Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
Authors: Jose Divasón | |
Sebastiaan Joosten | |
René Thiemann | |
Akihisa Yamada | |
*) | |
section \<open>Hensel Lifting\<close> | |
subsection \<open>Properties about Factors\<close> | |
text \<open>We define and prove properties of Hensel-lifting. Here, we show the result that | |
Hensel-lifting can lift a factorization mod $p$ to a factorization mod $p^n$. | |
For the lifting we have proofs for both versions, the original linear Hensel-lifting or | |
the quadratic approach from Zassenhaus. | |
Via the linear version, we also show a uniqueness result, however only in the | |
binary case, i.e., where $f = g \cdot h$. Uniqueness of the general case will later be shown | |
in theory Berlekamp-Hensel by incorporating the factorization algorithm for finite fields algorithm.\<close> | |
theory Hensel_Lifting | |
imports | |
"HOL-Computational_Algebra.Euclidean_Algorithm" | |
Poly_Mod_Finite_Field_Record_Based | |
Polynomial_Factorization.Square_Free_Factorization | |
begin | |
lemma uniqueness_poly_equality: | |
fixes f g :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly" | |
assumes cop: "coprime f g" | |
and deg: "B = 0 \<or> degree B < degree f" "B' = 0 \<or> degree B' < degree f" | |
and f: "f \<noteq> 0" and eq: "A * f + B * g = A' * f + B' * g" | |
shows "A = A'" "B = B'" | |
proof - | |
from eq have *: "(A - A') * f = (B' - B) * g" by (simp add: field_simps) | |
hence "f dvd (B' - B) * g" unfolding dvd_def by (intro exI[of _ "A - A'"], auto simp: field_simps) | |
with cop[simplified] have dvd: "f dvd (B' - B)" | |
by (simp add: coprime_dvd_mult_right_iff ac_simps) | |
from divides_degree[OF this] have "degree f \<le> degree (B' - B) \<or> B = B'" by auto | |
with degree_diff_le_max[of B' B] deg | |
show "B = B'" by auto | |
with * f show "A = A'" by auto | |
qed | |
lemmas (in poly_mod_prime_type) uniqueness_poly_equality = | |
uniqueness_poly_equality[where 'a="'a mod_ring", untransferred] | |
lemmas (in poly_mod_prime) uniqueness_poly_equality = poly_mod_prime_type.uniqueness_poly_equality | |
[unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] | |
lemma pseudo_divmod_main_list_1_is_divmod_poly_one_main_list: | |
"pseudo_divmod_main_list (1 :: 'a :: comm_ring_1) q f g n = divmod_poly_one_main_list q f g n" | |
by (induct n arbitrary: q f g, auto simp: Let_def) | |
lemma pdivmod_monic_pseudo_divmod: assumes g: "monic g" shows "pdivmod_monic f g = pseudo_divmod f g" | |
proof - | |
from g have id: "(coeffs g = []) = False" by auto | |
from g have mon: "hd (rev (coeffs g)) = 1" by (metis coeffs_eq_Nil hd_rev id last_coeffs_eq_coeff_degree) | |
show ?thesis | |
unfolding pseudo_divmod_impl pseudo_divmod_list_def id if_False pdivmod_monic_def Let_def mon | |
pseudo_divmod_main_list_1_is_divmod_poly_one_main_list by (auto split: prod.splits) | |
qed | |
lemma pdivmod_monic: assumes g: "monic g" and res: "pdivmod_monic f g = (q, r)" | |
shows "f = g * q + r" "r = 0 \<or> degree r < degree g" | |
proof - | |
from g have g0: "g \<noteq> 0" by auto | |
from pseudo_divmod[OF g0 res[unfolded pdivmod_monic_pseudo_divmod[OF g]], unfolded g] | |
show "f = g * q + r" "r = 0 \<or> degree r < degree g" by auto | |
qed | |
definition dupe_monic :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> | |
'a poly * 'a poly" where | |
"dupe_monic D H S T U = (case pdivmod_monic (T * U) D of (q,r) \<Rightarrow> | |
(S * U + H * q, r))" | |
lemma dupe_monic: assumes 1: "D*S + H*T = 1" | |
and mon: "monic D" | |
and dupe: "dupe_monic D H S T U = (A,B)" | |
shows "A * D + B * H = U" "B = 0 \<or> degree B < degree D" | |
proof - | |
obtain Q R where div: "pdivmod_monic ((T * U)) D = (Q,R)" by force | |
from dupe[unfolded dupe_monic_def div split] | |
have A: "A = (S * U + H * Q)" and B: "B = R" by auto | |
from pdivmod_monic[OF mon div] have TU: "T * U = D * Q + R" and | |
deg: "R = 0 \<or> degree R < degree D" by auto | |
hence R: "R = T * U - D * Q" by simp | |
have "A * D + B * H = (D * S + H * T) * U" unfolding A B R by (simp add: field_simps) | |
also have "\<dots> = U" unfolding 1 by simp | |
finally show eq: "A * D + B * H = U" . | |
show "B = 0 \<or> degree B < degree D" using deg unfolding B . | |
qed | |
lemma dupe_monic_unique: fixes D :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly" | |
assumes 1: "D*S + H*T = 1" | |
and mon: "monic D" | |
and dupe: "dupe_monic D H S T U = (A,B)" | |
and cop: "coprime D H" | |
and other: "A' * D + B' * H = U" "B' = 0 \<or> degree B' < degree D" | |
shows "A' = A" "B' = B" | |
proof - | |
from dupe_monic[OF 1 mon dupe] have one: "A * D + B * H = U" "B = 0 \<or> degree B < degree D" by auto | |
from mon have D0: "D \<noteq> 0" by auto | |
from uniqueness_poly_equality[OF cop one(2) other(2) D0, of A A', unfolded other, OF one(1)] | |
show "A' = A" "B' = B" by auto | |
qed | |
context ring_ops | |
begin | |
lemma poly_rel_dupe_monic_i: assumes mon: "monic D" | |
and rel: "poly_rel d D" "poly_rel h H" "poly_rel s S" "poly_rel t T" "poly_rel u U" | |
shows "rel_prod poly_rel poly_rel (dupe_monic_i ops d h s t u) (dupe_monic D H S T U)" | |
proof - | |
note defs = dupe_monic_i_def dupe_monic_def | |
note [transfer_rule] = rel | |
have [transfer_rule]: "rel_prod poly_rel poly_rel | |
(pdivmod_monic_i ops (times_poly_i ops t u) d) | |
(pdivmod_monic (T * U) D)" | |
by (rule poly_rel_pdivmod_monic[OF mon], transfer_prover+) | |
show ?thesis unfolding defs by transfer_prover | |
qed | |
end | |
context mod_ring_gen | |
begin | |
lemma monic_of_int_poly: "monic D \<Longrightarrow> monic (of_int_poly (Mp D) :: 'a mod_ring poly)" | |
using Mp_f_representative Mp_to_int_poly monic_Mp by auto | |
lemma dupe_monic_i: assumes dupe_i: "dupe_monic_i ff_ops d h s t u = (a,b)" | |
and 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and A: "A = to_int_poly_i ff_ops a" | |
and B: "B = to_int_poly_i ff_ops b" | |
and d: "Mp_rel_i d D" | |
and h: "Mp_rel_i h H" | |
and s: "Mp_rel_i s S" | |
and t: "Mp_rel_i t T" | |
and u: "Mp_rel_i u U" | |
shows | |
"A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp_rel_i a A" | |
"Mp_rel_i b B" | |
proof - | |
let ?I = "\<lambda> f. of_int_poly (Mp f) :: 'a mod_ring poly" | |
let ?i = "to_int_poly_i ff_ops" | |
note dd = Mp_rel_iD[OF d] | |
note hh = Mp_rel_iD[OF h] | |
note ss = Mp_rel_iD[OF s] | |
note tt = Mp_rel_iD[OF t] | |
note uu = Mp_rel_iD[OF u] | |
obtain A' B' where dupe: "dupe_monic (?I D) (?I H) (?I S) (?I T) (?I U) = (A',B')" by force | |
from poly_rel_dupe_monic_i[OF monic_of_int_poly[OF mon] dd(1) hh(1) ss(1) tt(1) uu(1), unfolded dupe_i dupe] | |
have a: "poly_rel a A'" and b: "poly_rel b B'" by auto | |
show aa: "Mp_rel_i a A" by (rule Mp_rel_iI'[OF a, folded A]) | |
show bb: "Mp_rel_i b B" by (rule Mp_rel_iI'[OF b, folded B]) | |
note Aa = Mp_rel_iD[OF aa] | |
note Bb = Mp_rel_iD[OF bb] | |
from poly_rel_inj[OF a Aa(1)] A have A: "A' = ?I A" by simp | |
from poly_rel_inj[OF b Bb(1)] B have B: "B' = ?I B" by simp | |
note Mp = dd(2) hh(2) ss(2) tt(2) uu(2) | |
note [transfer_rule] = Mp | |
have "(=) (D * S + H * T =m 1) (?I D * ?I S + ?I H * ?I T = 1)" by transfer_prover | |
with 1 have 11: "?I D * ?I S + ?I H * ?I T = 1" by simp | |
from dupe_monic[OF 11 monic_of_int_poly[OF mon] dupe, unfolded A B] | |
have res: "?I A * ?I D + ?I B * ?I H = ?I U" "?I B = 0 \<or> degree (?I B) < degree (?I D)" by auto | |
note [transfer_rule] = Aa(2) Bb(2) | |
have "(=) (A * D + B * H =m U) (?I A * ?I D + ?I B * ?I H = ?I U)" | |
"(=) (B =m 0 \<or> degree_m B < degree_m D) (?I B = 0 \<or> degree (?I B) < degree (?I D))" by transfer_prover+ | |
with res have *: "A * D + B * H =m U" "B =m 0 \<or> degree_m B < degree_m D" by auto | |
show "A * D + B * H =m U" by fact | |
have B: "Mp B = B" using Mp_rel_i_Mp_to_int_poly_i assms(5) bb by blast | |
from *(2) show "B = 0 \<or> degree B < degree D" unfolding B using degree_m_le[of D] by auto | |
qed | |
lemma Mp_rel_i_of_int_poly_i: assumes "Mp F = F" | |
shows "Mp_rel_i (of_int_poly_i ff_ops F) F" | |
by (metis Mp_f_representative Mp_rel_iI' assms poly_rel_of_int_poly to_int_poly_i) | |
lemma dupe_monic_i_int: assumes dupe_i: "dupe_monic_i_int ff_ops D H S T U = (A,B)" | |
and 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" | |
shows | |
"A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp A = A" | |
"Mp B = B" | |
proof - | |
let ?oi = "of_int_poly_i ff_ops" | |
let ?ti = "to_int_poly_i ff_ops" | |
note rel = norm[THEN Mp_rel_i_of_int_poly_i] | |
obtain a b where dupe: "dupe_monic_i ff_ops (?oi D) (?oi H) (?oi S) (?oi T) (?oi U) = (a,b)" by force | |
from dupe_i[unfolded dupe_monic_i_int_def this Let_def] have AB: "A = ?ti a" "B = ?ti b" by auto | |
from dupe_monic_i[OF dupe 1 mon AB rel] Mp_rel_i_Mp_to_int_poly_i | |
show "A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp A = A" | |
"Mp B = B" | |
unfolding AB by auto | |
qed | |
end | |
definition dupe_monic_dynamic | |
:: "int \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where | |
"dupe_monic_dynamic p = ( | |
if p \<le> 65535 | |
then dupe_monic_i_int (finite_field_ops32 (uint32_of_int p)) | |
else if p \<le> 4294967295 | |
then dupe_monic_i_int (finite_field_ops64 (uint64_of_int p)) | |
else dupe_monic_i_int (finite_field_ops_integer (integer_of_int p)))" | |
context poly_mod_2 | |
begin | |
lemma dupe_monic_i_int_finite_field_ops_integer: assumes | |
dupe_i: "dupe_monic_i_int (finite_field_ops_integer (integer_of_int m)) D H S T U = (A,B)" | |
and 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" | |
shows | |
"A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp A = A" | |
"Mp B = B" | |
using m1 mod_ring_gen.dupe_monic_i_int[OF | |
mod_ring_locale.mod_ring_finite_field_ops_integer[unfolded mod_ring_locale_def], | |
internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, | |
cancel_type_definition, OF _ assms] by auto | |
lemma dupe_monic_i_int_finite_field_ops32: assumes | |
m: "m \<le> 65535" | |
and dupe_i: "dupe_monic_i_int (finite_field_ops32 (uint32_of_int m)) D H S T U = (A,B)" | |
and 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" | |
shows | |
"A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp A = A" | |
"Mp B = B" | |
using m1 mod_ring_gen.dupe_monic_i_int[OF | |
