Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Pascal's hexagon theorem for projective and affine planes. *) | |
(* ========================================================================= *) | |
needs "Multivariate/cross.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* A lemma we want to justify some of the axioms. *) | |
(* ------------------------------------------------------------------------- *) | |
let NORMAL_EXISTS = prove | |
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN | |
MP_TAC(ISPEC `{u:real^3,v}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; DIMINDEX_3] THEN | |
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LET_TRANS THEN | |
EXISTS_TAC `CARD {u:real^3,v}` THEN CONJ_TAC THEN | |
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN | |
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Type of directions. *) | |
(* ------------------------------------------------------------------------- *) | |
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir") | |
(MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);; | |
parse_as_infix("||",(11,"right"));; | |
parse_as_infix("_|_",(11,"right"));; | |
let perpdir = new_definition | |
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;; | |
let pardir = new_definition | |
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;; | |
let DIRECTION_CLAUSES = prove | |
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\ | |
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`, | |
MESON_TAC[direction_tybij]);; | |
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove) | |
(`(!x. x || x) /\ | |
(!x y. x || y <=> y || x) /\ | |
(!x y z. x || y /\ y || z ==> x || z)`, | |
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; | |
let PARDIR_EQUIV = prove | |
(`!x y. ((||) x = (||) y) <=> x || y`, | |
REWRITE_TAC[FUN_EQ_THM] THEN | |
MESON_TAC[PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS]);; | |
let DIRECTION_AXIOM_1 = prove | |
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\ | |
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_2 = prove | |
(`!l l'. ?p. p _|_ l /\ p _|_ l'`, | |
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN | |
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);; | |
let DIRECTION_AXIOM_3 = prove | |
(`?p p' p''. | |
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ | |
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY | |
(fun t -> EXISTS_TAC t THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_3; ARITH]) | |
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN | |
VEC3_TAC);; | |
let DIRECTION_AXIOM_4_WEAK = prove | |
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`, | |
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\ | |
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/ | |
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\ | |
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/ | |
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\ | |
~((l cross basis 2) cross (l cross basis 3) = vec 0)` | |
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);; | |
let ORTHOGONAL_COMBINE = prove | |
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b) | |
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`, | |
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN | |
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_4 = prove | |
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ | |
p _|_ l /\ p' _|_ l /\ p'' _|_ l`, | |
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);; | |
