Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Theorems about representations as sums of 2 and 4 squares. *) | |
(* ========================================================================= *) | |
needs "Library/prime.ml";; | |
needs "Library/analysis.ml";; (*** only for REAL_ARCH_LEAST! ***) | |
prioritize_num();; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of involution and various basic lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let involution = new_definition | |
`involution f s = !x. x IN s ==> f(x) IN s /\ (f(f(x)) = x)`;; | |
let INVOLUTION_IMAGE = prove | |
(`!f s. involution f s ==> (IMAGE f s = s)`, | |
REWRITE_TAC[involution; EXTENSION; IN_IMAGE] THEN MESON_TAC[]);; | |
let INVOLUTION_DELETE = prove | |
(`involution f s /\ a IN s /\ (f a = a) ==> involution f (s DELETE a)`, | |
REWRITE_TAC[involution; IN_DELETE] THEN MESON_TAC[]);; | |
let INVOLUTION_STEPDOWN = prove | |
(`involution f s /\ a IN s ==> involution f (s DIFF {a, (f a)})`, | |
REWRITE_TAC[involution; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; | |
let INVOLUTION_NOFIXES = prove | |
(`involution f s ==> involution f {x | x IN s /\ ~(f x = x)}`, | |
REWRITE_TAC[involution; IN_ELIM_THM] THEN MESON_TAC[]);; | |
let INVOLUTION_SUBSET = prove | |
(`!f s t. involution f s /\ (!x. x IN t ==> f(x) IN t) /\ t SUBSET s | |
==> involution f t`, | |
REWRITE_TAC[involution; SUBSET] THEN MESON_TAC[]);; | |
let INVOLUTION_EVEN = prove | |
(`!s. FINITE(s) /\ involution f s /\ (!x:A. x IN s ==> ~(f x = x)) | |
==> EVEN(CARD s)`, | |
REWRITE_TAC[involution] THEN MESON_TAC[INVOLUTION_EVEN_NOFIXPOINTS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* So an involution with exactly one fixpoint has odd card domain. *) | |
(* ------------------------------------------------------------------------- *) | |
let INVOLUTION_FIX_ODD = prove | |
(`FINITE(s) /\ involution f s /\ (?!a:A. a IN s /\ (f a = a)) | |
==> ODD(CARD s)`, | |
REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[CARD_CLAUSES; FINITE_DELETE; IN_DELETE; ODD; NOT_ODD] THEN | |
MATCH_MP_TAC INVOLUTION_EVEN THEN | |
ASM_SIMP_TAC[INVOLUTION_DELETE; FINITE_DELETE; IN_DELETE] THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And an involution on a set of odd finite card must have a fixpoint. *) | |
(* ------------------------------------------------------------------------- *) | |
let INVOLUTION_ODD = prove | |
(`!n s. FINITE(s) /\ involution f s /\ ODD(CARD s) | |
==> ?a. a IN s /\ (f a = a)`, | |
REWRITE_TAC[GSYM NOT_EVEN] THEN MESON_TAC[INVOLUTION_EVEN]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Consequently, if one involution has a unique fixpoint, other has one. *) | |
(* ------------------------------------------------------------------------- *) | |
let INVOLUTION_FIX_FIX = prove | |
(`!f g s. FINITE(s) /\ involution f s /\ involution g s /\ | |
(?!x. x IN s /\ (f x = x)) ==> ?x. x IN s /\ (g x = x)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC INVOLUTION_ODD THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INVOLUTION_FIX_ODD THEN | |
ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Formalization of Zagier's "one-sentence" proof over the natural numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
let zset = new_definition | |
`zset(a) = {(x,y,z) | x EXP 2 + 4 * y * z = a}`;; | |
let zag = new_definition | |
`zag(x,y,z) = | |
if x + z < y then (x + 2 * z,z,y - (x + z)) | |
else if x < 2 * y then (2 * y - x, y, (x + z) - y) | |
else (x - 2 * y,(x + z) - y, y)`;; | |
let tag = new_definition | |
`tag((x,y,z):num#num#num) = (x,z,y)`;; | |
let ZAG_INVOLUTION_GENERAL = prove | |
(`0 < x /\ 0 < y /\ 0 < z ==> (zag(zag(x,y,z)) = (x,y,z))`, | |
REWRITE_TAC[zag] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REWRITE_TAC[zag] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REWRITE_TAC[PAIR_EQ] THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);; | |
let IN_TRIPLE = prove | |
(`(a,b,c) IN {(x,y,z) | P x y z} <=> P a b c`, | |
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN MESON_TAC[]);; | |
let PRIME_SQUARE = prove | |
(`!n. ~prime(n * n)`, | |
GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN | |
ASM_REWRITE_TAC[PRIME_0; MULT_CLAUSES] THEN | |
REWRITE_TAC[prime; NOT_FORALL_THM; DE_MORGAN_THM] THEN | |
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[ARITH] THEN | |
DISJ2_TAC THEN EXISTS_TAC `n:num` THEN | |
ASM_SIMP_TAC[DIVIDES_LMUL; DIVIDES_REFL] THEN | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [ARITH_RULE `n = n * 1`] THEN | |
ASM_SIMP_TAC[EQ_MULT_LCANCEL]);; | |
let PRIME_4X = prove | |
(`!n. ~prime(4 * n)`, | |
GEN_TAC THEN REWRITE_TAC[prime; NOT_FORALL_THM; DE_MORGAN_THM] THEN | |
DISJ2_TAC THEN EXISTS_TAC `2` THEN | |
SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 * 2`)) THEN | |
ASM_SIMP_TAC[GSYM MULT_ASSOC; DIVIDES_RMUL; DIVIDES_REFL; ARITH_EQ] THEN | |
ASM_CASES_TAC `n = 0` THEN POP_ASSUM MP_TAC THEN ARITH_TAC);; | |
let PRIME_XYZ_NONZERO = prove | |