mod_ring_locale.mod_ring_finite_field_ops32[unfolded mod_ring_locale_def], | |
internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, | |
cancel_type_definition, OF _ assms] by auto | |
lemma dupe_monic_i_int_finite_field_ops64: assumes | |
m: "m \<le> 4294967295" | |
and dupe_i: "dupe_monic_i_int (finite_field_ops64 (uint64_of_int m)) D H S T U = (A,B)" | |
and 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" | |
shows | |
"A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp A = A" | |
"Mp B = B" | |
using m1 mod_ring_gen.dupe_monic_i_int[OF | |
mod_ring_locale.mod_ring_finite_field_ops64[unfolded mod_ring_locale_def], | |
internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, | |
cancel_type_definition, OF _ assms] by auto | |
lemma dupe_monic_dynamic: assumes dupe: "dupe_monic_dynamic m D H S T U = (A,B)" | |
and 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" | |
shows | |
"A * D + B * H =m U" | |
"B = 0 \<or> degree B < degree D" | |
"Mp A = A" | |
"Mp B = B" | |
using dupe | |
dupe_monic_i_int_finite_field_ops32[OF _ _ 1 mon norm, of A B] | |
dupe_monic_i_int_finite_field_ops64[OF _ _ 1 mon norm, of A B] | |
dupe_monic_i_int_finite_field_ops_integer[OF _ 1 mon norm, of A B] | |
unfolding dupe_monic_dynamic_def by (auto split: if_splits) | |
end | |
context poly_mod | |
begin | |
definition dupe_monic_int :: "int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> | |
int poly * int poly" where | |
"dupe_monic_int D H S T U = (case pdivmod_monic (Mp (T * U)) D of (q,r) \<Rightarrow> | |
(Mp (S * U + H * q), Mp r))" | |
end | |
declare poly_mod.dupe_monic_int_def[code] | |
text \<open>Old direct proof on int poly. | |
It does not permit to change implementation. | |
This proof is still present, since we did not export the uniqueness part | |
from the type-based uniqueness result @{thm dupe_monic_unique} via the various relations.\<close> | |
lemma (in poly_mod_2) dupe_monic_int: assumes 1: "D*S + H*T =m 1" | |
and mon: "monic D" | |
and dupe: "dupe_monic_int D H S T U = (A,B)" | |
shows "A * D + B * H =m U" "B = 0 \<or> degree B < degree D" "Mp A = A" "Mp B = B" | |
"coprime_m D H \<Longrightarrow> A' * D + B' * H =m U \<Longrightarrow> B' = 0 \<or> degree B' < degree D \<Longrightarrow> Mp D = D | |
\<Longrightarrow> Mp A' = A' \<Longrightarrow> Mp B' = B' \<Longrightarrow> prime m | |
\<Longrightarrow> A' = A \<and> B' = B" | |
proof - | |
obtain Q R where div: "pdivmod_monic (Mp (T * U)) D = (Q,R)" by force | |
from dupe[unfolded dupe_monic_int_def div split] | |
have A: "A = Mp (S * U + H * Q)" and B: "B = Mp R" by auto | |
from pdivmod_monic[OF mon div] have TU: "Mp (T * U) = D * Q + R" and | |
deg: "R = 0 \<or> degree R < degree D" by auto | |
hence "Mp R = Mp (Mp (T * U) - D * Q)" by simp | |
also have "\<dots> = Mp (T * U - Mp (Mp (Mp D * Q)))" unfolding Mp_Mp unfolding minus_Mp | |
using minus_Mp mult_Mp by metis | |
also have "\<dots> = Mp (T * U - D * Q)" by simp | |
finally have r: "Mp R = Mp (T * U - D * Q)" by simp | |
have "Mp (A * D + B * H) = Mp (Mp (A * D) + Mp (B * H))" by simp | |
also have "Mp (A * D) = Mp ((S * U + H * Q) * D)" unfolding A by simp | |
also have "Mp (B * H) = Mp (Mp R * Mp H)" unfolding B by simp | |
also have "\<dots> = Mp ((T * U - D * Q) * H)" unfolding r by simp | |
also have "Mp (Mp ((S * U + H * Q) * D) + Mp ((T * U - D * Q) * H)) = | |
Mp ((S * U + H * Q) * D + (T * U - D * Q) * H)" by simp | |
also have "(S * U + H * Q) * D + (T * U - D * Q) * H = (D * S + H * T) * U" | |
by (simp add: field_simps) | |
also have "Mp \<dots> = Mp (Mp (D * S + H * T) * U)" by simp | |
also have "Mp (D * S + H * T) = 1" using 1 by simp | |
finally show eq: "A * D + B * H =m U" by simp | |
have id: "degree_m (Mp R) = degree_m R" by simp | |
have id': "degree D = degree_m D" using mon by simp | |
show degB: "B = 0 \<or> degree B < degree D" using deg unfolding B id id' | |
using degree_m_le[of R] by (cases "R = 0", auto) | |
show Mp: "Mp A = A" "Mp B = B" unfolding A B by auto | |
assume another: "A' * D + B' * H =m U" and degB': "B' = 0 \<or> degree B' < degree D" | |
and norm: "Mp A' = A'" "Mp B' = B'" and cop: "coprime_m D H" and D: "Mp D = D" | |
and prime: "prime m" | |
from degB Mp D have degB: "B =m 0 \<or> degree_m B < degree_m D" by auto | |
from degB' Mp D norm have degB': "B' =m 0 \<or> degree_m B' < degree_m D" by auto | |
from mon D have D0: "\<not> (D =m 0)" by auto | |
from prime interpret poly_mod_prime m by unfold_locales | |
from another eq have "A' * D + B' * H =m A * D + B * H" by simp | |
from uniqueness_poly_equality[OF cop degB' degB D0 this] | |
show "A' = A \<and> B' = B" unfolding norm Mp by auto | |
qed | |
lemma coprime_bezout_coefficients: | |
assumes cop: "coprime f g" | |
and ext: "bezout_coefficients f g = (a, b)" | |
shows "a * f + b * g = 1" | |
using assms bezout_coefficients [of f g a b] | |
by simp | |
lemma (in poly_mod_prime_type) bezout_coefficients_mod_int: assumes f: "(F :: 'a mod_ring poly) = of_int_poly f" | |
and g: "(G :: 'a mod_ring poly) = of_int_poly g" | |
and cop: "coprime_m f g" | |
and fact: "bezout_coefficients F G = (A,B)" | |
and a: "a = to_int_poly A" | |
and b: "b = to_int_poly B" | |
shows "f * a + g * b =m 1" | |
proof - | |
have f[transfer_rule]: "MP_Rel f F" unfolding f MP_Rel_def by (simp add: Mp_f_representative) | |
have g[transfer_rule]: "MP_Rel g G" unfolding g MP_Rel_def by (simp add: Mp_f_representative) | |
have [transfer_rule]: "MP_Rel a A" unfolding a MP_Rel_def by (rule Mp_to_int_poly) | |
have [transfer_rule]: "MP_Rel b B" unfolding b MP_Rel_def by (rule Mp_to_int_poly) | |
from cop have "coprime F G" using coprime_MP_Rel[unfolded rel_fun_def] f g by auto | |
from coprime_bezout_coefficients [OF this fact] | |
have "A * F + B * G = 1" . | |
from this [untransferred] | |
show ?thesis by (simp add: ac_simps) | |
qed | |
definition bezout_coefficients_i :: "'i arith_ops_record \<Rightarrow> 'i list \<Rightarrow> 'i list \<Rightarrow> 'i list \<times> 'i list" where | |
"bezout_coefficients_i ff_ops f g = fst (euclid_ext_poly_i ff_ops f g)" | |
definition euclid_ext_poly_mod_main :: "int \<Rightarrow> 'a arith_ops_record \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where | |
"euclid_ext_poly_mod_main p ff_ops f g = (case bezout_coefficients_i ff_ops (of_int_poly_i ff_ops f) (of_int_poly_i ff_ops g) of | |
(a,b) \<Rightarrow> (to_int_poly_i ff_ops a, to_int_poly_i ff_ops b))" | |
definition euclid_ext_poly_dynamic :: "int \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where | |
"euclid_ext_poly_dynamic p = ( | |
if p \<le> 65535 | |
then euclid_ext_poly_mod_main p (finite_field_ops32 (uint32_of_int p)) | |
else if p \<le> 4294967295 | |
then euclid_ext_poly_mod_main p (finite_field_ops64 (uint64_of_int p)) | |
else euclid_ext_poly_mod_main p (finite_field_ops_integer (integer_of_int p)))" | |
context prime_field_gen | |
begin | |
lemma bezout_coefficients_i[transfer_rule]: | |
"(poly_rel ===> poly_rel ===> rel_prod poly_rel poly_rel) | |
(bezout_coefficients_i ff_ops) bezout_coefficients" | |
unfolding bezout_coefficients_i_def bezout_coefficients_def | |
by transfer_prover | |
lemma bezout_coefficients_i_sound: assumes f: "f' = of_int_poly_i ff_ops f" "Mp f = f" | |
and g: "g' = of_int_poly_i ff_ops g" "Mp g = g" | |
and cop: "coprime_m f g" | |
and res: "bezout_coefficients_i ff_ops f' g' = (a',b')" | |
and a: "a = to_int_poly_i ff_ops a'" | |
and b: "b = to_int_poly_i ff_ops b'" | |
shows "f * a + g * b =m 1" | |
"Mp a = a" "Mp b = b" | |
proof - | |
from f have f': "f' = of_int_poly_i ff_ops (Mp f)" by simp | |
define f'' where "f'' \<equiv> of_int_poly (Mp f) :: 'a mod_ring poly" | |
have f'': "f'' = of_int_poly f" unfolding f''_def f by simp | |
have rel_f[transfer_rule]: "poly_rel f' f''" | |
by (rule poly_rel_of_int_poly[OF f'], simp add: f'' f) | |
from g have g': "g' = of_int_poly_i ff_ops (Mp g)" by simp | |
define g'' where "g'' \<equiv> of_int_poly (Mp g) :: 'a mod_ring poly" | |
have g'': "g'' = of_int_poly g" unfolding g''_def g by simp | |
have rel_g[transfer_rule]: "poly_rel g' g''" | |
by (rule poly_rel_of_int_poly[OF g'], simp add: g'' g) | |
obtain a'' b'' where eucl: "bezout_coefficients f'' g'' = (a'',b'')" by force | |
from bezout_coefficients_i[unfolded rel_fun_def rel_prod_conv, rule_format, OF rel_f rel_g, | |
unfolded res split eucl] | |
have rel[transfer_rule]: "poly_rel a' a''" "poly_rel b' b''" by auto | |
with to_int_poly_i have a: "a = to_int_poly a''" | |
and b: "b = to_int_poly b''" unfolding a b by auto | |
from bezout_coefficients_mod_int [OF f'' g'' cop eucl a b] | |
show "f * a + g * b =m 1" . | |
show "Mp a = a" "Mp b = b" unfolding a b by (auto simp: Mp_to_int_poly) | |
qed | |
lemma euclid_ext_poly_mod_main: assumes cop: "coprime_m f g" | |
and f: "Mp f = f" and g: "Mp g = g" | |
and res: "euclid_ext_poly_mod_main m ff_ops f g = (a,b)" | |
shows "f * a + g * b =m 1" | |
"Mp a = a" "Mp b = b" | |
proof - | |
obtain a' b' where res': "bezout_coefficients_i ff_ops (of_int_poly_i ff_ops f) | |
(of_int_poly_i ff_ops g) = (a', b')" by force | |
show "f * a + g * b =m 1" | |
"Mp a = a" "Mp b = b" | |
by (insert bezout_coefficients_i_sound[OF refl f refl g cop res'] | |
res [unfolded euclid_ext_poly_mod_main_def res'], auto) | |
qed | |
end | |
context poly_mod_prime begin | |
lemmas euclid_ext_poly_mod_integer = prime_field_gen.euclid_ext_poly_mod_main | |
[OF prime_field.prime_field_finite_field_ops_integer, | |
unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] | |
lemmas euclid_ext_poly_mod_uint32 = prime_field_gen.euclid_ext_poly_mod_main | |
[OF prime_field.prime_field_finite_field_ops32, | |
unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] | |
lemmas euclid_ext_poly_mod_uint64 = prime_field_gen.euclid_ext_poly_mod_main[OF prime_field.prime_field_finite_field_ops64, | |
unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty] | |
lemma euclid_ext_poly_dynamic: | |
assumes cop: "coprime_m f g" and f: "Mp f = f" and g: "Mp g = g" | |
and res: "euclid_ext_poly_dynamic p f g = (a,b)" | |
shows "f * a + g * b =m 1" | |
"Mp a = a" "Mp b = b" | |
using euclid_ext_poly_mod_integer[OF cop f g, of p a b] | |
euclid_ext_poly_mod_uint32[OF _ cop f g, of p a b] | |
euclid_ext_poly_mod_uint64[OF _ cop f g, of p a b] | |