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;; | |
let PERPDIR_WELLDEF = prove | |
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; | |
let perpl,perpl_th = | |
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS) | |
"perpl" PERPDIR_WELLDEF;; | |
let line_lift_thm = lift_theorem line_tybij | |
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];; | |
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;; | |
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;; | |
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;; | |
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;; | |
let point_tybij = new_type_definition "point" ("mk_point","dest_point") | |
(prove(`?x:line. T`,REWRITE_TAC[]));; | |
parse_as_infix("on",(11,"right"));; | |
let on = new_definition `p on l <=> perpl (dest_point p) l`;; | |
let POINT_CLAUSES = prove | |
(`((p = p') <=> (dest_point p = dest_point p')) /\ | |
((!p. P (dest_point p)) <=> (!l. P l)) /\ | |
((?p. P (dest_point p)) <=> (?l. P l))`, | |
MESON_TAC[point_tybij]);; | |
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;; | |
let AXIOM_1 = prove | |
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\ | |
!l'. p on l' /\ p' on l' ==> (l' = l)`, | |
POINT_TAC LINE_AXIOM_1);; | |
let AXIOM_2 = prove | |
(`!l l'. ?p. p on l /\ p on l'`, | |
POINT_TAC LINE_AXIOM_2);; | |
let AXIOM_3 = prove | |
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
~(?l. p on l /\ p' on l /\ p'' on l)`, | |
POINT_TAC LINE_AXIOM_3);; | |
let AXIOM_4 = prove | |
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
p on l /\ p' on l /\ p'' on l`, | |
POINT_TAC LINE_AXIOM_4);; | |
(* ------------------------------------------------------------------------- *) | |
(* Mappings from vectors in R^3 to projective lines and points. *) | |
(* ------------------------------------------------------------------------- *) | |
let projl = new_definition | |
`projl x = mk_line((||) (mk_dir x))`;; | |
let projp = new_definition | |
`projp x = mk_point(projl x)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Mappings in the other direction, to (some) homogeneous coordinates. *) | |
(* ------------------------------------------------------------------------- *) | |
let PROJL_TOTAL = prove | |
(`!l. ?x. ~(x = vec 0) /\ l = projl x`, | |
GEN_TAC THEN | |
SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL | |
[MESON_TAC[fst line_tybij; snd line_tybij]; | |
REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN | |
MESON_TAC[direction_tybij]]);; | |
let homol = new_specification ["homol"] | |
(REWRITE_RULE[SKOLEM_THM] PROJL_TOTAL);; | |
let PROJP_TOTAL = prove | |
(`!p. ?x. ~(x = vec 0) /\ p = projp x`, | |
REWRITE_TAC[projp] THEN MESON_TAC[PROJL_TOTAL; point_tybij]);; | |
let homop_def = new_definition | |
`homop p = homol(dest_point p)`;; | |
let homop = prove | |
(`!p. ~(homop p = vec 0) /\ p = projp(homop p)`, | |
GEN_TAC THEN REWRITE_TAC[homop_def; projp; MESON[point_tybij] | |
`p = mk_point l <=> dest_point p = l`] THEN | |
MATCH_ACCEPT_TAC homol);; | |
(* ------------------------------------------------------------------------- *) | |
(* Key equivalences of concepts in projective space and homogeneous coords. *) | |
(* ------------------------------------------------------------------------- *) | |
let parallel = new_definition | |
`parallel x y <=> x cross y = vec 0`;; | |
let ON_HOMOL = prove | |
(`!p l. p on l <=> orthogonal (homop p) (homol l)`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN | |
REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN | |
REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN | |
MESON_TAC[homol; homop; direction_tybij]);; | |
let EQ_HOMOL = prove | |
(`!l l'. l = l' <=> parallel (homol l) (homol l')`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN | |
REWRITE_TAC[projl; MESON[fst line_tybij; snd line_tybij] | |
`mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN | |
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN | |
MESON_TAC[homol; direction_tybij]);; | |
let EQ_HOMOP = prove | |
(`!p p'. p = p' <=> parallel (homop p) (homop p')`, | |
REWRITE_TAC[homop_def; GSYM EQ_HOMOL] THEN | |
MESON_TAC[point_tybij]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A "welldefinedness" result for homogeneous coordinate map. *) | |
(* ------------------------------------------------------------------------- *) | |
let PARALLEL_PROJL_HOMOL = prove | |
(`!x. parallel x (homol(projl x))`, | |
GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN | |
ASM_REWRITE_TAC[CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN | |
REWRITE_TAC[MESON[fst line_tybij; snd line_tybij] | |
`dest_line(mk_line((||) l)) = (||) l`] THEN | |
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN | |
ASM_MESON_TAC[direction_tybij]);; | |
let PARALLEL_PROJP_HOMOP = prove | |
(`!x. parallel x (homop(projp x))`, | |
REWRITE_TAC[homop_def; projp; REWRITE_RULE[] point_tybij] THEN | |
REWRITE_TAC[PARALLEL_PROJL_HOMOL]);; | |
let PARALLEL_PROJP_HOMOP_EXPLICIT = prove | |
(`!x. ~(x = vec 0) ==> ?a. ~(a = &0) /\ homop(projp x) = a % x`, | |
MP_TAC PARALLEL_PROJP_HOMOP THEN MATCH_MP_TAC MONO_FORALL THEN | |
REWRITE_TAC[parallel; CROSS_EQ_0; COLLINEAR_LEMMA] THEN | |
GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN | |
ASM_REWRITE_TAC[homop] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `c:real` THEN ASM_CASES_TAC `c = &0` THEN | |
ASM_REWRITE_TAC[homop; VECTOR_MUL_LZERO]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Brackets, collinearity and their connection. *) | |
(* ------------------------------------------------------------------------- *) | |
let bracket = define | |
`bracket[a;b;c] = det(vector[homop a;homop b;homop c])`;; | |
let COLLINEAR = new_definition | |
`COLLINEAR s <=> ?l. !p. p IN s ==> p on l`;; | |
let COLLINEAR_SINGLETON = prove | |
(`!a. COLLINEAR {a}`, | |
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[AXIOM_1; AXIOM_3]);; | |
let COLLINEAR_PAIR = prove | |
(`!a b. COLLINEAR{a,b}`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:point = b` THEN | |
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SINGLETON] THEN | |
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[AXIOM_1]);; | |
let COLLINEAR_TRIPLE = prove | |
(`!a b c. COLLINEAR{a,b,c} <=> ?l. a on l /\ b on l /\ c on l`, | |
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY]);; | |
let COLLINEAR_BRACKET = prove | |
(`!p1 p2 p3. COLLINEAR {p1,p2,p3} <=> bracket[p1;p2;p3] = &0`, | |
let lemma = prove | |
(`!a b c x y. | |
x cross y = vec 0 /\ ~(x = vec 0) /\ | |
orthogonal a x /\ orthogonal b x /\ orthogonal c x | |
==> orthogonal a y /\ orthogonal b y /\ orthogonal c y`, | |
REWRITE_TAC[orthogonal] THEN VEC3_TAC) in | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[REWRITE_TAC[COLLINEAR_TRIPLE; bracket; ON_HOMOL; LEFT_IMP_EXISTS_THM] THEN | |
MP_TAC homol THEN MATCH_MP_TAC MONO_FORALL THEN | |
GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN | |
REWRITE_TAC[DET_3; orthogonal; DOT_3; VECTOR_3; CART_EQ; | |
DIMINDEX_3; FORALL_3; VEC_COMPONENT] THEN | |
CONV_TAC REAL_RING; | |