(`prime(x EXP 2 + 4 * y * z) ==> 0 < x /\ 0 < y /\ 0 < z`, | |
CONV_TAC CONTRAPOS_CONV THEN | |
REWRITE_TAC[DE_MORGAN_THM; ARITH_RULE `~(0 < x) = (x = 0)`] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN | |
REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES; PRIME_SQUARE; PRIME_4X]);; | |
let ZAG_INVOLUTION = prove | |
(`!p. prime(p) ==> involution zag (zset(p))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[involution; FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN | |
REWRITE_TAC[zset; IN_TRIPLE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[zag] THEN REPEAT COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[IN_TRIPLE] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN | |
ASM_SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD; EXP_2; | |
GSYM INT_OF_NUM_MUL; GSYM INT_OF_NUM_SUB; LT_IMP_LE] THEN | |
INT_ARITH_TAC; | |
MATCH_MP_TAC ZAG_INVOLUTION_GENERAL THEN | |
ASM_MESON_TAC[PRIME_XYZ_NONZERO]]);; | |
let TAG_INVOLUTION = prove | |
(`!a. involution tag (zset a)`, | |
REWRITE_TAC[involution; tag; zset; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[IN_TRIPLE] THEN REWRITE_TAC[MULT_AC]);; | |
let ZAG_LEMMA = prove | |
(`(zag(x,y,z) = (x,y,z)) ==> (y = x)`, | |
REWRITE_TAC[zag; INT_POW_2] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[PAIR_EQ]) THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);; | |
let ZSET_BOUND = prove | |
(`0 < y /\ 0 < z /\ (x EXP 2 + 4 * y * z = p) | |
==> x <= p /\ y <= p /\ z <= p`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN CONJ_TAC THENL | |
[MESON_TAC[EXP_2; LE_SQUARE_REFL; ARITH_RULE `(a <= b ==> a <= b + c)`]; | |
CONJ_TAC THEN MATCH_MP_TAC(ARITH_RULE `y <= z ==> y <= x + z`) THENL | |
[GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [MULT_SYM]; ALL_TAC] THEN | |
REWRITE_TAC[ARITH_RULE `y <= 4 * a * y <=> 1 * y <= (4 * a) * y`] THEN | |
ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN | |
ASM_SIMP_TAC[ARITH_RULE `0 < a ==> 1 <= 4 * a`]]);; | |
let ZSET_FINITE = prove | |
(`!p. prime(p) ==> FINITE(zset p)`, | |
GEN_TAC THEN DISCH_TAC THEN | |
MP_TAC(SPEC `p + 1` FINITE_NUMSEG_LT) THEN | |
DISCH_THEN(fun th -> | |
MP_TAC(funpow 2 (MATCH_MP FINITE_PRODUCT o CONJ th) th)) THEN | |
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`] | |
FINITE_SUBSET) THEN | |
REWRITE_TAC[zset; SUBSET; FORALL_PAIR_THM; IN_TRIPLE] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN | |
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; PAIR_EQ] THEN | |
REWRITE_TAC[ARITH_RULE `x < p + 1 <=> x <= p`; PAIR_EQ] THEN | |
DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:num`; `y:num`; `z:num`] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
MAP_EVERY EXISTS_TAC [`y:num`; `z:num`] THEN REWRITE_TAC[] THEN | |
ASM_MESON_TAC[ZSET_BOUND; PRIME_XYZ_NONZERO]);; | |
let SUM_OF_TWO_SQUARES = prove | |
(`!p k. prime(p) /\ (p = 4 * k + 1) ==> ?x y. p = x EXP 2 + y EXP 2`, | |
SIMP_TAC[] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?t. t IN zset(p) /\ (tag(t) = t)` MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM; tag; PAIR_EQ] THEN | |
REWRITE_TAC[zset; IN_TRIPLE; EXP_2] THEN | |
ASM_MESON_TAC[ARITH_RULE `4 * x * y = (2 * x) * (2 * y)`]] THEN | |
MATCH_MP_TAC INVOLUTION_FIX_FIX THEN EXISTS_TAC `zag` THEN | |
ASM_SIMP_TAC[ZAG_INVOLUTION; TAG_INVOLUTION; ZSET_FINITE] THEN | |
REWRITE_TAC[EXISTS_UNIQUE_ALT] THEN EXISTS_TAC `1,1,k:num` THEN | |
REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN EQ_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[zset; zag; IN_TRIPLE; ARITH] THEN | |
REWRITE_TAC[MULT_CLAUSES; ARITH_RULE `~(1 + k < 1)`; PAIR_EQ] THEN | |
ARITH_TAC] THEN | |
REWRITE_TAC[zset; IN_TRIPLE] THEN STRIP_TAC THEN | |
FIRST_ASSUM(SUBST_ALL_TAC o MATCH_MP ZAG_LEMMA) THEN | |
UNDISCH_TAC `x EXP 2 + 4 * x * z = 4 * k + 1` THEN | |
REWRITE_TAC[EXP_2; ARITH_RULE `x * x + 4 * x * z = x * (4 * z + x)`] THEN | |
DISCH_THEN(ASSUME_TAC o SYM) THEN UNDISCH_TAC `prime p` THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[prime] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:num`)) THEN | |
SIMP_TAC[DIVIDES_RMUL; DIVIDES_REFL] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL | |
[UNDISCH_TAC `4 * k + 1 = 1 * (4 * z + 1)` THEN | |
REWRITE_TAC[MULT_CLAUSES; PAIR_EQ] THEN ARITH_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `(a = a * b) = (a * b = a * 1)`] THEN | |
ASM_SIMP_TAC[EQ_MULT_LCANCEL] THEN STRIP_TAC THENL | |
[UNDISCH_TAC `4 * k + 1 = x * (4 * z + x)` THEN | |
ASM_REWRITE_TAC[MULT_CLAUSES; ADD_EQ_0; ARITH_EQ]; | |
UNDISCH_TAC `4 * z + x = 1` THEN REWRITE_TAC[PAIR_EQ] THEN | |
ASM_CASES_TAC `z = 0` THENL | |
[ALL_TAC; UNDISCH_TAC `~(z = 0)` THEN ARITH_TAC] THEN | |
UNDISCH_TAC `4 * k + 1 = x * (4 * z + x)` THEN | |
ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN | |
ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[MULT_CLAUSES] THEN ARITH_TAC]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* General pigeonhole lemma. *) | |
