Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* #87: Desargues's theorem. *) | |
(* ========================================================================= *) | |
needs "Multivariate/cross.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* A lemma we want to justify some of the axioms. *) | |
(* ------------------------------------------------------------------------- *) | |
let NORMAL_EXISTS = prove | |
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN | |
MP_TAC(ISPEC `{u:real^3,v}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; DIMINDEX_3] THEN | |
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LET_TRANS THEN | |
EXISTS_TAC `CARD {u:real^3,v}` THEN CONJ_TAC THEN | |
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Type of directions. *) | |
(* ------------------------------------------------------------------------- *) | |
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir") | |
(MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);; | |
parse_as_infix("||",(11,"right"));; | |
parse_as_infix("_|_",(11,"right"));; | |
let perpdir = new_definition | |
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;; | |
let pardir = new_definition | |
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;; | |
let DIRECTION_CLAUSES = prove | |
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\ | |
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`, | |
MESON_TAC[direction_tybij]);; | |
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove) | |
(`(!x. x || x) /\ | |
(!x y. x || y <=> y || x) /\ | |
(!x y z. x || y /\ y || z ==> x || z)`, | |
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; | |
let PARDIR_EQUIV = prove | |
(`!x y. ((||) x = (||) y) <=> x || y`, | |
REWRITE_TAC[FUN_EQ_THM] THEN | |
MESON_TAC[PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS]);; | |
let DIRECTION_AXIOM_1 = prove | |
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\ | |
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_2 = prove | |
(`!l l'. ?p. p _|_ l /\ p _|_ l'`, | |
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN | |
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);; | |
let DIRECTION_AXIOM_3 = prove | |
(`?p p' p''. | |
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ | |
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY | |
(fun t -> EXISTS_TAC t THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_3; ARITH]) | |
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN | |
VEC3_TAC);; | |
let DIRECTION_AXIOM_4_WEAK = prove | |
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`, | |
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\ | |
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/ | |
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\ | |
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/ | |
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\ | |
~((l cross basis 2) cross (l cross basis 3) = vec 0)` | |
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);; | |
let ORTHOGONAL_COMBINE = prove | |
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b) | |
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`, | |
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN | |
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_4 = prove | |
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ | |
p _|_ l /\ p' _|_ l /\ p'' _|_ l`, | |
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);; | |
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;; | |
let PERPDIR_WELLDEF = prove | |
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; | |
let perpl,perpl_th = | |
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS) | |
"perpl" PERPDIR_WELLDEF;; | |
let line_lift_thm = lift_theorem line_tybij | |