ASM_CASES_TAC `p1:point = p2` THENL | |
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_PAIR]; ALL_TAC] THEN | |
POP_ASSUM MP_TAC THEN | |
REWRITE_TAC[parallel; COLLINEAR_TRIPLE; bracket; EQ_HOMOP; ON_HOMOL] THEN | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC `mk_line((||) (mk_dir(homop p1 cross homop p2)))` THEN | |
MATCH_MP_TAC lemma THEN EXISTS_TAC `homop p1 cross homop p2` THEN | |
ASM_REWRITE_TAC[ORTHOGONAL_CROSS] THEN | |
REWRITE_TAC[orthogonal] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN | |
ONCE_REWRITE_TAC[CROSS_TRIPLE] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN | |
ASM_REWRITE_TAC[DOT_CROSS_DET] THEN | |
REWRITE_TAC[GSYM projl; GSYM parallel; PARALLEL_PROJL_HOMOL]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conics and bracket condition for 6 points to be on a conic. *) | |
(* ------------------------------------------------------------------------- *) | |
let homogeneous_conic = new_definition | |
`homogeneous_conic con <=> | |
?a b c d e f. | |
~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\ | |
con = {x:real^3 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$3 pow 2 + | |
d * x$1 * x$2 + e * x$1 * x$3 + f * x$2 * x$3 = &0}`;; | |
let projective_conic = new_definition | |
`projective_conic con <=> | |
?c. homogeneous_conic c /\ con = {p | (homop p) IN c}`;; | |
let HOMOGENEOUS_CONIC_BRACKET = prove | |
(`!con x1 x2 x3 x4 x5 x6. | |
homogeneous_conic con /\ | |
x1 IN con /\ x2 IN con /\ x3 IN con /\ | |
x4 IN con /\ x5 IN con /\ x6 IN con | |
==> det(vector[x6;x1;x4]) * det(vector[x6;x2;x3]) * | |
det(vector[x5;x1;x3]) * det(vector[x5;x2;x4]) = | |
det(vector[x6;x1;x3]) * det(vector[x6;x2;x4]) * | |
det(vector[x5;x1;x4]) * det(vector[x5;x2;x3])`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[homogeneous_conic; EXTENSION] THEN | |
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; DET_3; VECTOR_3] THEN | |
CONV_TAC REAL_RING);; | |
let PROJECTIVE_CONIC_BRACKET = prove | |
(`!con p1 p2 p3 p4 p5 p6. | |
projective_conic con /\ | |
p1 IN con /\ p2 IN con /\ p3 IN con /\ | |
p4 IN con /\ p5 IN con /\ p6 IN con | |
==> bracket[p6;p1;p4] * bracket[p6;p2;p3] * | |
bracket[p5;p1;p3] * bracket[p5;p2;p4] = | |
bracket[p6;p1;p3] * bracket[p6;p2;p4] * | |
bracket[p5;p1;p4] * bracket[p5;p2;p3]`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[bracket; projective_conic] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
MATCH_MP_TAC HOMOGENEOUS_CONIC_BRACKET THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pascal's theorem with all the nondegeneracy principles we use directly. *) | |
(* ------------------------------------------------------------------------- *) | |
let PASCAL_DIRECT = prove | |
(`!con x1 x2 x3 x4 x5 x6 x6 x8 x9. | |
~COLLINEAR {x2,x5,x7} /\ | |
~COLLINEAR {x1,x2,x5} /\ | |
~COLLINEAR {x1,x3,x6} /\ | |
~COLLINEAR {x2,x4,x6} /\ | |
~COLLINEAR {x3,x4,x5} /\ | |
~COLLINEAR {x1,x5,x7} /\ | |
~COLLINEAR {x2,x5,x9} /\ | |
~COLLINEAR {x1,x2,x6} /\ | |
~COLLINEAR {x3,x6,x8} /\ | |
~COLLINEAR {x2,x4,x5} /\ | |
~COLLINEAR {x2,x4,x7} /\ | |
~COLLINEAR {x2,x6,x8} /\ | |
~COLLINEAR {x3,x4,x6} /\ | |
~COLLINEAR {x3,x5,x8} /\ | |
~COLLINEAR {x1,x3,x5} | |
==> projective_conic con /\ | |
x1 IN con /\ x2 IN con /\ x3 IN con /\ | |
x4 IN con /\ x5 IN con /\ x6 IN con /\ | |
COLLINEAR {x1,x9,x5} /\ | |
COLLINEAR {x1,x8,x6} /\ | |
COLLINEAR {x2,x9,x4} /\ | |
COLLINEAR {x2,x7,x6} /\ | |
COLLINEAR {x3,x8,x4} /\ | |
COLLINEAR {x3,x7,x5} | |
==> COLLINEAR {x7,x8,x9}`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e /\ f /\ g /\ h ==> p <=> | |