res[unfolded euclid_ext_poly_dynamic_def] by (auto split: if_splits) | |
end | |
lemma range_sum_prod: assumes xy: "x \<in> {0..<q}" "(y :: int) \<in> {0..<p}" | |
shows "x + q * y \<in> {0..<p * q}" | |
proof - | |
{ | |
fix x q :: int | |
have "x \<in> {0 ..< q} \<longleftrightarrow> 0 \<le> x \<and> x < q" by auto | |
} note id = this | |
from xy have 0: "0 \<le> x + q * y" by auto | |
have "x + q * y \<le> q - 1 + q * y" using xy by simp | |
also have "q * y \<le> q * (p - 1)" using xy by auto | |
finally have "x + q * y \<le> q - 1 + q * (p - 1)" by auto | |
also have "\<dots> = p * q - 1" by (simp add: field_simps) | |
finally show ?thesis using 0 by auto | |
qed | |
context | |
fixes C :: "int poly" | |
begin | |
context | |
fixes p :: int and S T D1 H1 :: "int poly" | |
begin | |
(* The linear lifting is implemented for ease of provability. | |
Aim: show uniqueness of factorization *) | |
fun linear_hensel_main where | |
"linear_hensel_main (Suc 0) = (D1,H1)" | |
| "linear_hensel_main (Suc n) = ( | |
let (D,H) = linear_hensel_main n; | |
q = p ^ n; | |
U = poly_mod.Mp p (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>H2 + H3\<close>\<close> | |
(A,B) = poly_mod.dupe_monic_int p D1 H1 S T U | |
in (D + smult q B, H + smult q A)) \<comment> \<open>\<open>H4\<close>\<close>" | |
| "linear_hensel_main 0 = (D1,H1)" | |
lemma linear_hensel_main: assumes 1: "poly_mod.eq_m p (D1 * S + H1 * T) 1" | |
and equiv: "poly_mod.eq_m p (D1 * H1) C" | |
and monD1: "monic D1" | |
and normDH1: "poly_mod.Mp p D1 = D1" "poly_mod.Mp p H1 = H1" | |
and res: "linear_hensel_main n = (D,H)" | |
and n: "n \<noteq> 0" | |
and prime: "prime p" \<comment> \<open>\<open>p > 1\<close> suffices if one does not need uniqueness\<close> | |
and cop: "poly_mod.coprime_m p D1 H1" | |
shows "poly_mod.eq_m (p^n) (D * H) C | |
\<and> monic D | |
\<and> poly_mod.eq_m p D D1 \<and> poly_mod.eq_m p H H1 | |
\<and> poly_mod.Mp (p^n) D = D | |
\<and> poly_mod.Mp (p^n) H = H \<and> | |
(poly_mod.eq_m (p^n) (D' * H') C \<longrightarrow> | |
poly_mod.eq_m p D' D1 \<longrightarrow> | |
poly_mod.eq_m p H' H1 \<longrightarrow> | |
poly_mod.Mp (p^n) D' = D' \<longrightarrow> | |
poly_mod.Mp (p^n) H' = H' \<longrightarrow> monic D' \<longrightarrow> D' = D \<and> H' = H) | |
" | |
using res n | |
proof (induct n arbitrary: D H D' H') | |
case (Suc n D' H' D'' H'') | |
show ?case | |
proof (cases "n = 0") | |
case True | |
with Suc equiv monD1 normDH1 show ?thesis by auto | |
next | |
case False | |
hence n: "n \<noteq> 0" by auto | |
let ?q = "p^n" | |
let ?pq = "p * p^n" | |
from prime have p: "p > 1" using prime_gt_1_int by force | |
from n p have q: "?q > 1" by auto | |
from n p have pq: "?pq > 1" by (metis power_gt1_lemma) | |
interpret p: poly_mod_2 p using p unfolding poly_mod_2_def . | |
interpret q: poly_mod_2 ?q using q unfolding poly_mod_2_def . | |
interpret pq: poly_mod_2 ?pq using pq unfolding poly_mod_2_def . | |
obtain D H where rec: "linear_hensel_main n = (D,H)" by force | |
obtain V where V: "sdiv_poly (C - D * H) ?q = V" by force | |
obtain U where U: "p.Mp (sdiv_poly (C - D * H) ?q) = U" by auto | |
obtain A B where dupe: "p.dupe_monic_int D1 H1 S T U = (A,B)" by force | |
note IH = Suc(1)[OF rec n] | |
from IH | |
have CDH: "q.eq_m (D * H) C" | |
and monD: "monic D" | |
and p_eq: "p.eq_m D D1" "p.eq_m H H1" | |
and norm: "q.Mp D = D" "q.Mp H = H" by auto | |
from n obtain k where n: "n = Suc k" by (cases n, auto) | |
have qq: "?q * ?q = ?pq * p^k" unfolding n by simp | |
from Suc(2)[unfolded n linear_hensel_main.simps, folded n, unfolded rec split Let_def U dupe] | |
have D': "D' = D + smult ?q B" and H': "H' = H + smult ?q A" by auto | |
note dupe = p.dupe_monic_int[OF 1 monD1 dupe] | |
from CDH have "q.Mp C - q.Mp (D * H) = 0" by simp | |
hence "q.Mp (q.Mp C - q.Mp (D * H)) = 0" by simp | |
hence "q.Mp (C - D*H) = 0" by simp | |
from q.Mp_0_smult_sdiv_poly[OF this] have CDHq: "smult ?q (sdiv_poly (C - D * H) ?q) = C - D * H" . | |
have ADBHU: "p.eq_m (A * D + B * H) U" using p_eq dupe(1) | |
by (metis (mono_tags, lifting) p.mult_Mp(2) poly_mod.plus_Mp) | |
have "pq.Mp (D' * H') = pq.Mp ((D + smult ?q B) * (H + smult ?q A))" | |
unfolding D' H' by simp | |
also have "(D + smult ?q B) * (H + smult ?q A) = (D * H + smult ?q (A * D + B * H)) + smult (?q * ?q) (A * B)" | |
by (simp add: field_simps smult_distribs) | |
also have "pq.Mp \<dots> = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)) + pq.Mp (smult (?q * ?q) (A * B)))" | |
using pq.plus_Mp by metis | |
also have "pq.Mp (smult (?q * ?q) (A * B)) = 0" unfolding qq | |
by (metis pq.Mp_smult_m_0 smult_smult) | |
finally have DH': "pq.Mp (D' * H') = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)))" by simp | |
also have "pq.Mp (smult ?q (A * D + B * H)) = pq.Mp (smult ?q U)" | |
using p.Mp_lift_modulus[OF ADBHU, of ?q] by simp | |
also have "\<dots> = pq.Mp (C - D * H)" | |
unfolding arg_cong[OF CDHq, of pq.Mp, symmetric] U[symmetric] V | |
by (rule p.Mp_lift_modulus[of _ _ ?q], auto) | |
also have "pq.Mp (D * H + pq.Mp (C - D * H)) = pq.Mp C" by simp | |
finally have CDH: "pq.eq_m C (D' * H')" by simp | |
have deg: "degree D1 = degree D" using p_eq(1) monD1 monD | |
by (metis p.monic_degree_m) | |
have mon: "monic D'" unfolding D' using dupe(2) monD unfolding deg by (rule monic_smult_add_small) | |
have normD': "pq.Mp D' = D'" | |
unfolding D' pq.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq coeff_smult | |
proof | |
fix i | |
from norm(1) dupe(4) have "coeff D i \<in> {0..<?q}" "coeff B i \<in> {0..<p}" | |
unfolding p.Mp_ident_iff q.Mp_ident_iff by auto | |
thus "coeff D i + ?q * coeff B i \<in> {0..< ?pq}" by (rule range_sum_prod) | |
qed | |
have normH': "pq.Mp H' = H'" | |
unfolding H' pq.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq coeff_smult | |
proof | |
fix i | |
from norm(2) dupe(3) have "coeff H i \<in> {0..<?q}" "coeff A i \<in> {0..<p}" | |
unfolding p.Mp_ident_iff q.Mp_ident_iff by auto | |
thus "coeff H i + ?q * coeff A i \<in> {0..< ?pq}" by (rule range_sum_prod) | |
qed | |
have eq: "p.eq_m D D'" "p.eq_m H H'" unfolding D' H' n | |
poly_eq_iff p.Mp_coeff p.M_def by (auto simp: field_simps) | |
with p_eq have eq: "p.eq_m D' D1" "p.eq_m H' H1" by auto | |
{ | |
assume CDH'': "pq.eq_m C (D'' * H'')" | |
and DH1'': "p.eq_m D1 D''" "p.eq_m H1 H''" | |
and norm'': "pq.Mp D'' = D''" "pq.Mp H'' = H''" | |
and monD'': "monic D''" | |
from q.Dp_Mp_eq[of D''] obtain d B' where D'': "D'' = q.Mp d + smult ?q B'" by auto | |
from q.Dp_Mp_eq[of H''] obtain h A' where H'': "H'' = q.Mp h + smult ?q A'" by auto | |
{ | |
fix A B | |
assume *: "pq.Mp (q.Mp A + smult ?q B) = q.Mp A + smult ?q B" | |
have "p.Mp B = B" unfolding p.Mp_ident_iff | |
proof | |
fix i | |
from arg_cong[OF *, of "\<lambda> f. coeff f i", unfolded pq.Mp_coeff pq.M_def] | |
have "coeff (q.Mp A + smult ?q B) i \<in> {0 ..< ?pq}" using "*" pq.Mp_ident_iff by blast | |
hence sum: "coeff (q.Mp A) i + ?q * coeff B i \<in> {0 ..< ?pq}" by auto | |
have "q.Mp (q.Mp A) = q.Mp A" by auto | |
from this[unfolded q.Mp_ident_iff] have A: "coeff (q.Mp A) i \<in> {0 ..< p^n}" by auto | |
{ | |
assume "coeff B i < 0" hence "coeff B i \<le> -1" by auto | |
from mult_left_mono[OF this, of ?q] q.m1 have "?q * coeff B i \<le> -?q" by simp | |
with A sum have False by auto | |
} hence "coeff B i \<ge> 0" by force | |
moreover | |
{ | |
assume "coeff B i \<ge> p" | |
from mult_left_mono[OF this, of ?q] q.m1 have "?q * coeff B i \<ge> ?pq" by simp | |
with A sum have False by auto | |
} hence "coeff B i < p" by force | |
ultimately show "coeff B i \<in> {0 ..< p}" by auto | |
qed | |
} note norm_convert = this | |
from norm_convert[OF norm''(1)[unfolded D'']] have normB': "p.Mp B' = B'" . | |
from norm_convert[OF norm''(2)[unfolded H'']] have normA': "p.Mp A' = A'" . | |
let ?d = "q.Mp d" | |
let ?h = "q.Mp h" | |
{ | |
assume lt: "degree ?d < degree B'" | |
hence eq: "degree D'' = degree B'" unfolding D'' using q.m1 p.m1 | |
by (subst degree_add_eq_right, auto) | |
from lt have [simp]: "coeff ?d (degree B') = 0" by (rule coeff_eq_0) | |
from monD''[unfolded eq, unfolded D'', simplified] False q.m1 lt have False | |
by (metis mod_mult_self1_is_0 poly_mod.M_def q.M_1 zero_neq_one) | |
} | |
hence deg_dB': "degree ?d \<ge> degree B'" by presburger | |
{ | |
assume eq: "degree ?d = degree B'" and B': "B' \<noteq> 0" | |
let ?B = "coeff B' (degree B')" | |
from normB'[unfolded p.Mp_ident_iff, rule_format, of "degree B'"] B' | |
have "?B \<in> {0..<p} - {0}" by simp | |
hence bnds: "?B > 0" "?B < p" by auto | |
have degD'': "degree D'' \<le> degree ?d" unfolding D'' using eq by (simp add: degree_add_le) | |
have "?q * ?B \<ge> 1 * 1" by (rule mult_mono, insert q.m1 bnds, auto) | |
moreover have "coeff D'' (degree ?d) = 1 + ?q * ?B" using monD'' | |
unfolding D'' using eq | |
by (metis D'' coeff_smult monD'' plus_poly.rep_eq poly_mod.Dp_Mp_eq | |
poly_mod.degree_m_eq_monic poly_mod.plus_Mp(1) | |
q.Mp_smult_m_0 q.m1 q.monic_Mp q.plus_Mp(2)) | |
ultimately have gt: "coeff D'' (degree ?d) > 1" by auto | |
hence "coeff D'' (degree ?d) \<noteq> 0" by auto | |
hence "degree D'' \<ge> degree ?d" by (rule le_degree) | |
with degree_add_le_max[of ?d "smult ?q B'", folded D''] eq | |
have deg: "degree D'' = degree ?d" using degD'' by linarith | |
from gt[folded this] have "\<not> monic D''" by auto | |
with monD'' have False by auto | |
} | |
with deg_dB' have deg_dB2: "B' = 0 \<or> degree B' < degree ?d" by fastforce | |
have d: "q.Mp D'' = ?d" unfolding D'' | |
by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp) | |
have h: "q.Mp H'' = ?h" unfolding H'' | |
by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp) | |
from CDH'' have "pq.Mp C = pq.Mp (D'' * H'')" by simp | |
from arg_cong[OF this, of q.Mp] | |
have "q.Mp C = q.Mp (D'' * H'')" | |
using p.m1 q.Mp_product_modulus by auto | |
also have "\<dots> = q.Mp (q.Mp D'' * q.Mp H'')" by simp | |
also have "\<dots> = q.Mp (?d * ?h)" unfolding d h by simp | |
finally have eqC: "q.eq_m (?d * ?h) C" by auto | |
have d1: "p.eq_m ?d D1" unfolding d[symmetric] using DH1'' | |
using assms(4) n p.Mp_product_modulus p.m1 by auto | |
have h1: "p.eq_m ?h H1" unfolding h[symmetric] using DH1'' | |
