" | |
by (intro rel_funI, unfold pcr_mod_ring_to_int_mod_ring of_int_of_int_mod_ring, transfer, auto) | |
lemma one_mod_card [simp]: "1 mod CARD('a::nontriv) = 1" | |
using mod_less nontriv by blast | |
lemma Suc_0_mod_card [simp]: "Suc 0 mod CARD('a::nontriv) = 1" | |
using one_mod_card by simp | |
lemma one_mod_card_int [simp]: "1 mod int CARD('a::nontriv) = 1" | |
proof - | |
from nontriv [where ?'a = 'a] have "int (1 mod CARD('a::nontriv)) = 1" | |
by simp | |
then show ?thesis | |
using of_nat_mod [of 1 "CARD('a)", where ?'a = int] by simp | |
qed | |
lemma pow_mod_ring_transfer[transfer_rule]: | |
"(pcr_mod_ring ===> (=) ===> pcr_mod_ring) | |
(\<lambda>a::int. \<lambda>n. a^n mod CARD('a::nontriv)) ((^)::'a mod_ring \<Rightarrow> nat \<Rightarrow> 'a mod_ring)" | |
unfolding pcr_mod_ring_to_int_mod_ring | |
proof (intro rel_funI,simp) | |
fix x::"'a mod_ring" and n | |
show "to_int_mod_ring x ^ n mod int CARD('a) = to_int_mod_ring (x ^ n)" | |
proof (induct n) | |
case 0 | |
thus ?case by auto | |
next | |
case (Suc n) | |
have "to_int_mod_ring (x ^ Suc n) = to_int_mod_ring (x * x ^ n)" by auto | |
also have "... = to_int_mod_ring x * to_int_mod_ring (x ^ n) mod CARD('a)" | |
unfolding to_int_mod_ring_def using times_mod_ring.rep_eq by auto | |
also have "... = to_int_mod_ring x * (to_int_mod_ring x ^ n mod CARD('a)) mod CARD('a)" | |
using Suc.hyps by auto | |
also have "... = to_int_mod_ring x ^ Suc n mod int CARD('a)" | |
by (simp add: mod_simps) | |
finally show ?case .. | |
qed | |
qed | |
lemma dvd_mod_ring_transfer[transfer_rule]: | |
"((pcr_mod_ring :: int \<Rightarrow> 'a :: nontriv mod_ring \<Rightarrow> bool) ===> | |
(pcr_mod_ring :: int \<Rightarrow> 'a mod_ring \<Rightarrow> bool) ===> (=)) | |
(\<lambda> i j. \<exists>k \<in> {0..<int CARD('a)}. j = i * k mod int CARD('a)) (dvd)" | |
proof (unfold pcr_mod_ring_to_int_mod_ring, intro rel_funI iffI) | |
fix x y :: "'a mod_ring" and i j | |
assume i: "i = to_int_mod_ring x" and j: "j = to_int_mod_ring y" | |
{ assume "x dvd y" | |
then obtain z where "y = x * z" by (elim dvdE, auto) | |
then have "j = i * to_int_mod_ring z mod CARD('a)" by (unfold i j, transfer) | |
with range_to_int_mod_ring | |
show "\<exists>k \<in> {0..<int CARD('a)}. j = i * k mod CARD('a)" by auto | |
} | |
assume "\<exists>k \<in> {0..<int CARD('a)}. j = i * k mod CARD('a)" | |
then obtain k where k: "k \<in> {0..<int CARD('a)}" and dvd: "j = i * k mod CARD('a)" by auto | |
from k have "to_int_mod_ring (of_int k :: 'a mod_ring) = k" by (transfer, auto) | |
also from dvd have "j = i * ... mod CARD('a)" by auto | |
finally have "y = x * (of_int k :: 'a mod_ring)" unfolding i j using k by (transfer, auto) | |
then show "x dvd y" by auto | |
qed | |
lemma Rep_mod_ring_mod[simp]: "Rep_mod_ring (a :: 'a :: nontriv mod_ring) mod CARD('a) = Rep_mod_ring a" | |
using Rep_mod_ring[where 'a = 'a] by auto | |
subsection \<open>Finite Fields\<close> | |
text \<open>When the domain is prime, the ring becomes a field\<close> | |
class prime_card = assumes prime_card: "prime (CARD('a))" | |
begin | |
lemma prime_card_int: "prime (int (CARD('a)))" using prime_card by auto | |
subclass nontriv using prime_card prime_gt_1_nat by (intro_classes,auto) | |
end | |
instantiation mod_ring :: (prime_card) field | |
begin | |
definition inverse_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" where | |
"inverse_mod_ring x = (if x = 0 then 0 else x ^ (nat (CARD('a) - 2)))" | |
definition divide_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where | |
"divide_mod_ring x y = x * ((\<lambda>c. if c = 0 then 0 else c ^ (nat (CARD('a) - 2))) y)" | |
instance | |
proof | |
fix a b c::"'a mod_ring" | |
show "inverse 0 = (0::'a mod_ring)" by (simp add: inverse_mod_ring_def) | |
show "a div b = a * inverse b" | |
unfolding inverse_mod_ring_def by (transfer', simp add: divide_mod_ring_def) | |
show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | |
proof (unfold inverse_mod_ring_def, transfer) | |
let ?p="CARD('a)" | |
fix x | |
assume x: "x \<in> {0..<int CARD('a)}" and x0: "x \<noteq> 0" | |