(* ------------------------------------------------------------------------- *) | |
let PIGEONHOLE_LEMMA = prove | |
(`!f:A->B g s t. | |
FINITE(s) /\ FINITE(t) /\ | |
(!x. x IN s ==> f(x) IN t) /\ | |
(!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) /\ | |
(!x. x IN s ==> g(x) IN t) /\ | |
(!x y. x IN s /\ y IN s /\ (g x = g y) ==> (x = y)) /\ | |
CARD(t) < 2 * CARD(s) | |
==> ?x y. x IN s /\ y IN s /\ (f x = g y)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`IMAGE (f:A->B) s`; `IMAGE (g:A->B) s`] CARD_UNION) THEN | |
SUBGOAL_THEN `(CARD(IMAGE (f:A->B) s) = CARD s) /\ | |
(CARD(IMAGE (g:A->B) s) = CARD s)` | |
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CARD_IMAGE_INJ]; ALL_TAC] THEN | |
ASM_SIMP_TAC[FINITE_IMAGE] THEN | |
MATCH_MP_TAC(TAUT `(~a ==> c) /\ ~b ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_INTER; IN_IMAGE; NOT_IN_EMPTY] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC(ARITH_RULE `!t. t < 2 * s /\ p <= t ==> ~(p = s + s)`) THEN | |
EXISTS_TAC `CARD(t:B->bool)` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[SUBSET; IN_UNION; IN_IMAGE] THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* In particular, consider functions out of 0...(p-1)/2, mod p. *) | |
(* ------------------------------------------------------------------------- *) | |
let PIGEONHOLE_LEMMA_P12 = prove | |
(`!f g p. | |
ODD(p) /\ | |
(!x. 2 * x < p ==> f(x) < p) /\ | |
(!x y. 2 * x < p /\ 2 * y < p /\ (f x = f y) ==> (x = y)) /\ | |
(!x. 2 * x < p ==> g(x) < p) /\ | |
(!x y. 2 * x < p /\ 2 * y < p /\ (g x = g y) ==> (x = y)) | |
==> ?x y. 2 * x < p /\ 2 * y < p /\ (f x = g y)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[ODD_EXISTS] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `k:num` SUBST1_TAC) THEN | |
MP_TAC(ISPECL [`f:num->num`; `g:num->num`; | |
`{x:num | 2 * x < 2 * k + 1}`; `{x:num | x < 2 * k + 1}`] | |
PIGEONHOLE_LEMMA) THEN | |
REWRITE_TAC[ADD1; ARITH_RULE `2 * x < 2 * k + 1 <=> x < k + 1`] THEN | |
REWRITE_TAC[FINITE_NUMSEG_LT; CARD_NUMSEG_LT] THEN | |
REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `2 * k + 1 < 2 * (k + 1)`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that \x. x^2 + a (mod p) satisfies the conditions. *) | |
(* ------------------------------------------------------------------------- *) | |
let SQUAREMOD_INJ_LEMMA = prove | |
(`!p x d. prime(p) /\ 2 * (x + d) < p /\ | |
((x + d) * (x + d) + m * p = x * x + n * p) | |
==> (d = 0)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `p divides d \/ p divides (2 * x + d)` MP_TAC THENL | |
[MATCH_MP_TAC PRIME_DIVPROD THEN ASM_REWRITE_TAC[divides] THEN | |
EXISTS_TAC `n - m:num` THEN REWRITE_TAC[LEFT_SUB_DISTRIB] THEN | |
MATCH_MP_TAC(ARITH_RULE `!a:num. (a + b + d = a + c) ==> (b = c - d)`) THEN | |
EXISTS_TAC `x * x:num` THEN ONCE_REWRITE_TAC[MULT_SYM] THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM) THEN ARITH_TAC; | |
DISCH_THEN(DISJ_CASES_THEN(MP_TAC o MATCH_MP DIVIDES_LE)) THEN | |
SIMP_TAC[ADD_EQ_0] THEN UNDISCH_TAC `2 * (x + d) < p` THEN ARITH_TAC]);; | |
let SQUAREMOD_INJ = prove | |
(`!p. prime(p) | |
==> (!x. 2 * x < p ==> (x EXP 2 + a) MOD p < p) /\ | |
(!x y. 2 * x < p /\ 2 * y < p /\ | |
((x EXP 2 + a) MOD p = (y EXP 2 + a) MOD p) | |
==> (x = y))`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `x < a ==> ~(a = 0)`)) THEN | |
ASM_SIMP_TAC[DIVISION] THEN | |
SUBGOAL_THEN | |
`(x EXP 2 + a = (x EXP 2 + a) DIV p * p + (x EXP 2 + a) MOD p) /\ | |
(y EXP 2 + a = (y EXP 2 + a) DIV p * p + (y EXP 2 + a) MOD p)` | |
MP_TAC THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE | |
`(x2 + a = xp + b:num) /\ (y2 + a = yp + b) | |
==> (x2 + yp = y2 + xp)`)) THEN | |
DISJ_CASES_THEN MP_TAC (SPECL [`x:num`; `y:num`] LE_CASES) THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o | |
REWRITE_RULE[LE_EXISTS]) | |
THENL [ONCE_REWRITE_TAC[EQ_SYM_EQ]; ALL_TAC] THEN | |
REWRITE_TAC[EXP_2; ARITH_RULE `(x + d = x) = (d = 0)`] THEN | |
ASM_MESON_TAC[SQUAREMOD_INJ_LEMMA]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that also a reflection mod p retains this property. *) | |
(* ------------------------------------------------------------------------- *) | |
let REFLECT_INJ = prove | |
(`(!x. 2 * x < p ==> f(x) < p) /\ | |
(!x y. 2 * x < p /\ 2 * y < p /\ (f x = f y) ==> (x = y)) | |
==> (!x. 2 * x < p ==> p - 1 - f(x) < p) /\ | |
(!x y. 2 * x < p /\ 2 * y < p /\ (p - 1 - f(x) = p - 1 - f(y)) | |
==> (x = y))`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[ARITH_RULE `2 * x < p ==> p - 1 - y < p`] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`x < p /\ y < p /\ (p - 1 - x = p - 1 - y) ==> (x = y)`) THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the main result. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAGRANGE_LEMMA_ODD = prove | |
(`!a p. prime(p) /\ ODD(p) | |
==> ?n x y. 2 * x < p /\ 2 * y < p /\ | |
(n * p = x EXP 2 + y EXP 2 + a + 1)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[ODD]; ALL_TAC] THEN | |