using assms(5) n p.Mp_product_modulus p.m1 by auto | |
have mond: "monic (q.Mp d)" using monD'' deg_dB2 unfolding D'' | |
using d q.monic_Mp[OF monD''] by simp | |
from eqC d1 h1 mond IH[of "q.Mp d" "q.Mp h"] have IH: "?d = D" "?h = H" by auto | |
from deg_dB2[unfolded IH] have degB': "B' = 0 \<or> degree B' < degree D" by auto | |
from IH have D'': "D'' = D + smult ?q B'" and H'': "H'' = H + smult ?q A'" | |
unfolding D'' H'' by auto | |
have "pq.Mp (D'' * H'') = pq.Mp (D' * H')" using CDH'' CDH by simp | |
also have "pq.Mp (D'' * H'') = pq.Mp ((D + smult ?q B') * (H + smult ?q A'))" | |
unfolding D'' H'' by simp | |
also have "(D + smult ?q B') * (H + smult ?q A') = (D * H + smult ?q (A' * D + B' * H)) + smult (?q * ?q) (A' * B')" | |
by (simp add: field_simps smult_distribs) | |
also have "pq.Mp \<dots> = pq.Mp (D * H + pq.Mp (smult ?q (A' * D + B' * H)) + pq.Mp (smult (?q * ?q) (A' * B')))" | |
using pq.plus_Mp by metis | |
also have "pq.Mp (smult (?q * ?q) (A' * B')) = 0" unfolding qq | |
by (metis pq.Mp_smult_m_0 smult_smult) | |
finally have "pq.Mp (D * H + pq.Mp (smult ?q (A' * D + B' * H))) | |
= pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)))" unfolding DH' by simp | |
hence "pq.Mp (smult ?q (A' * D + B' * H)) = pq.Mp (smult ?q (A * D + B * H))" | |
by (metis (no_types, lifting) add_diff_cancel_left' poly_mod.minus_Mp(1) poly_mod.plus_Mp(2)) | |
hence "p.Mp (A' * D + B' * H) = p.Mp (A * D + B * H)" unfolding poly_eq_iff p.Mp_coeff pq.Mp_coeff coeff_smult | |
by (insert p, auto simp: p.M_def pq.M_def) | |
hence "p.Mp (A' * D1 + B' * H1) = p.Mp (A * D1 + B * H1)" using p_eq | |
by (metis p.mult_Mp(2) poly_mod.plus_Mp) | |
hence eq: "p.eq_m (A' * D1 + B' * H1) U" using dupe(1) by auto | |
have "degree D = degree D1" using monD monD1 | |
arg_cong[OF p_eq(1), of degree] | |
p.degree_m_eq_monic[OF _ p.m1] by auto | |
hence "B' = 0 \<or> degree B' < degree D1" using degB' by simp | |
from dupe(5)[OF cop eq this normDH1(1) normA' normB' prime] have "A' = A" "B' = B" by auto | |
hence "D'' = D'" "H'' = H'" unfolding D'' H'' D' H' by auto | |
} | |
thus ?thesis using normD' normH' CDH mon eq by simp | |
qed | |
qed simp | |
end | |
end | |
definition linear_hensel_binary :: "int \<Rightarrow> nat \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where | |
"linear_hensel_binary p n C D H = (let | |
(S,T) = euclid_ext_poly_dynamic p D H | |
in linear_hensel_main C p S T D H n)" | |
lemma (in poly_mod_prime) unique_hensel_binary: | |
assumes prime: "prime p" | |
and cop: "coprime_m D H" and eq: "eq_m (D * H) C" | |
and normalized_input: "Mp D = D" "Mp H = H" | |
and monic_input: "monic D" | |
and n: "n \<noteq> 0" | |
shows "\<exists>! (D',H'). \<comment> \<open>\<open>D'\<close>, \<open>H'\<close> are computed via \<open>linear_hensel_binary\<close>\<close> | |
poly_mod.eq_m (p^n) (D' * H') C \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close> | |
\<and> monic D' \<comment> \<open>monic output\<close> | |
\<and> eq_m D D' \<and> eq_m H H' \<comment> \<open>apply \<open>`mod p`\<close> on \<open>D'\<close> and \<open>H'\<close> yields \<open>D\<close> and \<open>H\<close> again\<close> | |
\<and> poly_mod.Mp (p^n) D' = D' \<and> poly_mod.Mp (p^n) H' = H' \<comment> \<open>output is normalized\<close>" | |
proof - | |
obtain D' H' where hensel_result: "linear_hensel_binary p n C D H = (D',H')" by force | |
from m1 have p: "p > 1" . | |
obtain S T where ext: "euclid_ext_poly_dynamic p D H = (S,T)" by force | |
obtain D1 H1 where main: "linear_hensel_main C p S T D H n = (D1,H1)" by force | |
from hensel_result[unfolded linear_hensel_binary_def ext split Let_def main] | |
have id: "D1 = D'" "H1 = H'" by auto | |
note eucl = euclid_ext_poly_dynamic [OF cop normalized_input ext] | |
from linear_hensel_main [OF eucl(1) | |
eq monic_input normalized_input main [unfolded id] n prime cop] | |
show ?thesis by (intro ex1I, auto) | |
qed | |
(* The quadratic lifting is implemented more efficienty. | |
Aim: compute factorization *) | |
context | |
fixes C :: "int poly" | |
begin | |
lemma hensel_step_main: assumes | |
one_q: "poly_mod.eq_m q (D * S + H * T) 1" | |
and one_p: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1" | |
and CDHq: "poly_mod.eq_m q C (D * H)" | |
and D1D: "poly_mod.eq_m p D1 D" | |
and H1H: "poly_mod.eq_m p H1 H" | |
and S1S: "poly_mod.eq_m p S1 S" | |
and T1T: "poly_mod.eq_m p T1 T" | |
and mon: "monic D" | |
and mon1: "monic D1" | |
and q: "q > 1" | |
and p: "p > 1" | |
and D1: "poly_mod.Mp p D1 = D1" | |
and H1: "poly_mod.Mp p H1 = H1" | |
and S1: "poly_mod.Mp p S1 = S1" | |
and T1: "poly_mod.Mp p T1 = T1" | |
and D: "poly_mod.Mp q D = D" | |
and H: "poly_mod.Mp q H = H" | |
and S: "poly_mod.Mp q S = S" | |
and T: "poly_mod.Mp q T = T" | |
and U1: "U1 = poly_mod.Mp p (sdiv_poly (C - D * H) q)" | |
and dupe1: "dupe_monic_dynamic p D1 H1 S1 T1 U1 = (A,B)" | |
and D': "D' = D + smult q B" | |
and H': "H' = H + smult q A" | |
and U2: "U2 = poly_mod.Mp q (sdiv_poly (S*D' + T*H' - 1) p)" | |
and dupe2: "dupe_monic_dynamic q D H S T U2 = (A',B')" | |
and rq: "r = p * q" | |
and pq: "p dvd q" | |
and S': "S' = poly_mod.Mp r (S - smult p A')" | |
and T': "T' = poly_mod.Mp r (T - smult p B')" | |
shows "poly_mod.eq_m r C (D' * H')" | |
"poly_mod.Mp r D' = D'" | |
"poly_mod.Mp r H' = H'" | |
"poly_mod.Mp r S' = S'" | |
"poly_mod.Mp r T' = T'" | |
"poly_mod.eq_m r (D' * S' + H' * T') 1" | |
"monic D'" | |
unfolding rq | |
proof - | |
from pq obtain k where qp: "q = p * k" unfolding dvd_def by auto | |
from arg_cong[OF qp, of sgn] q p have k0: "k > 0" unfolding sgn_mult by (auto simp: sgn_1_pos) | |
from qp have qq: "q * q = p * q * k" by auto | |
let ?r = "p * q" | |
interpret poly_mod_2 p by (standard, insert p, auto) | |
interpret q: poly_mod_2 q by (standard, insert q, auto) | |
from p q have r: "?r > 1" by (simp add: less_1_mult) | |
interpret r: poly_mod_2 ?r using r unfolding poly_mod_2_def . | |
have Mp_conv: "Mp (q.Mp x) = Mp x" for x unfolding qp | |
by (rule Mp_product_modulus[OF refl k0]) | |
from arg_cong[OF CDHq, of Mp, unfolded Mp_conv] have "Mp C = Mp (Mp D * Mp H)" | |
by simp | |
also have "Mp D = Mp D1" using D1D by simp | |
also have "Mp H = Mp H1" using H1H by simp | |
finally have CDHp: "eq_m C (D1 * H1)" by simp | |
have "Mp U1 = U1" unfolding U1 by simp | |
note dupe1 = dupe_monic_dynamic[OF dupe1 one_p mon1 D1 H1 S1 T1 this] | |
have "q.Mp U2 = U2" unfolding U2 by simp | |
note dupe2 = q.dupe_monic_dynamic[OF dupe2 one_q mon D H S T this] | |
from CDHq have "q.Mp C - q.Mp (D * H) = 0" by simp | |
hence "q.Mp (q.Mp C - q.Mp (D * H)) = 0" by simp | |
hence "q.Mp (C - D*H) = 0" by simp | |
from q.Mp_0_smult_sdiv_poly[OF this] have CDHq: "smult q (sdiv_poly (C - D * H) q) = C - D * H" . | |
{ | |
fix A B | |
have "Mp (A * D1 + B * H1) = Mp (Mp (A * D1) + Mp (B * H1))" by simp | |
also have "Mp (A * D1) = Mp (A * Mp D1)" by simp | |
also have "\<dots> = Mp (A * D)" unfolding D1D by simp | |
also have "Mp (B * H1) = Mp (B * Mp H1)" by simp | |
also have "\<dots> = Mp (B * H)" unfolding H1H by simp | |
finally have "Mp (A * D1 + B * H1) = Mp (A * D + B * H)" by simp | |
} note D1H1 = this | |
have "r.Mp (D' * H') = r.Mp ((D + smult q B) * (H + smult q A))" | |
unfolding D' H' by simp | |
also have "(D + smult q B) * (H + smult q A) = (D * H + smult q (A * D + B * H)) + smult (q * q) (A * B)" | |
by (simp add: field_simps smult_distribs) | |
also have "r.Mp \<dots> = r.Mp (D * H + r.Mp (smult q (A * D + B * H)) + r.Mp (smult (q * q) (A * B)))" | |
using r.plus_Mp by metis | |
also have "r.Mp (smult (q * q) (A * B)) = 0" unfolding qq | |
by (metis r.Mp_smult_m_0 smult_smult) | |
also have "r.Mp (smult q (A * D + B * H)) = r.Mp (smult q U1)" | |
proof (rule Mp_lift_modulus[of _ _ q]) | |
show "Mp (A * D + B * H) = Mp U1" using dupe1(1) unfolding D1H1 by simp | |
qed | |
also have "\<dots> = r.Mp (C - D * H)" | |
unfolding arg_cong[OF CDHq, of r.Mp, symmetric] | |
using Mp_lift_modulus[of U1 "sdiv_poly (C - D * H) q" q] unfolding U1 | |
by simp | |
also have "r.Mp (D * H + r.Mp (C - D * H) + 0) = r.Mp C" by simp | |
finally show CDH: "r.eq_m C (D' * H')" by simp | |
have "degree D1 = degree (Mp D1)" using mon1 by simp | |
also have "\<dots> = degree D" unfolding D1D using mon by simp | |
finally have deg_eq: "degree D1 = degree D" by simp | |
show mon: "monic D'" unfolding D' using dupe1(2) mon unfolding deg_eq by (rule monic_smult_add_small) | |
have "Mp (S * D' + T * H' - 1) = Mp (Mp (D * S + H * T) + (smult q (S * B + T * A) - 1))" | |
unfolding D' H' plus_Mp by (simp add: field_simps smult_distribs) | |
also have "Mp (D * S + H * T) = Mp (Mp (D1 * Mp S) + Mp (H1 * Mp T))" using D1H1[of S T] by (simp add: ac_simps) | |
also have "\<dots> = 1" using one_p unfolding S1S[symmetric] T1T[symmetric] by simp | |
also have "Mp (1 + (smult q (S * B + T * A) - 1)) = Mp (smult q (S * B + T * A))" by simp | |
also have "\<dots> = 0" unfolding qp by (metis Mp_smult_m_0 smult_smult) | |
finally have "Mp (S * D' + T * H' - 1) = 0" . | |
from Mp_0_smult_sdiv_poly[OF this] | |
have SDTH: "smult p (sdiv_poly (S * D' + T * H' - 1) p) = S * D' + T * H' - 1" . | |
have swap: "q * p = p * q" by simp | |
have "r.Mp (D' * S' + H' * T') = | |
r.Mp ((D + smult q B) * (S - smult p A') + (H + smult q A) * (T - smult p B'))" | |
unfolding D' S' H' T' rq using r.plus_Mp r.mult_Mp by metis | |
also have "\<dots> = r.Mp ((D * S + H * T + | |
smult q (B * S + A * T)) - smult p (A' * D + B' * H) - smult ?r (A * B' + B * A'))" | |
by (simp add: field_simps smult_distribs) | |
also have "\<dots> = r.Mp ((D * S + H * T + | |
smult q (B * S + A * T)) - r.Mp (smult p (A' * D + B' * H)) - r.Mp (smult ?r (A * B' + B * A')))" | |
using r.plus_Mp r.minus_Mp by metis | |
also have "r.Mp (smult ?r (A * B' + B * A')) = 0" by simp | |
also have "r.Mp (smult p (A' * D + B' * H)) = r.Mp (smult p U2)" | |
using q.Mp_lift_modulus[OF dupe2(1), of p] unfolding swap . | |
also have "\<dots> = r.Mp (S * D' + T * H' - 1)" | |
unfolding arg_cong[OF SDTH, of r.Mp, symmetric] | |
using q.Mp_lift_modulus[of U2 "sdiv_poly (S * D' + T * H' - 1) p" p] | |
unfolding U2 swap by simp | |
also have "S * D' + T * H' - 1 = S * D + T * H + smult q (B * S + A * T) - 1" | |