a /\ b /\ c /\ d /\ e /\ f /\ g ==> h ==> p`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP PROJECTIVE_CONIC_BRACKET) THEN | |
REWRITE_TAC[COLLINEAR_BRACKET; IMP_IMP; GSYM CONJ_ASSOC] THEN | |
MATCH_MP_TAC(TAUT `!q. (p ==> q) /\ (q ==> r) ==> p ==> r`) THEN | |
EXISTS_TAC | |
`bracket[x1;x2;x5] * bracket[x1;x3;x6] * | |
bracket[x2;x4;x6] * bracket[x3;x4;x5] = | |
bracket[x1;x2;x6] * bracket[x1;x3;x5] * | |
bracket[x2;x4;x5] * bracket[x3;x4;x6] /\ | |
bracket[x1;x5;x7] * bracket[x2;x5;x9] = | |
--bracket[x1;x2;x5] * bracket[x5;x9;x7] /\ | |
bracket[x1;x2;x6] * bracket[x3;x6;x8] = | |
bracket[x1;x3;x6] * bracket[x2;x6;x8] /\ | |
bracket[x2;x4;x5] * bracket[x2;x9;x7] = | |
--bracket[x2;x4;x7] * bracket[x2;x5;x9] /\ | |
bracket[x2;x4;x7] * bracket[x2;x6;x8] = | |
--bracket[x2;x4;x6] * bracket[x2;x8;x7] /\ | |
bracket[x3;x4;x6] * bracket[x3;x5;x8] = | |
bracket[x3;x4;x5] * bracket[x3;x6;x8] /\ | |
bracket[x1;x3;x5] * bracket[x5;x8;x7] = | |
--bracket[x1;x5;x7] * bracket[x3;x5;x8]` THEN | |
CONJ_TAC THENL | |
[REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN | |
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING; | |
ALL_TAC] THEN | |
REWRITE_TAC[IMP_CONJ] THEN | |
REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING | |
`a = b /\ x:real = y ==> a * x = b * y`))) THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN | |
REWRITE_TAC[REAL_NEG_NEG] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[COLLINEAR_BRACKET]) THEN | |
REWRITE_TAC[REAL_MUL_AC] THEN ASM_REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN | |
ASM_REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN | |
FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN | |
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* With longer but more intuitive non-degeneracy conditions, basically that *) | |
(* the 6 points divide into two groups of 3 and no 3 are collinear unless *) | |
(* they are all in the same group. *) | |
(* ------------------------------------------------------------------------- *) | |
let PASCAL = prove | |
(`!con x1 x2 x3 x4 x5 x6 x6 x8 x9. | |
~COLLINEAR {x1,x2,x4} /\ | |
~COLLINEAR {x1,x2,x5} /\ | |
~COLLINEAR {x1,x2,x6} /\ | |
~COLLINEAR {x1,x3,x4} /\ | |
~COLLINEAR {x1,x3,x5} /\ | |
~COLLINEAR {x1,x3,x6} /\ | |
~COLLINEAR {x2,x3,x4} /\ | |
~COLLINEAR {x2,x3,x5} /\ | |
~COLLINEAR {x2,x3,x6} /\ | |
~COLLINEAR {x4,x5,x1} /\ | |
~COLLINEAR {x4,x5,x2} /\ | |
~COLLINEAR {x4,x5,x3} /\ | |
~COLLINEAR {x4,x6,x1} /\ | |
~COLLINEAR {x4,x6,x2} /\ | |
~COLLINEAR {x4,x6,x3} /\ | |
~COLLINEAR {x5,x6,x1} /\ | |
~COLLINEAR {x5,x6,x2} /\ | |
~COLLINEAR {x5,x6,x3} | |
==> projective_conic con /\ | |
x1 IN con /\ x2 IN con /\ x3 IN con /\ | |
x4 IN con /\ x5 IN con /\ x6 IN con /\ | |
COLLINEAR {x1,x9,x5} /\ | |
COLLINEAR {x1,x8,x6} /\ | |
COLLINEAR {x2,x9,x4} /\ | |
COLLINEAR {x2,x7,x6} /\ | |
COLLINEAR {x3,x8,x4} /\ | |
COLLINEAR {x3,x7,x5} | |
==> COLLINEAR {x7,x8,x9}`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
DISCH_THEN(fun th -> | |
MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN DISCH_TAC THEN | |
MP_TAC th THEN MATCH_MP_TAC PASCAL_DIRECT THEN | |
ASSUME_TAC(funpow 7 CONJUNCT2 th)) THEN | |
REPEAT CONJ_TAC THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN | |
REWRITE_TAC[COLLINEAR_BRACKET; bracket; DET_3; VECTOR_3] THEN | |
CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* Homogenization and hence mapping from affine to projective plane. *) | |
(* ------------------------------------------------------------------------- *) | |