MP_TAC(ISPECL [`\x. (x EXP 2 + a) MOD p`; | |
`\x. p - 1 - (x EXP 2 + 0) MOD p`; `p:num`] | |
PIGEONHOLE_LEMMA_P12) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT | |
`(a /\ b) /\ (c /\ d) ==> a /\ b /\ c /\ d`) THEN | |
CONJ_TAC THENL | |
[ALL_TAC; MATCH_MP_TAC REFLECT_INJ] THEN | |
ASM_MESON_TAC[SQUAREMOD_INJ]; ALL_TAC] THEN | |
STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE | |
`(x = p - 1 - y) ==> y < p ==> (x + y + 1 = p)`)) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(MOD)`) THEN | |
SUBGOAL_THEN | |
`((x EXP 2 + a) MOD p + (y EXP 2 + 0) MOD p + 1) MOD p = | |
(x EXP 2 + y EXP 2 + a + 1) MOD p` | |
SUBST1_TAC THENL | |
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN | |
EXISTS_TAC `(x EXP 2 + a) DIV p + (y EXP 2) DIV p` THEN | |
REWRITE_TAC[ADD_CLAUSES] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`(x2 + a = xd * p + xm) /\ (y2 = yd * p + ym) | |
==> (x2 + y2 + a + 1 = (xm + ym + 1) + (xd + yd) * p)`) THEN | |
ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN | |
SUBGOAL_THEN `p MOD p = 0` SUBST1_TAC THENL | |
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN | |
UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN | |
DISCH_TAC THEN MAP_EVERY EXISTS_TAC | |
[`(x EXP 2 + y EXP 2 + a + 1) DIV p`; `x:num`; `y:num`] THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `x EXP 2 + y EXP 2 + a + 1` o | |
MATCH_MP DIVISION) THEN | |
ASM_REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Avoid the additional conditions. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAGRANGE_LEMMA = prove | |
(`!a p. prime(p) | |
==> ?n x y. 2 * x <= p /\ 2 * y <= p /\ | |
(n * p = x EXP 2 + y EXP 2 + a)`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `EVEN(p)` THENL | |
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [prime]) THEN | |
DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[EVEN_EXISTS; divides]; ALL_TAC] THEN | |
REWRITE_TAC[ARITH_EQ] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN | |
ASM_CASES_TAC `EVEN(a)` THENL | |
[UNDISCH_TAC `EVEN a` THEN REWRITE_TAC[EVEN_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN | |
MAP_EVERY EXISTS_TAC [`k:num`; `0`; `0`] THEN | |
REWRITE_TAC[ARITH; ADD_CLAUSES] THEN ARITH_TAC; | |
UNDISCH_TAC `~(EVEN(a))` THEN REWRITE_TAC[NOT_EVEN; ODD_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN | |
MAP_EVERY EXISTS_TAC [`k + 1`; `1`; `0`] THEN | |
REWRITE_TAC[ARITH; ADD_CLAUSES] THEN ARITH_TAC]; | |
ASM_CASES_TAC `a = 0` THENL | |
[MAP_EVERY EXISTS_TAC [`0`; `0`; `0`] THEN | |
ASM_REWRITE_TAC[LE_0; ADD_CLAUSES; MULT_CLAUSES; EXP_2]; ALL_TAC] THEN | |
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE | |
`~(a = 0) ==> (a = (a - 1) + 1)`)) THEN | |
MP_TAC(SPECL [`a - 1`; `p:num`] LAGRANGE_LEMMA_ODD) THEN | |
ASM_REWRITE_TAC[GSYM NOT_EVEN] THEN MESON_TAC[LT_IMP_LE]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Aubrey's lemma showing that rationals suffice for sums of 4 squares. *) | |
(* ------------------------------------------------------------------------- *) | |
prioritize_real();; | |
let REAL_INTEGER_CLOSURES = prove | |
(`(!n. ?p. abs(&n) = &p) /\ | |
(!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x + y) = &p) /\ | |
(!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x - y) = &p) /\ | |
(!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x * y) = &p) /\ | |
(!x r. (?n. abs(x) = &n) ==> ?p. abs(x pow r) = &p) /\ | |
(!x. (?n. abs(x) = &n) ==> ?p. abs(--x) = &p) /\ | |
(!x. (?n. abs(x) = &n) ==> ?p. abs(abs x) = &p)`, | |
MATCH_MP_TAC(TAUT | |
`x /\ c /\ d /\ e /\ f /\ (a /\ e ==> b) /\ a | |
==> x /\ a /\ b /\ c /\ d /\ e /\ f`) THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[REAL_ABS_NUM] THEN MESON_TAC[]; | |
REWRITE_TAC[REAL_ABS_MUL] THEN MESON_TAC[REAL_OF_NUM_MUL]; | |
REWRITE_TAC[REAL_ABS_POW] THEN MESON_TAC[REAL_OF_NUM_POW]; | |
REWRITE_TAC[REAL_ABS_NEG]; REWRITE_TAC[REAL_ABS_ABS]; | |
REWRITE_TAC[real_sub] THEN MESON_TAC[]; ALL_TAC] THEN | |
SIMP_TAC[REAL_ARITH `&0 <= a ==> ((abs(x) = a) <=> (x = a) \/ (x = --a))`; | |
REAL_POS] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_OF_NUM_ADD] THENL | |
[MESON_TAC[]; ALL_TAC; ALL_TAC; MESON_TAC[]] THEN | |
REWRITE_TAC[REAL_ARITH `(--a + b = c) <=> (a + c = b)`; | |
REAL_ARITH `(a + --b = c) <=> (b + c = a)`] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
MESON_TAC[LE_EXISTS; ADD_SYM; LE_CASES]);; | |
let REAL_NUM_ROUND = prove | |
(`!x. &0 <= x ==> ?n. abs(x - &n) <= &1 / &2`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (MATCH_MP REAL_ARCH_LEAST REAL_LT_01)) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_MUL_RID] THEN | |
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH | |
`a <= x /\ x < a + &1 | |
==> abs(x - a) * &2 <= &1 \/ abs(x - (a + &1)) * &2 <= &1`)) THEN | |
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN | |
MESON_TAC[REAL_OF_NUM_ADD]);; | |
let REAL_POS_ABS_MIDDLE = prove | |
(`!x n. &0 <= x /\ (abs(x - &n) = &1 / &2) | |
==> (x = &(n - 1) + &1 / &2) \/ (x = &n + &1 / &2)`, | |