unfolding D' H' by (simp add: field_simps smult_distribs) | |
also have "r.Mp (D * S + H * T + smult q (B * S + A * T) - | |
r.Mp (S * D + T * H + smult q (B * S + A * T) - 1) - 0) | |
= 1" by simp | |
finally show 1: "r.eq_m (D' * S' + H' * T') 1" by simp | |
show D': "r.Mp D' = D'" unfolding D' r.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq | |
coeff_smult | |
proof | |
fix n | |
from D dupe1(4) have "coeff D n \<in> {0..<q}" "coeff B n \<in> {0..<p}" | |
unfolding q.Mp_ident_iff Mp_ident_iff by auto | |
thus "coeff D n + q * coeff B n \<in> {0..<?r}" by (metis range_sum_prod) | |
qed | |
show H': "r.Mp H' = H'" unfolding H' r.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq | |
coeff_smult | |
proof | |
fix n | |
from H dupe1(3) have "coeff H n \<in> {0..<q}" "coeff A n \<in> {0..<p}" | |
unfolding q.Mp_ident_iff Mp_ident_iff by auto | |
thus "coeff H n + q * coeff A n \<in> {0..<?r}" by (metis range_sum_prod) | |
qed | |
show "poly_mod.Mp ?r S' = S'" "poly_mod.Mp ?r T' = T'" | |
unfolding S' T' rq by auto | |
qed | |
definition hensel_step where | |
"hensel_step p q S1 T1 D1 H1 S T D H = ( | |
let U = poly_mod.Mp p (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>Z2 and Z3\<close>\<close> | |
(A,B) = dupe_monic_dynamic p D1 H1 S1 T1 U; | |
D' = D + smult q B; \<comment> \<open>\<open>Z4\<close>\<close> | |
H' = H + smult q A; | |
U' = poly_mod.Mp q (sdiv_poly (S*D' + T*H' - 1) p); \<comment> \<open>\<open>Z5 + Z6\<close>\<close> | |
(A',B') = dupe_monic_dynamic q D H S T U'; | |
q' = p * q; | |
S' = poly_mod.Mp q' (S - smult p A'); \<comment> \<open>\<open>Z7\<close>\<close> | |
T' = poly_mod.Mp q' (T - smult p B') | |
in (S',T',D',H'))" | |
definition "quadratic_hensel_step q S T D H = hensel_step q q S T D H S T D H" | |
lemma quadratic_hensel_step_code[code]: | |
"quadratic_hensel_step q S T D H = | |
(let dupe = dupe_monic_dynamic q D H S T; \<comment> \<open>this will share the conversions of \<open>D H S T\<close>\<close> | |
U = poly_mod.Mp q (sdiv_poly (C - D * H) q); | |
(A, B) = dupe U; | |
D' = D + Polynomial.smult q B; | |
H' = H + Polynomial.smult q A; | |
U' = poly_mod.Mp q (sdiv_poly (S * D' + T * H' - 1) q); | |
(A', B') = dupe U'; | |
q' = q * q; | |
S' = poly_mod.Mp q' (S - Polynomial.smult q A'); | |
T' = poly_mod.Mp q' (T - Polynomial.smult q B') | |
in (S', T', D', H'))" | |
unfolding quadratic_hensel_step_def[unfolded hensel_step_def] Let_def .. | |
definition simple_quadratic_hensel_step where \<comment> \<open>do not compute new values \<open>S'\<close> and \<open>T'\<close>\<close> | |
"simple_quadratic_hensel_step q S T D H = ( | |
let U = poly_mod.Mp q (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>Z2 + Z3\<close>\<close> | |
(A,B) = dupe_monic_dynamic q D H S T U; | |
D' = D + smult q B; \<comment> \<open>\<open>Z4\<close>\<close> | |
H' = H + smult q A | |
in (D',H'))" | |
lemma hensel_step: assumes step: "hensel_step p q S1 T1 D1 H1 S T D H = (S', T', D', H')" | |
and one_p: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1" | |
and mon1: "monic D1" | |
and p: "p > 1" | |
and CDHq: "poly_mod.eq_m q C (D * H)" | |
and one_q: "poly_mod.eq_m q (D * S + H * T) 1" | |
and D1D: "poly_mod.eq_m p D1 D" | |
and H1H: "poly_mod.eq_m p H1 H" | |
and S1S: "poly_mod.eq_m p S1 S" | |
and T1T: "poly_mod.eq_m p T1 T" | |
and mon: "monic D" | |
and q: "q > 1" | |
and D1: "poly_mod.Mp p D1 = D1" | |
and H1: "poly_mod.Mp p H1 = H1" | |
and S1: "poly_mod.Mp p S1 = S1" | |
and T1: "poly_mod.Mp p T1 = T1" | |
and D: "poly_mod.Mp q D = D" | |
and H: "poly_mod.Mp q H = H" | |
and S: "poly_mod.Mp q S = S" | |
and T: "poly_mod.Mp q T = T" | |
and rq: "r = p * q" | |
and pq: "p dvd q" | |
shows | |
"poly_mod.eq_m r C (D' * H')" | |
"poly_mod.eq_m r (D' * S' + H' * T') 1" | |
"poly_mod.Mp r D' = D'" | |
"poly_mod.Mp r H' = H'" | |
"poly_mod.Mp r S' = S'" | |
"poly_mod.Mp r T' = T'" | |
"poly_mod.Mp p D1 = poly_mod.Mp p D'" | |
"poly_mod.Mp p H1 = poly_mod.Mp p H'" | |
"poly_mod.Mp p S1 = poly_mod.Mp p S'" | |
"poly_mod.Mp p T1 = poly_mod.Mp p T'" | |
"monic D'" | |
proof - | |
define U where U: "U = poly_mod.Mp p (sdiv_poly (C - D * H) q)" | |
note step = step[unfolded hensel_step_def Let_def, folded U] | |
obtain A B where dupe1: "dupe_monic_dynamic p D1 H1 S1 T1 U = (A,B)" by force | |
note step = step[unfolded dupe1 split] | |
from step have D': "D' = D + smult q B" and H': "H' = H + smult q A" | |
by (auto split: prod.splits) | |
define U' where U': "U' = poly_mod.Mp q (sdiv_poly (S * D' + T * H' - 1) p)" | |
obtain A' B' where dupe2: "dupe_monic_dynamic q D H S T U' = (A',B')" by force | |
from step[folded D' H', folded U', unfolded dupe2 split, folded rq] | |
have S': "S' = poly_mod.Mp r (S - Polynomial.smult p A')" and | |
T': "T' = poly_mod.Mp r (T - Polynomial.smult p B')" by auto | |
from hensel_step_main[OF one_q one_p CDHq D1D H1H S1S T1T mon mon1 q p D1 H1 S1 T1 D H S T U | |
dupe1 D' H' U' dupe2 rq pq S' T'] | |
show "poly_mod.eq_m r (D' * S' + H' * T') 1" | |
"poly_mod.eq_m r C (D' * H')" | |
"poly_mod.Mp r D' = D'" | |
"poly_mod.Mp r H' = H'" | |
"poly_mod.Mp r S' = S'" | |
"poly_mod.Mp r T' = T'" | |
"monic D'" by auto | |
from pq obtain s where q: "q = p * s" by (metis dvdE) | |
show "poly_mod.Mp p D1 = poly_mod.Mp p D'" | |
"poly_mod.Mp p H1 = poly_mod.Mp p H'" | |
unfolding q D' D1D H' H1H | |
by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp(2) smult_smult)+ | |
from \<open>q > 1\<close> have q0: "q > 0" by auto | |
show "poly_mod.Mp p S1 = poly_mod.Mp p S'" | |
"poly_mod.Mp p T1 = poly_mod.Mp p T'" | |
unfolding S' S1S T' T1T poly_mod_2.Mp_product_modulus[OF poly_mod_2.intro[OF \<open>p > 1\<close>] rq q0] | |
by (metis group_add_class.diff_0_right poly_mod.Mp_smult_m_0 poly_mod.minus_Mp(2))+ | |
qed | |
lemma quadratic_hensel_step: assumes step: "quadratic_hensel_step q S T D H = (S', T', D', H')" | |
and CDH: "poly_mod.eq_m q C (D * H)" | |
and one: "poly_mod.eq_m q (D * S + H * T) 1" | |
and D: "poly_mod.Mp q D = D" | |
and H: "poly_mod.Mp q H = H" | |
and S: "poly_mod.Mp q S = S" | |
and T: "poly_mod.Mp q T = T" | |
and mon: "monic D" | |
and q: "q > 1" | |
and rq: "r = q * q" | |
shows | |
"poly_mod.eq_m r C (D' * H')" | |
"poly_mod.eq_m r (D' * S' + H' * T') 1" | |
"poly_mod.Mp r D' = D'" | |
"poly_mod.Mp r H' = H'" | |
"poly_mod.Mp r S' = S'" | |
"poly_mod.Mp r T' = T'" | |
"poly_mod.Mp q D = poly_mod.Mp q D'" | |
"poly_mod.Mp q H = poly_mod.Mp q H'" | |
"poly_mod.Mp q S = poly_mod.Mp q S'" | |
"poly_mod.Mp q T = poly_mod.Mp q T'" | |
"monic D'" | |
proof (atomize(full), goal_cases) | |
case 1 | |
from hensel_step[OF step[unfolded quadratic_hensel_step_def] one mon q CDH one refl refl refl refl mon q D H S T D H S T rq] | |
show ?case by auto | |
qed | |
context | |
fixes p :: int and S1 T1 D1 H1 :: "int poly" | |
begin | |
private lemma decrease[termination_simp]: "\<not> j \<le> 1 \<Longrightarrow> odd j \<Longrightarrow> Suc (j div 2) < j" by presburger | |
fun quadratic_hensel_loop where | |
"quadratic_hensel_loop (j :: nat) = ( | |
if j \<le> 1 then (p, S1, T1, D1, H1) else | |
if even j then | |
(case quadratic_hensel_loop (j div 2) of | |
(q, S, T, D, H) \<Rightarrow> | |
let qq = q * q in | |
(case quadratic_hensel_step q S T D H of \<comment> \<open>quadratic step\<close> | |
(S', T', D', H') \<Rightarrow> (qq, S', T', D', H'))) | |
else \<comment> \<open>odd \<open>j\<close>\<close> | |
(case quadratic_hensel_loop (j div 2 + 1) of | |
(q, S, T, D, H) \<Rightarrow> | |
(case quadratic_hensel_step q S T D H of \<comment> \<open>quadratic step\<close> | |
(S', T', D', H') \<Rightarrow> | |
let qq = q * q; pj = qq div p; down = poly_mod.Mp pj in | |
(pj, down S', down T', down D', down H'))))" | |
definition "quadratic_hensel_main j = (case quadratic_hensel_loop j of | |
(qq, S, T, D, H) \<Rightarrow> (D, H))" | |
declare quadratic_hensel_loop.simps[simp del] | |
\<comment> \<open>unroll the definition of \<open>hensel_loop\<close> so that in outermost iteration we can use \<open>simple_hensel_step\<close>\<close> | |
lemma quadratic_hensel_main_code[code]: "quadratic_hensel_main j = ( | |
if j \<le> 1 then (D1, H1) | |
else if even j | |
then (case quadratic_hensel_loop (j div 2) of | |
(q, S, T, D, H) \<Rightarrow> | |
simple_quadratic_hensel_step q S T D H) | |
else (case quadratic_hensel_loop (j div 2 + 1) of | |
(q, S, T, D, H) \<Rightarrow> | |
(case simple_quadratic_hensel_step q S T D H of | |
(D', H') \<Rightarrow> let down = poly_mod.Mp (q * q div p) in (down D', down H'))))" | |
unfolding quadratic_hensel_loop.simps[of j] quadratic_hensel_main_def Let_def | |
by (simp split: if_splits prod.splits option.splits sum.splits | |
add: quadratic_hensel_step_code simple_quadratic_hensel_step_def Let_def) | |
context | |
fixes j :: nat | |
assumes 1: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1" | |
and CDH1: "poly_mod.eq_m p C (D1 * H1)" | |
and mon1: "monic D1" | |
and p: "p > 1" | |
and D1: "poly_mod.Mp p D1 = D1" | |
and H1: "poly_mod.Mp p H1 = H1" | |
and S1: "poly_mod.Mp p S1 = S1" | |
and T1: "poly_mod.Mp p T1 = T1" | |
and j: "j \<ge> 1" | |
begin | |
lemma quadratic_hensel_loop: | |
assumes "quadratic_hensel_loop j = (q, S, T, D, H)" | |
shows "(poly_mod.eq_m q C (D * H) \<and> monic D | |
\<and> poly_mod.eq_m p D1 D \<and> poly_mod.eq_m p H1 H | |
\<and> poly_mod.eq_m q (D * S + H * T) 1 | |
\<and> poly_mod.Mp q D = D \<and> poly_mod.Mp q H = H | |
\<and> poly_mod.Mp q S = S \<and> poly_mod.Mp q T = T | |
\<and> q = p^j)" | |
using j assms | |
proof (induct j arbitrary: q S T D H rule: less_induct) | |
case (less j q' S' T' D' H') | |
note res = less(3) | |
interpret poly_mod_2 p using p by (rule poly_mod_2.intro) | |
let ?hens = "quadratic_hensel_loop" | |
note simp[simp] = quadratic_hensel_loop.simps[of j] | |
show ?case | |
proof (cases "j = 1") | |
case True | |
show ?thesis using res simp unfolding True using CDH1 1 mon1 D1 H1 S1 T1 by auto | |
next | |
case False | |
with less(2) have False: "(j \<le> 1) = False" by auto | |
have mod_2: "k \<ge> 1 \<Longrightarrow> poly_mod_2 (p^k)" for k by (intro poly_mod_2.intro, insert p, auto) | |
{ | |
fix k D | |
assume *: "k \<ge> 1" "k \<le> j" "poly_mod.Mp (p ^ k) D = D" | |
from *(2) have "{0..<p ^ k} \<subseteq> {0..<p ^ j}" using p by auto | |