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];; | |
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;; | |
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;; | |
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;; | |
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;; | |
let point_tybij = new_type_definition "point" ("mk_point","dest_point") | |
(prove(`?x:line. T`,REWRITE_TAC[]));; | |
parse_as_infix("on",(11,"right"));; | |
let on = new_definition `p on l <=> perpl (dest_point p) l`;; | |
let POINT_CLAUSES = prove | |
(`((p = p') <=> (dest_point p = dest_point p')) /\ | |
((!p. P (dest_point p)) <=> (!l. P l)) /\ | |
((?p. P (dest_point p)) <=> (?l. P l))`, | |
MESON_TAC[point_tybij]);; | |
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;; | |
let AXIOM_1 = prove | |
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\ | |
!l'. p on l' /\ p' on l' ==> (l' = l)`, | |
POINT_TAC LINE_AXIOM_1);; | |
let AXIOM_2 = prove | |
(`!l l'. ?p. p on l /\ p on l'`, | |
POINT_TAC LINE_AXIOM_2);; | |
let AXIOM_3 = prove | |
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
~(?l. p on l /\ p' on l /\ p'' on l)`, | |
POINT_TAC LINE_AXIOM_3);; | |
let AXIOM_4 = prove | |
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
p on l /\ p' on l /\ p'' on l`, | |
POINT_TAC LINE_AXIOM_4);; | |
(* ------------------------------------------------------------------------- *) | |
(* Mappings from vectors in R^3 to projective lines and points. *) | |
(* ------------------------------------------------------------------------- *) | |
let projl = new_definition | |
`projl x = mk_line((||) (mk_dir x))`;; | |
let projp = new_definition | |
`projp x = mk_point(projl x)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Mappings in the other direction, to (some) homogeneous coordinates. *) | |
(* ------------------------------------------------------------------------- *) | |
let PROJL_TOTAL = prove | |
(`!l. ?x. ~(x = vec 0) /\ l = projl x`, | |
GEN_TAC THEN | |
SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL | |
[MESON_TAC[fst line_tybij; snd line_tybij]; | |
REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN | |
MESON_TAC[direction_tybij]]);; | |
let homol = new_specification ["homol"] | |
(REWRITE_RULE[SKOLEM_THM] PROJL_TOTAL);; | |
let PROJP_TOTAL = prove | |
(`!p. ?x. ~(x = vec 0) /\ p = projp x`, | |
REWRITE_TAC[projp] THEN MESON_TAC[PROJL_TOTAL; point_tybij]);; | |
let homop_def = new_definition | |
`homop p = homol(dest_point p)`;; | |
let homop = prove | |
(`!p. ~(homop p = vec 0) /\ p = projp(homop p)`, | |
GEN_TAC THEN REWRITE_TAC[homop_def; projp; MESON[point_tybij] | |
`p = mk_point l <=> dest_point p = l`] THEN | |
MATCH_ACCEPT_TAC homol);; | |
(* ------------------------------------------------------------------------- *) | |
(* Key equivalences of concepts in projective space and homogeneous coords. *) | |
(* ------------------------------------------------------------------------- *) | |
let parallel = new_definition | |
`parallel x y <=> x cross y = vec 0`;; | |
let ON_HOMOL = prove | |
(`!p l. p on l <=> orthogonal (homop p) (homol l)`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN | |
REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN | |
REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN | |
MESON_TAC[homol; homop; direction_tybij]);; | |
let EQ_HOMOL = prove | |
(`!l l'. l = l' <=> parallel (homol l) (homol l')`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN | |
REWRITE_TAC[projl; MESON[fst line_tybij; snd line_tybij] | |
`mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN | |
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN | |
MESON_TAC[homol; direction_tybij]);; | |
let EQ_HOMOP = prove | |
(`!p p'. p = p' <=> parallel (homop p) (homop p')`, | |