REPEAT GEN_TAC THEN | |
MP_TAC(SPECL [`1`; `n:num`] REAL_OF_NUM_SUB) THEN | |
DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 1 <= n`) THEN | |
ASM_REWRITE_TAC[ARITH] THENL | |
[MP_TAC(REAL_RAT_REDUCE_CONV `&0 <= &1 / &2`) THEN REAL_ARITH_TAC; | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
REWRITE_TAC[REAL_ARITH `n - &1 + a = n - (&1 - a)`] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN REAL_ARITH_TAC]);; | |
let REAL_RAT_ABS_MIDDLE = prove | |
(`!m n p. (abs(&m / &p - &n) = &1 / &2) | |
==> (&m / &p = &(n - 1) + &1 / &2) \/ (&m / &p = &n + &1 / &2)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POS_ABS_MIDDLE THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS]);; | |
let AUBREY_LEMMA_4 = prove | |
(`!m n p q r. | |
~(m = 0) /\ ~(m = 1) /\ | |
((&n / &m) pow 2 + (&p / &m) pow 2 + | |
(&q / &m) pow 2 + (&r / &m) pow 2 = &N) | |
==> ?m' n' p' q' r'. | |
~(m' = 0) /\ m' < m /\ | |
((&n' / &m') pow 2 + (&p' / &m') pow 2 + | |
(&q' / &m') pow 2 + (&r' / &m') pow 2 = &N)`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`?n' p' q' r'. | |
(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 + | |
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 < &1 \/ | |
(((&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 + | |
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 = &1) /\ | |
(m = 2) /\ (EVEN(n' + p' + q' + r') = EVEN(N)))` | |
MP_TAC THENL | |
[ASM_CASES_TAC | |
`?n' p' q' r'. (&n / &m = &n' + &1 / &2) /\ | |
(&p / &m = &p' + &1 / &2) /\ | |
(&q / &m = &q' + &1 / &2) /\ | |
(&r / &m = &r' + &1 / &2)` THENL | |
[FIRST_X_ASSUM(CHOOSE_THEN STRIP_ASSUME_TAC) THEN | |
MAP_EVERY EXISTS_TAC [`n':num`; `p':num`; `q':num`] THEN | |
SUBGOAL_THEN `m = 2` SUBST_ALL_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL | |
[`2`; `2 * n' + 1`; `2 * p' + 1`; `2 * q' + 1`; `2 * r' + 1`]) THEN | |
REWRITE_TAC[ARITH_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN | |
REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN | |
REWRITE_TAC[GSYM real_div] THEN | |
SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ] THEN | |
REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN | |
REWRITE_TAC[] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
ARITH_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `(EVEN(n' + p' + q' + r') <=> EVEN(N)) \/ | |
(EVEN(n' + p' + q' + r' + 1) <=> EVEN(N))` | |
DISJ_CASES_TAC THENL | |
[REWRITE_TAC[EVEN_ADD; ARITH_EVEN] THEN CONV_TAC TAUT; | |
EXISTS_TAC `r':num` THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - a = b`] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV; | |
EXISTS_TAC `r' + 1` THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - a = b`] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - (a + c) = b - c`] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV]; | |
ALL_TAC] THEN | |
MAP_EVERY (fun t -> MP_TAC(SPEC t REAL_NUM_ROUND)) | |
[`&n / &m`; `&p / &m`; `&q / &m`; `&r / &m`] THEN | |
SIMP_TAC[REAL_LE_DIV; REAL_POS] THEN | |
MAP_EVERY (fun t -> DISCH_THEN(X_CHOOSE_TAC t)) | |
[`r':num`; `q':num`; `p':num`; `n':num`] THEN | |
MAP_EVERY EXISTS_TAC [`n':num`; `p':num`; `q':num`; `r':num`] THEN | |
DISJ1_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`!m. a <= m /\ b <= m /\ c <= m /\ d <= m /\ | |
~((a = m) /\ (b = m) /\ (c = m) /\ (d = m)) /\ | |
&4 * m <= &1 | |
==> a + b + c + d < &1`) THEN | |
EXISTS_TAC `(&1 / &2) pow 2` THEN | |
ONCE_REWRITE_TAC[SYM(SPEC `a - b` REAL_POW2_ABS)] THEN | |
ASM_SIMP_TAC[REAL_POW_LE2; REAL_ABS_POS; REAL_LE_DIV; REAL_POS] THEN | |
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_ARITH | |
`(a * a = b * b) <=> ((a + b) * (a - b) = &0)`] THEN | |
REWRITE_TAC[REAL_ENTIRE] THEN | |
SIMP_TAC[REAL_ARITH `&0 <= x /\ &0 < y ==> ~(x + y = &0)`; | |
REAL_ABS_POS; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN | |
REWRITE_TAC[REAL_SUB_0] THEN | |
FIRST_ASSUM(MP_TAC o check (is_neg o concl)) THEN | |
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN | |
(MP_TAC o MATCH_MP REAL_RAT_ABS_MIDDLE)) THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(K ALL_TAC o check (is_forall o concl)) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`n':num`; `p':num`; `q':num`; `r':num`] THEN | |
DISCH_TAC THEN | |
ABBREV_TAC `s = &n - &m * &n'` THEN | |
ABBREV_TAC `t = &p - &m * &p'` THEN | |
ABBREV_TAC `u = &q - &m * &q'` THEN | |
ABBREV_TAC `v = &r - &m * &r'` THEN | |
ABBREV_TAC `N' = n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2` THEN | |
UNDISCH_TAC `n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2 = N'` THEN | |
DISCH_THEN(ASSUME_TAC o REWRITE_RULE | |
[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW]) THEN | |
ABBREV_TAC `M = 2 * (n * n' + p * p' + q * q' + r * r')` THEN | |
UNDISCH_TAC `2 * (n * n' + p * p' + q * q' + r * r') = M` THEN | |
DISCH_THEN(ASSUME_TAC o REWRITE_RULE | |
[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL; | |
GSYM REAL_OF_NUM_POW]) THEN | |
ASM_CASES_TAC `(&n / &m = &n') /\ (&p / &m = &p') /\ | |