hence "poly_mod.Mp (p ^ j) D = D" | |
unfolding poly_mod_2.Mp_ident_iff[OF mod_2[OF less(2)]] | |
using *(3)[unfolded poly_mod_2.Mp_ident_iff[OF mod_2[OF *(1)]]] by blast | |
} note lift_norm = this | |
show ?thesis | |
proof (cases "even j") | |
case True | |
let ?j2 = "j div 2" | |
from False have lt: "?j2 < j" "1 \<le> ?j2" by auto | |
obtain q S T D H where rec: "?hens ?j2 = (q, S, T, D, H)" by (cases "?hens ?j2", auto) | |
note IH = less(1)[OF lt rec] | |
from IH | |
have *: "poly_mod.eq_m q C (D * H)" | |
"poly_mod.eq_m q (D * S + H * T) 1" | |
"monic D" | |
"eq_m D1 D" | |
"eq_m H1 H" | |
"poly_mod.Mp q D = D" | |
"poly_mod.Mp q H = H" | |
"poly_mod.Mp q S = S" | |
"poly_mod.Mp q T = T" | |
"q = p ^ ?j2" | |
by auto | |
hence norm: "poly_mod.Mp (p ^ j) D = D" "poly_mod.Mp (p ^ j) H = H" | |
"poly_mod.Mp (p ^ j) S = S" "poly_mod.Mp (p ^ j) T = T" | |
using lift_norm[OF lt(2)] by auto | |
from lt p have q: "q > 1" unfolding * by simp | |
let ?step = "quadratic_hensel_step q S T D H" | |
obtain S2 T2 D2 H2 where step_res: "?step = (S2, T2, D2, H2)" by (cases ?step, auto) | |
note step = quadratic_hensel_step[OF step_res *(1,2,6-9,3) q refl] | |
let ?qq = "q * q" | |
{ | |
fix D D2 | |
assume "poly_mod.Mp q D = poly_mod.Mp q D2" | |
from arg_cong[OF this, of Mp] Mp_Mp_pow_is_Mp[of ?j2, OF _ p, folded *(10)] lt | |
have "Mp D = Mp D2" by simp | |
} note shrink = this | |
have **: "poly_mod.eq_m ?qq C (D2 * H2)" | |
"poly_mod.eq_m ?qq (D2 * S2 + H2 * T2) 1" | |
"monic D2" | |
"eq_m D1 D2" | |
"eq_m H1 H2" | |
"poly_mod.Mp ?qq D2 = D2" | |
"poly_mod.Mp ?qq H2 = H2" | |
"poly_mod.Mp ?qq S2 = S2" | |
"poly_mod.Mp ?qq T2 = T2" | |
using step shrink[of H H2] shrink[of D D2] *(4-7) by auto | |
note simp = simp False if_False rec split Let_def step_res option.simps | |
from True have j: "p ^ j = p ^ (2 * ?j2)" by auto | |
with *(10) have qq: "q * q = p ^ j" | |
by (simp add: power_mult_distrib semiring_normalization_rules(30-)) | |
from res[unfolded simp] True have id': "q' = ?qq" "S' = S2" "T' = T2" "D' = D2" "H' = H2" by auto | |
show ?thesis unfolding id' using ** by (auto simp: qq) | |
next | |
case odd: False | |
hence False': "(even j) = False" by auto | |
let ?j2 = "j div 2 + 1" | |
from False odd have lt: "?j2 < j" "1 \<le> ?j2" by presburger+ | |
obtain q S T D H where rec: "?hens ?j2 = (q, S, T, D, H)" by (cases "?hens ?j2", auto) | |
note IH = less(1)[OF lt rec] | |
note simp = simp False if_False rec sum.simps split Let_def False' option.simps | |
from IH have *: "poly_mod.eq_m q C (D * H)" | |
"poly_mod.eq_m q (D * S + H * T) 1" | |
"monic D" | |
"eq_m D1 D" | |
"eq_m H1 H" | |
"poly_mod.Mp q D = D" | |
"poly_mod.Mp q H = H" | |
"poly_mod.Mp q S = S" | |
"poly_mod.Mp q T = T" | |
"q = p ^ ?j2" | |
by auto | |
hence norm: "poly_mod.Mp (p ^ j) D = D" "poly_mod.Mp (p ^ j) H = H" | |
using lift_norm[OF lt(2)] lt by auto | |
from lt p have q: "q > 1" unfolding * | |
using mod_2 poly_mod_2.m1 by blast | |
let ?step = "quadratic_hensel_step q S T D H" | |
obtain S2 T2 D2 H2 where step_res: "?step = (S2, T2, D2, H2)" by (cases ?step, auto) | |
have dvd: "q dvd q" by auto | |
note step = quadratic_hensel_step[OF step_res *(1,2,6-9,3) q refl] | |
let ?qq = "q * q" | |
{ | |
fix D D2 | |
assume "poly_mod.Mp q D = poly_mod.Mp q D2" | |
from arg_cong[OF this, of Mp] Mp_Mp_pow_is_Mp[of ?j2, OF _ p, folded *(10)] lt | |
have "Mp D = Mp D2" by simp | |
} note shrink = this | |
have **: "poly_mod.eq_m ?qq C (D2 * H2)" | |
"poly_mod.eq_m ?qq (D2 * S2 + H2 * T2) 1" | |
"monic D2" | |
"eq_m D1 D2" | |
"eq_m H1 H2" | |
"poly_mod.Mp ?qq D2 = D2" | |
"poly_mod.Mp ?qq H2 = H2" | |
"poly_mod.Mp ?qq S2 = S2" | |
"poly_mod.Mp ?qq T2 = T2" | |
using step shrink[of H H2] shrink[of D D2] *(4-7) by auto | |
note simp = simp False if_False rec split Let_def step_res option.simps | |
from odd have j: "Suc j = 2 * ?j2" by auto | |
from arg_cong[OF this, of "\<lambda> j. p ^ j div p"] | |
have pj: "p ^ j = q * q div p" and qq: "q * q = p ^ j * p" unfolding *(10) using p | |
by (simp add: power_mult_distrib semiring_normalization_rules(30-))+ | |
let ?pj = "p ^ j" | |
from res[unfolded simp] pj | |
have id: | |
"q' = p^j" | |
"S' = poly_mod.Mp ?pj S2" | |
"T' = poly_mod.Mp ?pj T2" | |
"D' = poly_mod.Mp ?pj D2" | |
"H' = poly_mod.Mp ?pj H2" | |
by auto | |
interpret pj: poly_mod_2 ?pj by (rule mod_2[OF \<open>1 \<le> j\<close>]) | |
have norm: "pj.Mp D' = D'" "pj.Mp H' = H'" | |
unfolding id by (auto simp: poly_mod.Mp_Mp) | |
have mon: "monic D'" using pj.monic_Mp[OF step(11)] unfolding id . | |
have id': "Mp (pj.Mp D) = Mp D" for D using \<open>1 \<le> j\<close> | |
by (simp add: Mp_Mp_pow_is_Mp p) | |
have eq: "eq_m D1 D2 \<Longrightarrow> eq_m D1 (pj.Mp D2)" for D1 D2 | |
unfolding id' by auto | |
have id'': "pj.Mp (poly_mod.Mp (q * q) D) = pj.Mp D" for D | |
unfolding qq by (rule pj.Mp_product_modulus[OF refl], insert p, auto) | |
{ | |
fix D1 D2 | |
assume "poly_mod.eq_m (q * q) D1 D2" | |
hence "poly_mod.Mp (q * q) D1 = poly_mod.Mp (q * q) D2" by simp | |
from arg_cong[OF this, of pj.Mp] | |
have "pj.Mp D1 = pj.Mp D2" unfolding id'' . | |
} note eq' = this | |
from eq'[OF step(1)] have eq1: "pj.eq_m C (D' * H')" unfolding id by simp | |
from eq'[OF step(2)] have eq2: "pj.eq_m (D' * S' + H' * T') 1" | |
unfolding id by (metis pj.mult_Mp pj.plus_Mp) | |
from **(4-5) have eq3: "eq_m D1 D'" "eq_m H1 H'" | |
unfolding id by (auto intro: eq) | |
from norm mon eq1 eq2 eq3 | |
show ?thesis unfolding id by simp | |
qed | |
qed | |
qed | |
lemma quadratic_hensel_main: assumes res: "quadratic_hensel_main j = (D,H)" | |
shows "poly_mod.eq_m (p^j) C (D * H)" | |
"monic D" | |
"poly_mod.eq_m p D1 D" | |
"poly_mod.eq_m p H1 H" | |
"poly_mod.Mp (p^j) D = D" | |
"poly_mod.Mp (p^j) H = H" | |
proof (atomize(full), goal_cases) | |
case 1 | |
let ?hen = "quadratic_hensel_loop j" | |
from res obtain q S T where hen: "?hen = (q, S, T, D, H)" | |
by (cases ?hen, auto simp: quadratic_hensel_main_def) | |
from quadratic_hensel_loop[OF hen] show ?case by auto | |
qed | |
end | |
end | |
end | |
datatype 'a factor_tree = Factor_Leaf 'a "int poly" | Factor_Node 'a "'a factor_tree" "'a factor_tree" | |
fun factor_node_info :: "'a factor_tree \<Rightarrow> 'a" where | |
"factor_node_info (Factor_Leaf i x) = i" | |
| "factor_node_info (Factor_Node i l r) = i" | |
fun factors_of_factor_tree :: "'a factor_tree \<Rightarrow> int poly multiset" where | |
"factors_of_factor_tree (Factor_Leaf i x) = {#x#}" | |
| "factors_of_factor_tree (Factor_Node i l r) = factors_of_factor_tree l + factors_of_factor_tree r" | |
fun product_factor_tree :: "int \<Rightarrow> 'a factor_tree \<Rightarrow> int poly factor_tree" where | |
"product_factor_tree p (Factor_Leaf i x) = (Factor_Leaf x x)" | |
| "product_factor_tree p (Factor_Node i l r) = (let | |
L = product_factor_tree p l; | |
R = product_factor_tree p r; | |
f = factor_node_info L; | |
g = factor_node_info R; | |
fg = poly_mod.Mp p (f * g) | |
in Factor_Node fg L R)" | |
fun sub_trees :: "'a factor_tree \<Rightarrow> 'a factor_tree set" where | |
"sub_trees (Factor_Leaf i x) = {Factor_Leaf i x}" | |
| "sub_trees (Factor_Node i l r) = insert (Factor_Node i l r) (sub_trees l \<union> sub_trees r)" | |
lemma sub_trees_refl[simp]: "t \<in> sub_trees t" by (cases t, auto) | |
lemma product_factor_tree: assumes "\<And> x. x \<in># factors_of_factor_tree t \<Longrightarrow> poly_mod.Mp p x = x" | |
shows "u \<in> sub_trees (product_factor_tree p t) \<Longrightarrow> factor_node_info u = f \<Longrightarrow> | |
poly_mod.Mp p f = f \<and> f = poly_mod.Mp p (prod_mset (factors_of_factor_tree u)) \<and> | |
factors_of_factor_tree (product_factor_tree p t) = factors_of_factor_tree t" | |
using assms | |
proof (induct t arbitrary: u f) | |
case (Factor_Node i l r u f) | |
interpret poly_mod p . | |
let ?L = "product_factor_tree p l" | |
let ?R = "product_factor_tree p r" | |
let ?f = "factor_node_info ?L" | |
let ?g = "factor_node_info ?R" | |
let ?fg = "Mp (?f * ?g)" | |
have "Mp ?f = ?f \<and> ?f = Mp (prod_mset (factors_of_factor_tree ?L)) \<and> | |
(factors_of_factor_tree ?L) = (factors_of_factor_tree l)" | |
by (rule Factor_Node(1)[OF sub_trees_refl refl], insert Factor_Node(5), auto) | |
hence IH1: "?f = Mp (prod_mset (factors_of_factor_tree ?L))" | |
"(factors_of_factor_tree ?L) = (factors_of_factor_tree l)" by blast+ | |
have "Mp ?g = ?g \<and> ?g = Mp (prod_mset (factors_of_factor_tree ?R)) \<and> | |
(factors_of_factor_tree ?R) = (factors_of_factor_tree r)" | |
by (rule Factor_Node(2)[OF sub_trees_refl refl], insert Factor_Node(5), auto) | |
hence IH2: "?g = Mp (prod_mset (factors_of_factor_tree ?R))" | |
"(factors_of_factor_tree ?R) = (factors_of_factor_tree r)" by blast+ | |
have id: "(factors_of_factor_tree (product_factor_tree p (Factor_Node i l r))) = | |
(factors_of_factor_tree (Factor_Node i l r))" by (simp add: Let_def IH1 IH2) | |
from Factor_Node(3) consider (root) "u = Factor_Node ?fg ?L ?R" | |
| (l) "u \<in> sub_trees ?L" | (r) "u \<in> sub_trees ?R" | |
by (auto simp: Let_def) | |
thus ?case | |
proof cases | |
case root | |
with Factor_Node have f: "f = ?fg" by auto | |
show ?thesis unfolding f root id by (simp add: Let_def ac_simps IH1 IH2) | |
next | |
case l | |
have "Mp f = f \<and> f = Mp (prod_mset (factors_of_factor_tree u))" | |
using Factor_Node(1)[OF l Factor_Node(4)] Factor_Node(5) by auto | |
thus ?thesis unfolding id by blast | |
next | |
case r | |
have "Mp f = f \<and> f = Mp (prod_mset (factors_of_factor_tree u))" | |
using Factor_Node(2)[OF r Factor_Node(4)] Factor_Node(5) by auto | |
thus ?thesis unfolding id by blast | |
qed | |
qed auto | |
fun create_factor_tree_simple :: "int poly list \<Rightarrow> unit factor_tree" where | |
"create_factor_tree_simple xs = (let n = length xs in if n \<le> 1 then Factor_Leaf () (hd xs) | |
else let i = n div 2; | |
xs1 = take i xs; | |
xs2 = drop i xs | |
in Factor_Node () (create_factor_tree_simple xs1) (create_factor_tree_simple xs2) | |
)" | |
declare create_factor_tree_simple.simps[simp del] | |
lemma create_factor_tree_simple: "xs \<noteq> [] \<Longrightarrow> factors_of_factor_tree (create_factor_tree_simple xs) = mset xs" | |
proof (induct xs rule: wf_induct[OF wf_measure[of length]]) | |
case (1 xs) | |