REWRITE_TAC[homop_def; GSYM EQ_HOMOL] THEN | |
MESON_TAC[point_tybij]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A "welldefinedness" result for homogeneous coordinate map. *) | |
(* ------------------------------------------------------------------------- *) | |
let PARALLEL_PROJL_HOMOL = prove | |
(`!x. parallel x (homol(projl x))`, | |
GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN | |
ASM_REWRITE_TAC[CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN | |
REWRITE_TAC[MESON[fst line_tybij; snd line_tybij] | |
`dest_line(mk_line((||) l)) = (||) l`] THEN | |
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN | |
ASM_MESON_TAC[direction_tybij]);; | |
let PARALLEL_PROJP_HOMOP = prove | |
(`!x. parallel x (homop(projp x))`, | |
REWRITE_TAC[homop_def; projp; REWRITE_RULE[] point_tybij] THEN | |
REWRITE_TAC[PARALLEL_PROJL_HOMOL]);; | |
let PARALLEL_PROJP_HOMOP_EXPLICIT = prove | |
(`!x. ~(x = vec 0) ==> ?a. ~(a = &0) /\ homop(projp x) = a % x`, | |
MP_TAC PARALLEL_PROJP_HOMOP THEN MATCH_MP_TAC MONO_FORALL THEN | |
REWRITE_TAC[parallel; CROSS_EQ_0; COLLINEAR_LEMMA] THEN | |
GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN | |
ASM_REWRITE_TAC[homop] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `c:real` THEN ASM_CASES_TAC `c = &0` THEN | |
ASM_REWRITE_TAC[homop; VECTOR_MUL_LZERO]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Brackets, collinearity and their connection. *) | |
(* ------------------------------------------------------------------------- *) | |
let bracket = define | |
`bracket[a;b;c] = det(vector[homop a;homop b;homop c])`;; | |
let COLLINEAR = new_definition | |
`COLLINEAR s <=> ?l. !p. p IN s ==> p on l`;; | |
let COLLINEAR_SINGLETON = prove | |
(`!a. COLLINEAR {a}`, | |
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[AXIOM_1; AXIOM_3]);; | |
let COLLINEAR_PAIR = prove | |
(`!a b. COLLINEAR{a,b}`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:point = b` THEN | |
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SINGLETON] THEN | |
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[AXIOM_1]);; | |
let COLLINEAR_TRIPLE = prove | |
(`!a b c. COLLINEAR{a,b,c} <=> ?l. a on l /\ b on l /\ c on l`, | |
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY]);; | |
let COLLINEAR_BRACKET = prove | |
(`!p1 p2 p3. COLLINEAR {p1,p2,p3} <=> bracket[p1;p2;p3] = &0`, | |
let lemma = prove | |
(`!a b c x y. | |
x cross y = vec 0 /\ ~(x = vec 0) /\ | |
orthogonal a x /\ orthogonal b x /\ orthogonal c x | |
==> orthogonal a y /\ orthogonal b y /\ orthogonal c y`, | |
REWRITE_TAC[orthogonal] THEN VEC3_TAC) in | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[REWRITE_TAC[COLLINEAR_TRIPLE; bracket; ON_HOMOL; LEFT_IMP_EXISTS_THM] THEN | |
MP_TAC homol THEN MATCH_MP_TAC MONO_FORALL THEN | |
GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
REWRITE_TAC[DET_3; orthogonal; DOT_3; VECTOR_3; CART_EQ; | |
DIMINDEX_3; FORALL_3; VEC_COMPONENT] THEN | |
CONV_TAC REAL_RING; | |
ASM_CASES_TAC `p1:point = p2` THENL | |
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_PAIR]; ALL_TAC] THEN | |
POP_ASSUM MP_TAC THEN | |
REWRITE_TAC[parallel; COLLINEAR_TRIPLE; bracket; EQ_HOMOP; ON_HOMOL] THEN | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC `mk_line((||) (mk_dir(homop p1 cross homop p2)))` THEN | |
MATCH_MP_TAC lemma THEN EXISTS_TAC `homop p1 cross homop p2` THEN | |
ASM_REWRITE_TAC[ORTHOGONAL_CROSS] THEN | |
REWRITE_TAC[orthogonal] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN | |
ONCE_REWRITE_TAC[CROSS_TRIPLE] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN | |
ASM_REWRITE_TAC[DOT_CROSS_DET] THEN | |
REWRITE_TAC[GSYM projl; GSYM parallel; PARALLEL_PROJL_HOMOL]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Rather crude shuffling of bracket triple into canonical order. *) | |