(&q / &m = &q') /\ (&r / &m = &r')` THENL | |
[MAP_EVERY EXISTS_TAC [`1`; `n':num`; `p':num`; `q':num`; `r':num`] THEN | |
REWRITE_TAC[ARITH_EQ; REAL_DIV_1] THEN CONJ_TAC THENL | |
[UNDISCH_TAC `~(m = 0)` THEN UNDISCH_TAC `~(m = 1)` THEN ARITH_TAC; | |
UNDISCH_THEN | |
`(&n / &m) pow 2 + (&p / &m) pow 2 + | |
(&q / &m) pow 2 + (&r / &m) pow 2 = &N` | |
(SUBST1_TAC o SYM) THEN | |
ASM_REWRITE_TAC[]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `&0 < (&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 + | |
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2` | |
MP_TAC THENL | |
[MATCH_MP_TAC(REAL_ARITH | |
`&0 <= w /\ &0 <= x /\ &0 <= y /\ &0 <= z /\ | |
~((w = &0) /\ (x = &0) /\ (y = &0) /\ (z = &0)) | |
==> &0 < w + x + y + z`) THEN | |
REWRITE_TAC[REAL_POW_2; REAL_ENTIRE; REAL_LE_SQUARE] THEN | |
ASM_REWRITE_TAC[REAL_SUB_0]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o check (is_disj o concl)) THEN | |
SUBGOAL_THEN | |
`(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 + | |
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 = | |
(s pow 2 + t pow 2 + u pow 2 + v pow 2) / &m pow 2` | |
MP_TAC THENL | |
[MATCH_MP_TAC REAL_EQ_RCANCEL_IMP THEN EXISTS_TAC `&m pow 2` THEN | |
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM REAL_POW_MUL; REAL_SUB_RDISTRIB] THEN | |
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 + | |
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 = | |
(&N + &N') - &M / &m` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC REAL_EQ_RCANCEL_IMP THEN EXISTS_TAC `&m pow 2` THEN | |
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[GSYM(ASSUME `(&n / &m) pow 2 + (&p / &m) pow 2 + | |
(&q / &m) pow 2 + (&r / &m) pow 2 = &N`); | |
GSYM(ASSUME `&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`); | |
GSYM(ASSUME | |
`&2 * (&n * &n' + &p * &p' + &q * &q' + &r * &r') = &M`)] THEN | |
REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM REAL_POW_MUL; REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_MUL_ASSOC] THEN | |
SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; ASSUME `~(m = 0)`] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; ASSUME `~(m = 0)`] THEN | |
REAL_ARITH_TAC; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[REAL_ARITH `(a + b) - c < &1 <=> (a + b) - &1 < c`; | |
REAL_ARITH `((a + b) - c = &1) <=> ((a + b) - &1 = c)`; | |
REAL_ARITH `&0 < a - b <=> b < a`] THEN | |
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_EQ_RDIV_EQ; REAL_OF_NUM_LT; | |
ARITH_RULE `0 < n <=> ~(n = 0)`; ASSUME `~(m = 0)`] THEN | |
REWRITE_TAC[REAL_ARITH `(a - &1) * m < M <=> a * m - M < m`; | |
REAL_ARITH `((a - &1) * m = M) <=> (a * m - M = m)`] THEN | |
REPEAT DISCH_TAC THEN | |
UNDISCH_TAC `(&N + &N') - &M / &m = | |
(s pow 2 + t pow 2 + u pow 2 + v pow 2) / &m pow 2` THEN | |
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; | |
ARITH_RULE `0 < a <=> ~(a = 0)`] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_SUB_RDISTRIB; REAL_MUL_ASSOC] THEN | |
ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; GSYM REAL_POW_2] THEN | |
ABBREV_TAC `m':num = (N + N') * m - M` THEN | |
SUBGOAL_THEN `(&N + &N') * &m - &M = &m'` | |
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th) | |
THENL | |
[EXPAND_TAC "m'" THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL] THEN | |
MATCH_MP_TAC REAL_OF_NUM_SUB THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD; GSYM | |
REAL_OF_NUM_MUL] THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[GSYM REAL_SUB_RDISTRIB] THEN | |
DISCH_THEN(ASSUME_TAC o GSYM) THEN | |
SUBGOAL_THEN `~(m' = 0)` ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[GSYM(ASSUME `(&N + &N') * &m - &M = &m'`)] THEN | |
MATCH_MP_TAC(REAL_ARITH `b < a ==> ~(a - b = &0)`) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!z. (&n' + s * z) pow 2 + (&p' + t * z) pow 2 + | |
(&q' + u * z) pow 2 + (&r' + v * z) pow 2 - &N = | |
(&m * z - &1) * (&m' * z + &N - &N')` | |
ASSUME_TAC THENL | |
[GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `&m * &m' * z pow 2 + (&M - &2 * &m * &N') * z + &N' - &N` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[REAL_POW_2; REAL_ARITH | |
`(n + s * z) * (n + s * z) + (p + t * z) * (p + t * z) + | |
(q + u * z) * (q + u * z) + (r + v * z) * (r + v * z) - N = | |
(s * s + t * t + u * u + v * v) * (z * z) + | |
(&2 * (n * s + p * t + q * u + r * v)) * z + | |
((n * n + p * p + q * q + r * r) - N)`] THEN | |
ASM_REWRITE_TAC[GSYM REAL_POW_2] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`(a = c) /\ (b = d) ==> (a + b + n - m = c + d + n - m)`) THEN | |
CONJ_TAC THENL [REWRITE_TAC[REAL_MUL_AC]; ALL_TAC] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM(ASSUME | |
`&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`); | |
GSYM(ASSUME | |
`&2 * (&n * &n' + &p * &p' + &q * &q' + &r * &r') = &M`)] THEN | |
MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN | |
REWRITE_TAC[REAL_POW_2] THEN REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_POW_2; REAL_ARITH | |
`(m * z - &1) * (m' * z + nn) = m * m' * z * z + | |
(m * z * nn - m' * z) - nn`] THEN | |
REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN | |
REWRITE_TAC[REAL_ARITH `(a + n' - n = b - (n - n')) <=> (a = b)`] THEN | |
REWRITE_TAC[REAL_ARITH `a * z * b - c * z = (a * b - c) * z`] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM(ASSUME `(&N + &N') * &m - &M = &m'`)] THEN | |
REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
ABBREV_TAC `w = &n' + s * (&N' - &N) / &m'` THEN | |
ABBREV_TAC `x = &p' + t * (&N' - &N) / &m'` THEN | |
ABBREV_TAC `y = &q' + u * (&N' - &N) / &m'` THEN | |
ABBREV_TAC `z = &r' + v * (&N' - &N) / &m'` THEN | |
SUBGOAL_THEN `w pow 2 + x pow 2 + y pow 2 + z pow 2 = &N` | |
(SUBST1_TAC o SYM) THENL | |
[MAP_EVERY EXPAND_TAC ["w"; "x"; "y"; "z"] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH | |
`(a + b + c + d = e) <=> (a + b + c + d - e = &0)`] THEN | |
FIRST_ASSUM(SUBST1_TAC o SPEC `(&N' - &N) / &m'`) THEN | |
REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN | |
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL | |
[EXISTS_TAC `m':num` THEN | |
SUBGOAL_THEN | |
`?a b c d. (abs(&n' * &m' + s * (&N' - &N)) = &a) /\ | |
(abs(&p' * &m' + t * (&N' - &N)) = &b) /\ | |
(abs(&q' * &m' + u * (&N' - &N)) = &c) /\ | |
(abs(&r' * &m' + v * (&N' - &N)) = &d)` | |
MP_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN | |
MESON_TAC[REAL_INTEGER_CLOSURES]; ALL_TAC] THEN | |
MAP_EVERY (fun t -> MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC t) | |
[`a:num`; `b:num`; `c:num`; `d:num`] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[REAL_OF_NUM_LT]) THEN | |
REWRITE_TAC[REAL_POW_DIV; REAL_POW2_ABS] THEN | |
REWRITE_TAC[GSYM REAL_POW_DIV] THEN | |
REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN | |
ASM_SIMP_TAC[REAL_MUL_RINV; REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[GSYM real_div; REAL_MUL_RID] THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC)) THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `?n. abs((&N' - &N) / &2) = &n` ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM(ASSUME | |
`&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`)] THEN | |
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_ADD] THEN | |
SUBGOAL_THEN `EVEN(n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2) = | |
EVEN N` | |
MP_TAC THENL | |
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN | |
REWRITE_TAC[EVEN_ADD; EVEN_EXP; ARITH_EQ]; | |
ALL_TAC] THEN | |
DISJ_CASES_THEN MP_TAC (TAUT `EVEN(N) \/ ~EVEN(N)`) THEN SIMP_TAC[] THEN | |
REWRITE_TAC[NOT_EVEN; EVEN_EXISTS; ODD_EXISTS] THEN | |
REPEAT(DISCH_THEN(CHOOSE_THEN SUBST1_TAC)) THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_MUL] THEN | |
REWRITE_TAC[REAL_ARITH `(&2 * x + &1) - (&2 * y + &1) = &2 * (x - y)`] THEN | |
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[REAL_MUL_RID] THEN MESON_TAC[REAL_INTEGER_CLOSURES]; | |
ALL_TAC] THEN | |
EXISTS_TAC `1` THEN REWRITE_TAC[ARITH_EQ] THEN | |
SUBGOAL_THEN | |
`?a b c d. (abs(&n' + s * (&N' - &N) / &2) = &a) /\ | |
(abs(&p' + t * (&N' - &N) / &2) = &b) /\ | |
(abs(&q' + u * (&N' - &N) / &2) = &c) /\ | |
(abs(&r' + v * (&N' - &N) / &2) = &d)` | |
MP_TAC THENL | |
[MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN | |
UNDISCH_TAC `?n. abs ((&N' - &N) / &2) = &n` THEN | |
MESON_TAC[REAL_INTEGER_CLOSURES]; ALL_TAC] THEN | |
REWRITE_TAC[ARITH; REAL_DIV_1] THEN | |
MAP_EVERY (fun t -> MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC t) | |
[`a:num`; `b:num`; `c:num`; `d:num`] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN | |
ASM_REWRITE_TAC[REAL_POW2_ABS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the main result. *) | |
(* ------------------------------------------------------------------------- *) | |
let AUBREY_THM_4 = prove | |
(`(?q. ~(q = 0) /\ | |
?a b c d. | |
(&a / &q) pow 2 + (&b / &q) pow 2 + | |
(&c / &q) pow 2 + (&d / &q) pow 2 = &N) | |
==> ?a b c d. &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2 = &N`, | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN | |
ASM_CASES_TAC `m = 1` THENL | |
[ASM_REWRITE_TAC[REAL_DIV_1; ARITH_EQ] THEN MESON_TAC[]; | |
STRIP_TAC THEN MP_TAC(SPEC `m:num` AUBREY_LEMMA_4) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The algebraic lemma. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAGRANGE_IDENTITY = REAL_ARITH | |
`(w1 pow 2 + x1 pow 2 + y1 pow 2 + z1 pow 2) * | |
(w2 pow 2 + x2 pow 2 + y2 pow 2 + z2 pow 2) = | |
(w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2) pow 2 + | |
(w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2) pow 2 + | |
(w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2) pow 2 + | |
(w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2) pow 2`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Now sum of 4 squares. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAGRANGE_REAL_NUM = prove | |