from 1(2) have xs: "length xs \<noteq> 0" by auto | |
then consider (base) "length xs = 1" | (step) "length xs > 1" by linarith | |
thus ?case | |
proof cases | |
case base | |
then obtain x where xs: "xs = [x]" by (cases xs; cases "tl xs"; auto) | |
thus ?thesis by (auto simp: create_factor_tree_simple.simps) | |
next | |
case step | |
let ?i = "length xs div 2" | |
let ?xs1 = "take ?i xs" | |
let ?xs2 = "drop ?i xs" | |
from step have xs1: "(?xs1, xs) \<in> measure length" "?xs1 \<noteq> []" by auto | |
from step have xs2: "(?xs2, xs) \<in> measure length" "?xs2 \<noteq> []" by auto | |
from step have id: "create_factor_tree_simple xs = Factor_Node () (create_factor_tree_simple (take ?i xs)) | |
(create_factor_tree_simple (drop ?i xs))" unfolding create_factor_tree_simple.simps[of xs] Let_def by auto | |
have xs: "xs = ?xs1 @ ?xs2" by auto | |
show ?thesis unfolding id arg_cong[OF xs, of mset] mset_append | |
using 1(1)[rule_format, OF xs1] 1(1)[rule_format, OF xs2] | |
by auto | |
qed | |
qed | |
text \<open>We define a better factorization tree which balances the trees according to their degree., | |
cf. Modern Computer Algebra, Chapter 15.5 on Multifactor Hensel lifting.\<close> | |
fun partition_factors_main :: "nat \<Rightarrow> ('a \<times> nat) list \<Rightarrow> ('a \<times> nat) list \<times> ('a \<times> nat) list" where | |
"partition_factors_main s [] = ([], [])" | |
| "partition_factors_main s ((f,d) # xs) = (if d \<le> s then case partition_factors_main (s - d) xs of | |
(l,r) \<Rightarrow> ((f,d) # l, r) else case partition_factors_main d xs of | |
(l,r) \<Rightarrow> (l, (f,d) # r))" | |
lemma partition_factors_main: "partition_factors_main s xs = (a,b) \<Longrightarrow> mset xs = mset a + mset b" | |
by (induct s xs arbitrary: a b rule: partition_factors_main.induct, auto split: if_splits prod.splits) | |
definition partition_factors :: "('a \<times> nat) list \<Rightarrow> ('a \<times> nat) list \<times> ('a \<times> nat) list" where | |
"partition_factors xs = (let n = sum_list (map snd xs) div 2 in | |
case partition_factors_main n xs of | |
([], x # y # ys) \<Rightarrow> ([x], y # ys) | |
| (x # y # ys, []) \<Rightarrow> ([x], y # ys) | |
| pair \<Rightarrow> pair)" | |
lemma partition_factors: "partition_factors xs = (a,b) \<Longrightarrow> mset xs = mset a + mset b" | |
unfolding partition_factors_def Let_def | |
by (cases "partition_factors_main (sum_list (map snd xs) div 2) xs", auto split: list.splits | |
simp: partition_factors_main) | |
lemma partition_factors_length: assumes "\<not> length xs \<le> 1" "(a,b) = partition_factors xs" | |
shows [termination_simp]: "length a < length xs" "length b < length xs" and "a \<noteq> []" "b \<noteq> []" | |
proof - | |
obtain ys zs where main: "partition_factors_main (sum_list (map snd xs) div 2) xs = (ys,zs)" by force | |
note res = assms(2)[unfolded partition_factors_def Let_def main split] | |
from arg_cong[OF partition_factors_main[OF main], of size] have len: "length xs = length ys + length zs" by auto | |
with assms(1) have len2: "length ys + length zs \<ge> 2" by auto | |
from res len2 have "length a < length xs \<and> length b < length xs \<and> a \<noteq> [] \<and> b \<noteq> []" unfolding len | |
by (cases ys; cases zs; cases "tl ys"; cases "tl zs"; auto) | |
thus "length a < length xs" "length b < length xs" "a \<noteq> []" "b \<noteq> []" by blast+ | |
qed | |
fun create_factor_tree_balanced :: "(int poly \<times> nat)list \<Rightarrow> unit factor_tree" where | |
"create_factor_tree_balanced xs = (if length xs \<le> 1 then Factor_Leaf () (fst (hd xs)) else | |
case partition_factors xs of (l,r) \<Rightarrow> Factor_Node () | |
(create_factor_tree_balanced l) | |
(create_factor_tree_balanced r))" | |
definition create_factor_tree :: "int poly list \<Rightarrow> unit factor_tree" where | |
"create_factor_tree xs = (let ys = map (\<lambda> f. (f, degree f)) xs; | |
zs = rev (sort_key snd ys) | |
in create_factor_tree_balanced zs)" | |
lemma create_factor_tree_balanced: "xs \<noteq> [] \<Longrightarrow> factors_of_factor_tree (create_factor_tree_balanced xs) = mset (map fst xs)" | |
proof (induct xs rule: create_factor_tree_balanced.induct) | |
case (1 xs) | |
show ?case | |
proof (cases "length xs \<le> 1") | |
case True | |
with 1(3) obtain x where xs: "xs = [x]" by (cases xs; cases "tl xs", auto) | |
show ?thesis unfolding xs by auto | |
next | |
case False | |
obtain a b where part: "partition_factors xs = (a,b)" by force | |
note abp = this[symmetric] | |
note nonempty = partition_factors_length(3-4)[OF False abp] | |
note IH = 1(1)[OF False abp nonempty(1)] 1(2)[OF False abp nonempty(2)] | |
show ?thesis unfolding create_factor_tree_balanced.simps[of xs] part split using | |
False IH partition_factors[OF part] by auto | |
qed | |
qed | |
lemma create_factor_tree: assumes "xs \<noteq> []" | |
shows "factors_of_factor_tree (create_factor_tree xs) = mset xs" | |
proof - | |
let ?xs = "rev (sort_key snd (map (\<lambda>f. (f, degree f)) xs))" | |
from assms have "set xs \<noteq> {}" by auto | |
hence "set ?xs \<noteq> {}" by auto | |
hence xs: "?xs \<noteq> []" by blast | |
show ?thesis unfolding create_factor_tree_def Let_def create_factor_tree_balanced[OF xs] | |
by (auto, induct xs, auto) | |
qed | |
context | |
fixes p :: int and n :: nat | |
begin | |
definition quadratic_hensel_binary :: "int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where | |
"quadratic_hensel_binary C D H = ( | |
case euclid_ext_poly_dynamic p D H of | |
(S,T) \<Rightarrow> quadratic_hensel_main C p S T D H n)" | |
fun hensel_lifting_main :: "int poly \<Rightarrow> int poly factor_tree \<Rightarrow> int poly list" where | |
"hensel_lifting_main U (Factor_Leaf _ _) = [U]" | |
| "hensel_lifting_main U (Factor_Node _ l r) = (let | |
v = factor_node_info l; | |
w = factor_node_info r; | |
(V,W) = quadratic_hensel_binary U v w | |
in hensel_lifting_main V l @ hensel_lifting_main W r)" | |
definition hensel_lifting_monic :: "int poly \<Rightarrow> int poly list \<Rightarrow> int poly list" where | |
"hensel_lifting_monic u vs = (if vs = [] then [] else let | |
pn = p^n; | |
C = poly_mod.Mp pn u; | |
tree = product_factor_tree p (create_factor_tree vs) | |
in hensel_lifting_main C tree)" | |
definition hensel_lifting :: "int poly \<Rightarrow> int poly list \<Rightarrow> int poly list" where | |
"hensel_lifting f gs = (let lc = lead_coeff f; | |
ilc = inverse_mod lc (p^n); | |
g = smult ilc f | |
in hensel_lifting_monic g gs)" | |
end | |
context poly_mod_prime begin | |
context | |
fixes n :: nat | |
assumes n: "n \<noteq> 0" | |
begin | |
abbreviation "hensel_binary \<equiv> quadratic_hensel_binary p n" | |
abbreviation "hensel_main \<equiv> hensel_lifting_main p n" | |
lemma hensel_binary: | |
assumes cop: "coprime_m D H" and eq: "eq_m C (D * H)" | |
and normalized_input: "Mp D = D" "Mp H = H" | |
and monic_input: "monic D" | |
and hensel_result: "hensel_binary C D H = (D',H')" | |
shows "poly_mod.eq_m (p^n) C (D' * H') \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close> | |
\<and> monic D' \<comment> \<open>monic output\<close> | |
\<and> eq_m D D' \<and> eq_m H H' \<comment> \<open>apply \<open>`mod p`\<close> on \<open>D'\<close> and \<open>H'\<close> yields \<open>D\<close> and \<open>H\<close> again\<close> | |
\<and> poly_mod.Mp (p^n) D' = D' \<and> poly_mod.Mp (p^n) H' = H' \<comment> \<open>output is normalized\<close>" | |
proof - | |
from m1 have p: "p > 1" . | |
obtain S T where ext: "euclid_ext_poly_dynamic p D H = (S,T)" by force | |
obtain D1 H1 where main: "quadratic_hensel_main C p S T D H n = (D1,H1)" by force | |
note hen = hensel_result[unfolded quadratic_hensel_binary_def ext split Let_def main] | |
from n have n: "n \<ge> 1" by simp | |
note eucl = euclid_ext_poly_dynamic[OF cop normalized_input ext] | |
note main = quadratic_hensel_main[OF eucl(1) eq monic_input p normalized_input eucl(2-) n main] | |
show ?thesis using hen main by auto | |
qed | |
lemma hensel_main: | |
assumes eq: "eq_m C (prod_mset (factors_of_factor_tree Fs))" | |
and "\<And> F. F \<in># factors_of_factor_tree Fs \<Longrightarrow> Mp F = F \<and> monic F" | |
and hensel_result: "hensel_main C Fs = Gs" | |
and C: "monic C" "poly_mod.Mp (p^n) C = C" | |
and sf: "square_free_m C" | |
and "\<And> f t. t \<in> sub_trees Fs \<Longrightarrow> factor_node_info t = f \<Longrightarrow> f = Mp (prod_mset (factors_of_factor_tree t))" | |
shows "poly_mod.eq_m (p^n) C (prod_list Gs) \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close> | |
\<and> factors_of_factor_tree Fs = mset (map Mp Gs) | |
\<and> (\<forall> G. G \<in> set Gs \<longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G)" | |
using assms | |
proof (induct Fs arbitrary: C Gs) | |
case (Factor_Leaf f fs C Gs) | |
thus ?case by auto | |
next | |
case (Factor_Node f l r C Gs) note * = this | |
note simps = hensel_lifting_main.simps | |
note IH1 = *(1)[rule_format] | |
note IH2 = *(2)[rule_format] | |
note res = *(5)[unfolded simps Let_def] | |
note eq = *(3) | |
note Fs = *(4) | |
note C = *(6,7) | |
note sf = *(8) | |
note inv = *(9) | |
interpret pn: poly_mod_2 "p^n" apply (unfold_locales) using m1 n by auto | |
let ?Mp = "pn.Mp" | |
define D where "D \<equiv> prod_mset (factors_of_factor_tree l)" | |
define H where "H \<equiv> prod_mset (factors_of_factor_tree r)" | |
let ?D = "Mp D" | |
let ?H = "Mp H" | |
let ?D' = "factor_node_info l" | |
let ?H' = "factor_node_info r" | |
obtain A B where hen: "hensel_binary C ?D' ?H' = (A,B)" by force | |
note res = res[unfolded hen split] | |
obtain AD where AD': "AD = hensel_main A l" by auto | |
obtain BH where BH': "BH = hensel_main B r" by auto | |
from inv[of l, OF _ refl] have D': "?D' = ?D" unfolding D_def by auto | |
from inv[of r, OF _ refl] have H': "?H' = ?H" unfolding H_def by auto | |
from eq[simplified] | |
have eq': "Mp C = Mp (?D * ?H)" unfolding D_def H_def by simp | |
from square_free_m_cong[OF sf, of "?D * ?H", OF eq'] | |
have sf': "square_free_m (?D * ?H)" . | |
from poly_mod_prime.square_free_m_prod_imp_coprime_m[OF _ this] | |
have cop': "coprime_m ?D ?H" unfolding poly_mod_prime_def using prime . | |
from eq' have eq': "eq_m C (?D * ?H)" by simp | |