(* ------------------------------------------------------------------------- *) | |
let BRACKET_SWAP,BRACKET_SHUFFLE = (CONJ_PAIR o prove) | |
(`bracket[x;y;z] = --bracket[x;z;y] /\ | |
bracket[x;y;z] = bracket[y;z;x] /\ | |
bracket[x;y;z] = bracket[z;x;y]`, | |
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);; | |
let BRACKET_SWAP_CONV = | |
let conv = GEN_REWRITE_CONV I [BRACKET_SWAP] in | |
fun tm -> let th = conv tm in | |
let tm' = rand(rand(concl th)) in | |
if term_order tm tm' then th else failwith "BRACKET_SWAP_CONV";; | |
(* ------------------------------------------------------------------------- *) | |
(* Direct proof following Richter-Gebert's "Meditations on Ceva's Theorem", *) | |
(* except for a change of variable names. The degenerate conditions here are *) | |
(* just those that naturally get used in the proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let DESARGUES_DIRECT = prove | |
(`~COLLINEAR {A',B,S} /\ | |
~COLLINEAR {A,P,C} /\ | |
~COLLINEAR {A,P,R} /\ | |
~COLLINEAR {A,C,B} /\ | |
~COLLINEAR {A,B,R} /\ | |
~COLLINEAR {C',P,A'} /\ | |
~COLLINEAR {C',P,B} /\ | |
~COLLINEAR {C',P,B'} /\ | |
~COLLINEAR {C',A',S} /\ | |
~COLLINEAR {C',A',B'} /\ | |
~COLLINEAR {P,C,A'} /\ | |
~COLLINEAR {P,C,B} /\ | |
~COLLINEAR {P,A',R} /\ | |
~COLLINEAR {P,B,Q} /\ | |
~COLLINEAR {P,Q,B'} /\ | |
~COLLINEAR {C,B,S} /\ | |
~COLLINEAR {A',Q,B'} | |
==> COLLINEAR {P,A',A} /\ | |
COLLINEAR {P,B,B'} /\ | |
COLLINEAR {P,C',C} /\ | |
COLLINEAR {B,C,Q} /\ | |
COLLINEAR {B',C',Q} /\ | |
COLLINEAR {A,R,C} /\ | |
COLLINEAR {A',C',R} /\ | |
COLLINEAR {B,S,A} /\ | |
COLLINEAR {A',S,B'} | |
==> COLLINEAR {Q,S,R}`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[COLLINEAR_BRACKET] THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`(bracket[P;A';A] = &0 | |
==> bracket[P;A';R] * bracket[P;A;C] = | |
bracket[P;A';C] * bracket[P;A;R]) /\ | |
(bracket[P;B;B'] = &0 | |
==> bracket[P;B;Q] * bracket[P;B';C'] = | |
bracket[P;B;C'] * bracket[P;B';Q]) /\ | |
(bracket[P;C';C] = &0 | |
==> bracket[P;C';B] * bracket[P;C;A'] = | |
bracket[P;C';A'] * bracket[P;C;B]) /\ | |
(bracket[B;C;Q] = &0 | |
==> bracket[B;C;P] * bracket[B;Q;S] = | |
bracket[B;C;S] * bracket[B;Q;P]) /\ | |
(bracket[B';C';Q] = &0 | |
==> bracket[B';C';A'] * bracket[B';Q;P] = | |
bracket[B';C';P] * bracket[B';Q;A']) /\ | |
(bracket[A;R;C] = &0 | |
==> bracket[A;R;P] * bracket[A;C;B] = | |
bracket[A;R;B] * bracket[A;C;P]) /\ | |
(bracket[A';C';R] = &0 | |
==> bracket[A';C';P] * bracket[A';R;S] = | |
bracket[A';C';S] * bracket[A';R;P]) /\ | |
(bracket[B;S;A] = &0 | |
==> bracket[B;S;C] * bracket[B;A;R] = | |
bracket[B;S;R] * bracket[B;A;C]) /\ | |
(bracket[A';S;B'] = &0 | |
==> bracket[A';S;C'] * bracket[A';B';Q] = | |
bracket[A';S;Q] * bracket[A';B';C'])` | |
MP_TAC THENL | |
[REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING; | |
ALL_TAC] THEN | |
REPEAT(MATCH_MP_TAC(TAUT | |
`(c ==> d ==> b ==> e) ==> ((a ==> b) /\ c ==> a /\ d ==> e)`)) THEN | |
DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o MATCH_MP th)) THEN | |
REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING | |
`a = b /\ x:real = y ==> a * x = b * y`))) THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[BRACKET_SHUFFLE] THEN | |
CONV_TAC(ONCE_DEPTH_CONV BRACKET_SWAP_CONV) THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN | |
REWRITE_TAC[REAL_NEG_NEG; REAL_NEG_EQ_0] THEN DISCH_TAC THEN | |
MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN | |
EXISTS_TAC `bracket[B;Q;S] * bracket[A';R;S] = | |
bracket[B;R;S] * bracket[A';Q;S]` THEN | |
CONJ_TAC THENL [POP_ASSUM MP_TAC THEN CONV_TAC REAL_RING; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN | |
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);; | |