(`!n. ?w x y z. &n = &w pow 2 + &x pow 2 + &y pow 2 + &z pow 2`, | |
let lemma = prove | |
(`(?a. abs(w) = &a) /\ (?b. abs(x) = &b) /\ | |
(?c. abs(y) = &c) /\ (?d. abs(z) = &d) | |
==> ?a b c d. w pow 2 + x pow 2 + y pow 2 + z pow 2 = | |
&a pow 2 + &b pow 2 + &c pow 2 + &d pow 2`, | |
STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ABS_NUM] THEN | |
MESON_TAC[]) in | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `n = 0` THENL | |
[REPEAT(EXISTS_TAC `0`) THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `n = 1` THENL | |
[EXISTS_TAC `1` THEN REPEAT(EXISTS_TAC `0`) THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV; | |
ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN | |
UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN | |
ASM_CASES_TAC `m = 1` THENL | |
[ALL_TAC; | |
DISCH_THEN SUBST_ALL_TAC THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(SPEC `p:num` th) THEN MP_TAC(SPEC `m:num` th)) THEN | |
ONCE_REWRITE_TAC[ARITH_RULE `m < p * m <=> 1 * m < p * m`] THEN | |
REWRITE_TAC[LT_MULT_RCANCEL] THEN | |
ONCE_REWRITE_TAC[ARITH_RULE `p < p * m <=> p * 1 < p * m`] THEN | |
REWRITE_TAC[LT_MULT_LCANCEL] THEN | |
UNDISCH_TAC `~(p * m = 0)` THEN REWRITE_TAC[MULT_EQ_0] THEN | |
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `~(p = 1)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`w1:num`; `x1:num`; `y1:num`; `z1:num`] THEN | |
DISCH_TAC THEN | |
MAP_EVERY X_GEN_TAC [`w2:num`; `x2:num`; `y2:num`; `z2:num`] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN | |
REWRITE_TAC[LAGRANGE_IDENTITY] THEN | |
MATCH_MP_TAC lemma THEN REWRITE_TAC[REAL_OF_NUM_MUL] THEN | |
MESON_TAC[REAL_INTEGER_CLOSURES]] THEN | |
UNDISCH_TAC `m = 1` THEN DISCH_THEN SUBST_ALL_TAC THEN | |
REWRITE_TAC[MULT_CLAUSES] THEN DISCH_THEN SUBST_ALL_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP LAGRANGE_LEMMA) THEN | |
DISCH_THEN(MP_TAC o SPEC `1 EXP 2 + 0 EXP 2`) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`q:num`; `x:num`; `y:num`] THEN STRIP_TAC THEN | |
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC AUBREY_THM_4 THEN | |
SUBGOAL_THEN `q * p < p EXP 2` MP_TAC THENL | |
[ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`(2 * x) * (2 * x) <= p * p /\ (2 * y) * (2 * y) <= p * p /\ | |
2 * 2 <= p * p | |
==> x * x + y * y + 1 < p * p`) THEN | |
REPEAT CONJ_TAC THEN MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[] THEN | |
MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC; | |
ALL_TAC] THEN | |
REWRITE_TAC[EXP_2; LT_MULT_RCANCEL] THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:num`; `b:num`; `c:num`; `d:num`] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `~(q = 0)` ASSUME_TAC THENL | |
[DISCH_THEN SUBST_ALL_TAC THEN | |
UNDISCH_TAC `0 * p = x EXP 2 + y EXP 2 + 1 EXP 2 + 0 EXP 2` THEN | |
DISCH_THEN(MP_TAC o SYM) THEN REWRITE_TAC[MULT_CLAUSES; EXP_2] THEN | |
REWRITE_TAC[ADD_EQ_0; ARITH_EQ]; ALL_TAC] THEN | |
SUBGOAL_THEN `&p = &q * &(q * p) / &q pow 2` SUBST1_TAC THENL | |
[REWRITE_TAC[GSYM REAL_OF_NUM_MUL; REAL_MUL_ASSOC; real_div] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
REWRITE_TAC[GSYM REAL_POW_2] THEN | |
SIMP_TAC[REAL_MUL_ASSOC; REAL_POW_EQ_0; REAL_MUL_LINV; REAL_MUL_LID; | |
ASSUME `~(q = 0)`; REAL_OF_NUM_EQ]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW] THEN | |
REWRITE_TAC[real_div; REAL_MUL_ASSOC; LAGRANGE_IDENTITY] THEN | |
SUBST1_TAC(SYM(ASSUME | |
`&q = &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2`)) THEN | |
REWRITE_TAC[REAL_ADD_RDISTRIB] THEN | |
REWRITE_TAC[GSYM real_div; GSYM REAL_POW_DIV] THEN | |
EXISTS_TAC `q:num` THEN REWRITE_TAC[ASSUME `~(q = 0)`] THEN | |
REWRITE_TAC[REAL_POW_DIV] THEN | |
REWRITE_TAC[real_div; GSYM REAL_ADD_RDISTRIB] THEN | |
REWRITE_TAC[REAL_EQ_MUL_RCANCEL] THEN | |
REWRITE_TAC[REAL_INV_EQ_0; REAL_POW_EQ_0; REAL_OF_NUM_EQ; | |
ASSUME `~(q = 0)`] THEN | |
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC lemma THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL] THEN MESON_TAC[REAL_INTEGER_CLOSURES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Also prove it for the natural numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
let LAGRANGE_NUM = prove | |
(`!n. ?w x y z. n = w EXP 2 + x EXP 2 + y EXP 2 + z EXP 2`, | |
GEN_TAC THEN MP_TAC(SPEC `n:num` LAGRANGE_REAL_NUM) THEN | |
REWRITE_TAC[REAL_POS; REAL_OF_NUM_POW; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And for the integers. *) | |
(* ------------------------------------------------------------------------- *) | |
prioritize_int();; | |
let LAGRANGE_INT = prove | |
(`!a. &0 <= a <=> ?w x y z. a = w pow 2 + x pow 2 + y pow 2 + z pow 2`, | |
GEN_TAC THEN EQ_TAC THENL | |
[SPEC_TAC(`a:int`,`a:int`) THEN REWRITE_TAC[GSYM INT_FORALL_POS] THEN | |
X_GEN_TAC `n:num` THEN MP_TAC(SPEC `n:num` LAGRANGE_REAL_NUM) THEN | |
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_ADD] THEN | |
MESON_TAC[]; | |
STRIP_TAC THEN ASM_SIMP_TAC[INT_LE_SQUARE; INT_LE_ADD; INT_POW_2]]);; | |
prioritize_num();; | |