have monD: "monic D" unfolding D_def by (rule monic_prod_mset, insert Fs, auto) | |
from hensel_binary[OF _ _ _ _ _ hen, unfolded D' H', OF cop' eq' Mp_Mp Mp_Mp monic_Mp[OF monD]] | |
have step: "poly_mod.eq_m (p ^ n) C (A * B) \<and> monic A \<and> eq_m ?D A \<and> | |
eq_m ?H B \<and> ?Mp A = A \<and> ?Mp B = B" . | |
from res have Gs: "Gs = AD @ BH" by (simp add: AD' BH') | |
have AD: "eq_m A ?D" "?Mp A = A" "eq_m A (prod_mset (factors_of_factor_tree l))" | |
and monA: "monic A" | |
using step by (auto simp: D_def) | |
note sf_fact = square_free_m_factor[OF sf'] | |
from square_free_m_cong[OF sf_fact(1)] AD have sfA: "square_free_m A" by auto | |
have IH1: "poly_mod.eq_m (p ^ n) A (prod_list AD) \<and> | |
factors_of_factor_tree l = mset (map Mp AD) \<and> | |
(\<forall>G. G \<in> set AD \<longrightarrow> monic G \<and> ?Mp G = G)" | |
by (rule IH1[OF AD(3) Fs AD'[symmetric] monA AD(2) sfA inv], auto) | |
have BH: "eq_m B ?H" "pn.Mp B = B" "eq_m B (prod_mset (factors_of_factor_tree r))" | |
using step by (auto simp: H_def) | |
from step have "pn.eq_m C (A * B)" by simp | |
hence "?Mp C = ?Mp (A * B)" by simp | |
with C AD(2) have "pn.Mp C = pn.Mp (A * pn.Mp B)" by simp | |
from arg_cong[OF this, of lead_coeff] C | |
have "monic (pn.Mp (A * B))" by simp | |
then have "lead_coeff (pn.Mp A) * lead_coeff (pn.Mp B) = 1" | |
by (metis lead_coeff_mult leading_coeff_neq_0 local.step mult_cancel_right2 pn.degree_m_eq pn.m1 poly_mod.M_def poly_mod.Mp_coeff) | |
with monA AD(2) BH(2) have monB: "monic B" by simp | |
from square_free_m_cong[OF sf_fact(2)] BH have sfB: "square_free_m B" by auto | |
have IH2: "poly_mod.eq_m (p ^ n) B (prod_list BH) \<and> | |
factors_of_factor_tree r = mset (map Mp BH) \<and> | |
(\<forall>G. G \<in> set BH \<longrightarrow> monic G \<and> ?Mp G = G)" | |
by (rule IH2[OF BH(3) Fs BH'[symmetric] monB BH(2) sfB inv], auto) | |
from step have "?Mp C = ?Mp (?Mp A * ?Mp B)" by auto | |
also have "?Mp A = ?Mp (prod_list AD)" using IH1 by auto | |
also have "?Mp B = ?Mp (prod_list BH)" using IH2 by auto | |
finally have "poly_mod.eq_m (p ^ n) C (prod_list AD * prod_list BH)" | |
by (auto simp: poly_mod.mult_Mp) | |
thus ?case unfolding Gs using IH1 IH2 by auto | |
qed | |
lemma hensel_lifting_monic: | |
assumes eq: "poly_mod.eq_m p C (prod_list Fs)" | |
and Fs: "\<And> F. F \<in> set Fs \<Longrightarrow> poly_mod.Mp p F = F \<and> monic F" | |
and res: "hensel_lifting_monic p n C Fs = Gs" | |
and mon: "monic (poly_mod.Mp (p^n) C)" | |
and sf: "poly_mod.square_free_m p C" | |
shows "poly_mod.eq_m (p^n) C (prod_list Gs)" | |
"mset (map (poly_mod.Mp p) Gs) = mset Fs" | |
"G \<in> set Gs \<Longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G" | |
proof - | |
note res = res[unfolded hensel_lifting_monic_def Let_def] | |
let ?Mp = "poly_mod.Mp (p ^ n)" | |
let ?C = "?Mp C" | |
interpret poly_mod_prime p | |
by (unfold_locales, insert n prime, auto) | |
interpret pn: poly_mod_2 "p^n" using m1 n poly_mod_2.intro by auto | |
from eq n have eq: "eq_m (?Mp C) (prod_list Fs)" | |
using Mp_Mp_pow_is_Mp eq m1 n by force | |
have "poly_mod.eq_m (p^n) C (prod_list Gs) \<and> mset (map (poly_mod.Mp p) Gs) = mset Fs | |
\<and> (G \<in> set Gs \<longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G)" | |
proof (cases "Fs = []") | |
case True | |
with res have Gs: "Gs = []" by auto | |
from eq have "Mp ?C = 1" unfolding True by simp | |
hence "degree (Mp ?C) = 0" by simp | |
with degree_m_eq_monic[OF mon m1] have "degree ?C = 0" by simp | |
with mon have "?C = 1" using monic_degree_0 by blast | |
thus ?thesis unfolding True Gs by auto | |
next | |
case False | |
let ?t = "create_factor_tree Fs" | |
note tree = create_factor_tree[OF False] | |
from False res have hen: "hensel_main ?C (product_factor_tree p ?t) = Gs" by auto | |
have tree1: "x \<in># factors_of_factor_tree ?t \<Longrightarrow> Mp x = x" for x unfolding tree using Fs by auto | |
from product_factor_tree[OF tree1 sub_trees_refl refl, of ?t] | |
have id: "(factors_of_factor_tree (product_factor_tree p ?t)) = | |
(factors_of_factor_tree ?t)" by auto | |
have eq: "eq_m ?C (prod_mset (factors_of_factor_tree (product_factor_tree p ?t)))" | |
unfolding id tree using eq by auto | |
have id': "Mp C = Mp ?C" using n by (simp add: Mp_Mp_pow_is_Mp m1) | |
have "pn.eq_m ?C (prod_list Gs) \<and> mset Fs = mset (map Mp Gs) \<and> (\<forall>G. G \<in> set Gs \<longrightarrow> monic G \<and> pn.Mp G = G)" | |
by (rule hensel_main[OF eq Fs hen mon pn.Mp_Mp square_free_m_cong[OF sf id'], unfolded id tree], | |
insert product_factor_tree[OF tree1], auto) | |
thus ?thesis by auto | |
qed | |
thus "poly_mod.eq_m (p^n) C (prod_list Gs)" | |
"mset (map (poly_mod.Mp p) Gs) = mset Fs" | |
"G \<in> set Gs \<Longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G" by blast+ | |
qed | |
lemma hensel_lifting: | |
assumes res: "hensel_lifting p n f fs = gs" \<comment> \<open>result of hensel is fact. \<open>gs\<close>\<close> | |
and cop: "coprime (lead_coeff f) p" | |
and sf: "poly_mod.square_free_m p f" | |
and fact: "poly_mod.factorization_m p f (c, mset fs)" \<comment> \<open>input is fact. \<open>fs mod p\<close>\<close> | |
and c: "c \<in> {0..<p}" | |
and norm: "(\<forall>fi\<in>set fs. set (coeffs fi) \<subseteq> {0..<p})" | |
shows "poly_mod.factorization_m (p^n) f (lead_coeff f, mset gs) \<comment> \<open>factorization mod \<open>p^n\<close>\<close>" | |
"sort (map degree fs) = sort (map degree gs) \<comment> \<open>degrees stay the same\<close>" | |
"\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and> \<comment> \<open>monic and normalized\<close> | |
irreducible_m g \<and> \<comment> \<open>irreducibility even mod \<open>p\<close>\<close> | |
degree_m g = degree g \<comment> \<open>mod \<open>p\<close> does not change degree of \<open>g\<close>\<close>" | |
proof - | |
interpret poly_mod_prime p using prime by unfold_locales | |
interpret q: poly_mod_2 "p^n" using m1 n unfolding poly_mod_2_def by auto | |
from fact have eq: "eq_m f (smult c (prod_list fs))" | |
and mon_fs: "(\<forall>fi\<in>set fs. monic (Mp fi) \<and> irreducible\<^sub>d_m fi)" | |
unfolding factorization_m_def by auto | |
{ | |
fix f | |
assume "f \<in> set fs" | |
with mon_fs norm have "set (coeffs f) \<subseteq> {0..<p}" and "monic (Mp f)" by auto | |
hence "monic f" using Mp_ident_iff' by force | |
} note mon_fs' = this | |
have Mp_id: "\<And> f. Mp (q.Mp f) = Mp f" by (simp add: Mp_Mp_pow_is_Mp m1 n) | |
let ?lc = "lead_coeff f" | |
let ?q = "p ^ n" | |
define ilc where "ilc \<equiv> inverse_mod ?lc ?q" | |
define F where "F \<equiv> smult ilc f" | |
from res[unfolded hensel_lifting_def Let_def] | |
have hen: "hensel_lifting_monic p n F fs = gs" | |
unfolding ilc_def F_def . | |
from m1 n cop have inv: "q.M (ilc * ?lc) = 1" | |
by (auto simp add: q.M_def inverse_mod_pow ilc_def) | |
hence ilc0: "ilc \<noteq> 0" by (cases "ilc = 0", auto) | |
{ | |
fix q | |
assume "ilc * ?lc = ?q * q" | |
from arg_cong[OF this, of q.M] have "q.M (ilc * ?lc) = 0" | |
unfolding q.M_def by auto | |
with inv have False by auto | |
} note not_dvd = this | |
have mon: "monic (q.Mp F)" unfolding F_def q.Mp_coeff coeff_smult | |
by (subst q.degree_m_eq [OF _ q.m1]) (auto simp: inv ilc0 [symmetric] intro: not_dvd) | |
have "q.Mp f = q.Mp (smult (q.M (?lc * ilc)) f)" using inv by (simp add: ac_simps) | |
also have "\<dots> = q.Mp (smult ?lc F)" by (simp add: F_def) | |
finally have f: "q.Mp f = q.Mp (smult ?lc F)" . | |
from arg_cong[OF f, of Mp] | |
have f_p: "Mp f = Mp (smult ?lc F)" | |
by (simp add: Mp_Mp_pow_is_Mp n m1) | |
from arg_cong[OF this, of square_free_m, unfolded Mp_square_free_m] sf | |
have "square_free_m (smult ?lc F)" by simp | |
from square_free_m_smultD[OF this] have sf: "square_free_m F" . | |
define c' where "c' \<equiv> M (c * ilc)" | |
from factorization_m_smult[OF fact, of ilc, folded F_def] | |
have fact: "factorization_m F (c', mset fs)" unfolding c'_def factorization_m_def by auto | |
hence eq: "eq_m F (smult c' (prod_list fs))" unfolding factorization_m_def by auto | |
from factorization_m_lead_coeff[OF fact] monic_Mp[OF mon, unfolded Mp_id] have "M c' = 1" | |
by auto | |
hence c': "c' = 1" unfolding c'_def by auto | |
with eq have eq: "eq_m F (prod_list fs)" by auto | |
{ | |
fix f | |
assume "f \<in> set fs" | |
with mon_fs' norm have "Mp f = f \<and> monic f" unfolding Mp_ident_iff' | |
by auto | |
} note fs = this | |
note hen = hensel_lifting_monic[OF eq fs hen mon sf] | |
from hen(2) have gs_fs: "mset (map Mp gs) = mset fs" by auto | |
have eq: "q.eq_m f (smult ?lc (prod_list gs))" | |
unfolding f using arg_cong[OF hen(1), of "\<lambda> f. q.Mp (smult ?lc f)"] by simp | |
{ | |
fix g | |
assume g: "g \<in> set gs" | |
from hen(3)[OF _ g] have mon_g: "monic g" and Mp_g: "q.Mp g = g" by auto | |
from g have "Mp g \<in># mset (map Mp gs)" by auto | |
from this[unfolded gs_fs] obtain f where f: "f \<in> set fs" and fg: "eq_m f g" by auto | |
from mon_fs f fs have irr_f: "irreducible\<^sub>d_m f" and mon_f: "monic f" and Mp_f: "Mp f = f" by auto | |
have deg: "degree_m g = degree g" | |
by (rule degree_m_eq_monic[OF mon_g m1]) | |
from irr_f fg have irr_g: "irreducible\<^sub>d_m g" | |
unfolding irreducible\<^sub>d_m_def dvdm_def by simp | |
have "q.irreducible\<^sub>d_m g" | |
by (rule irreducible\<^sub>d_lifting[OF n _ irr_g], unfold deg, rule q.degree_m_eq_monic[OF mon_g q.m1]) | |
note mon_g Mp_g deg irr_g this | |
} note g = this | |
{ | |
fix g | |
assume "g \<in> set gs" | |
from g[OF this] | |
show "monic g \<and> q.Mp g = g \<and> irreducible_m g \<and> degree_m g = degree g" by auto | |
} | |
show "sort (map degree fs) = sort (map degree gs)" | |
proof (rule sort_key_eq_sort_key) | |
have "mset (map degree fs) = image_mset degree (mset fs)" by auto | |
also have "\<dots> = image_mset degree (mset (map Mp gs))" unfolding gs_fs .. | |
also have "\<dots> = mset (map degree (map Mp gs))" unfolding mset_map .. | |
also have "map degree (map Mp gs) = map degree_m gs" by auto | |
also have "\<dots> = map degree gs" using g(3) by auto | |
finally show "mset (map degree fs) = mset (map degree gs)" . | |
qed auto | |
show "q.factorization_m f (lead_coeff f, mset gs)" | |
using eq g unfolding q.factorization_m_def by auto | |
qed | |
end | |
end | |
end | |