have p0': "0\<le>?p" by auto | |
have "\<not> ?p dvd x" | |
using x x0 zdvd_imp_le by fastforce | |
then have "\<not> CARD('a) dvd nat \<bar>x\<bar>" | |
by simp | |
with x have "\<not> CARD('a) dvd nat x" | |
by simp | |
have rw: "x ^ nat (int (?p - 2)) * x = x ^ nat (?p - 1)" | |
proof - | |
have p2: "0 \<le> int (?p-2)" using x by simp | |
have card_rw: "(CARD('a) - Suc 0) = nat (1 + int (CARD('a) - 2))" | |
using nat_eq_iff x x0 by auto | |
have "x ^ nat (?p - 2)*x = x ^ (Suc (nat (?p - 2)))" by simp | |
also have "... = x ^ (nat (?p - 1))" | |
using Suc_nat_eq_nat_zadd1[OF p2] card_rw by auto | |
finally show ?thesis . | |
qed | |
have "[int (nat x ^ (CARD('a) - 1)) = int 1] (mod CARD('a))" | |
using fermat_theorem [OF prime_card \<open>\<not> CARD('a) dvd nat x\<close>] | |
by (simp only: cong_def cong_def of_nat_mod [symmetric]) | |
then have *: "[x ^ (CARD('a) - 1) = 1] (mod CARD('a))" | |
using x by auto | |
have "x ^ (CARD('a) - 2) mod CARD('a) * x mod CARD('a) | |
= (x ^ nat (CARD('a) - 2) * x) mod CARD('a)" by (simp add: mod_simps) | |
also have "... = (x ^ nat (?p - 1) mod ?p)" unfolding rw by simp | |
also have "... = (x ^ (nat ?p - 1) mod ?p)" using p0' by (simp add: nat_diff_distrib') | |
also have "... = 1" | |
using * by (simp add: cong_def) | |
finally show "(if x = 0 then 0 else x ^ nat (int (CARD('a) - 2)) mod CARD('a)) * x mod CARD('a) = 1" | |
using x0 by auto | |
qed | |
qed | |
end | |
instantiation mod_ring :: (prime_card) "{normalization_euclidean_semiring, euclidean_ring}" | |
begin | |
definition modulo_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where "modulo_mod_ring x y = (if y = 0 then x else 0)" | |
definition normalize_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" where "normalize_mod_ring x = (if x = 0 then 0 else 1)" | |
definition unit_factor_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring" where "unit_factor_mod_ring x = x" | |
definition euclidean_size_mod_ring :: "'a mod_ring \<Rightarrow> nat" where "euclidean_size_mod_ring x = (if x = 0 then 0 else 1)" | |
instance | |
proof (intro_classes) | |
fix a :: "'a mod_ring" show "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1" | |
unfolding dvd_def unit_factor_mod_ring_def by (intro exI[of _ "inverse a"], auto) | |
qed (auto simp: normalize_mod_ring_def unit_factor_mod_ring_def modulo_mod_ring_def | |
euclidean_size_mod_ring_def field_simps) | |
end | |
instantiation mod_ring :: (prime_card) euclidean_ring_gcd | |
begin | |
definition gcd_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where "gcd_mod_ring = Euclidean_Algorithm.gcd" | |
definition lcm_mod_ring :: "'a mod_ring \<Rightarrow> 'a mod_ring \<Rightarrow> 'a mod_ring" where "lcm_mod_ring = Euclidean_Algorithm.lcm" | |
definition Gcd_mod_ring :: "'a mod_ring set \<Rightarrow> 'a mod_ring" where "Gcd_mod_ring = Euclidean_Algorithm.Gcd" | |
definition Lcm_mod_ring :: "'a mod_ring set \<Rightarrow> 'a mod_ring" where "Lcm_mod_ring = Euclidean_Algorithm.Lcm" | |
instance by (intro_classes, auto simp: gcd_mod_ring_def lcm_mod_ring_def Gcd_mod_ring_def Lcm_mod_ring_def) | |
end | |
instantiation mod_ring :: (prime_card) unique_euclidean_ring | |
begin | |
definition [simp]: "division_segment_mod_ring (x :: 'a mod_ring) = (1 :: 'a mod_ring)" | |
instance by intro_classes (auto simp: euclidean_size_mod_ring_def split: if_splits) | |
end | |
instance mod_ring :: (prime_card) field_gcd | |
by intro_classes auto | |
lemma surj_of_nat_mod_ring: "\<exists> i. i < CARD('a :: prime_card) \<and> (x :: 'a mod_ring) = of_nat i" | |
by (rule exI[of _ "nat (to_int_mod_ring x)"], unfold of_nat_of_int_mod_ring o_def, | |
subst nat_0_le, transfer, simp, simp, transfer, auto) | |
lemma of_nat_0_mod_ring_dvd: assumes x: "of_nat x = (0 :: 'a ::prime_card mod_ring)" | |
shows "CARD('a) dvd x" | |
proof - | |
let ?x = "of_nat x :: int" | |
from x have "of_int_mod_ring ?x = (0 :: 'a mod_ring)" by (fold of_int_of_int_mod_ring, simp) | |
hence "?x mod CARD('a) = 0" by (transfer, auto) | |
hence "x mod CARD('a) = 0" by presburger | |
thus ?thesis unfolding mod_eq_0_iff_dvd . | |
qed | |
end | |