let homogenize = new_definition | |
`(homogenize:real^2->real^3) x = vector[x$1; x$2; &1]`;; | |
let projectivize = new_definition | |
`projectivize = projp o homogenize`;; | |
let HOMOGENIZE_NONZERO = prove | |
(`!x. ~(homogenize x = vec 0)`, | |
REWRITE_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; | |
homogenize] THEN | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conic in affine plane. *) | |
(* ------------------------------------------------------------------------- *) | |
let affine_conic = new_definition | |
`affine_conic con <=> | |
?a b c d e f. | |
~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\ | |
con = {x:real^2 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$1 * x$2 + | |
d * x$1 + e * x$2 + f = &0}`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Relationships between affine and projective notions. *) | |
(* ------------------------------------------------------------------------- *) | |
let COLLINEAR_PROJECTIVIZE = prove | |
(`!a b c. collinear{a,b,c} <=> | |
COLLINEAR{projectivize a,projectivize b,projectivize c}`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL] THEN | |
REWRITE_TAC[COLLINEAR_BRACKET; projectivize; o_THM; bracket] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `det(vector[homogenize a; homogenize b; homogenize c]) = &0` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[homogenize; DOT_2; VECTOR_SUB_COMPONENT; DET_3; VECTOR_3] THEN | |
CONV_TAC REAL_RING; | |
MAP_EVERY (MP_TAC o C SPEC PARALLEL_PROJP_HOMOP) | |
[`homogenize a`; `homogenize b`; `homogenize c`] THEN | |
MAP_EVERY (MP_TAC o C SPEC HOMOGENIZE_NONZERO) | |
[`a:real^2`; `b:real^2`; `c:real^2`] THEN | |
MAP_EVERY (MP_TAC o CONJUNCT1 o C SPEC homop) | |
[`projp(homogenize a)`; `projp(homogenize b)`; `projp(homogenize c)`] THEN | |
REWRITE_TAC[parallel; cross; CART_EQ; DIMINDEX_3; FORALL_3; VECTOR_3; | |
DET_3; VEC_COMPONENT] THEN | |
CONV_TAC REAL_RING]);; | |
let AFFINE_PROJECTIVE_CONIC = prove | |
(`!con. affine_conic con <=> ?con'. projective_conic con' /\ | |
con = {x | projectivize x IN con'}`, | |
REWRITE_TAC[affine_conic; projective_conic; homogeneous_conic] THEN | |
GEN_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[MESON[] | |
`(?con' con a b c d e f. P con' con a b c d e f) <=> | |
(?a b d e f c con' con. P con' con a b c d e f)`] THEN | |
MAP_EVERY (fun s -> | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC(mk_var(s,`:real`)) THEN REWRITE_TAC[]) | |
["a"; "b"; "c"; "d"; "e"; "f"] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2; GSYM CONJ_ASSOC] THEN | |
REWRITE_TAC[IN_ELIM_THM; projectivize; o_THM] THEN | |
BINOP_TAC THENL [CONV_TAC TAUT; AP_TERM_TAC] THEN | |
REWRITE_TAC[EXTENSION] THEN X_GEN_TAC `x:real^2` THEN | |
MP_TAC(SPEC `x:real^2` HOMOGENIZE_NONZERO) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP PARALLEL_PROJP_HOMOP_EXPLICIT) THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; VECTOR_MUL_COMPONENT] THEN | |
REWRITE_TAC[homogenize; VECTOR_3] THEN | |
UNDISCH_TAC `~(k = &0)` THEN CONV_TAC REAL_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence Pascal's theorem for the affine plane. *) | |
(* ------------------------------------------------------------------------- *) | |
let PASCAL_AFFINE = prove | |
(`!con x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2. | |
~collinear {x1,x2,x4} /\ | |
~collinear {x1,x2,x5} /\ | |
~collinear {x1,x2,x6} /\ | |
~collinear {x1,x3,x4} /\ | |
~collinear {x1,x3,x5} /\ | |
~collinear {x1,x3,x6} /\ | |
~collinear {x2,x3,x4} /\ | |
~collinear {x2,x3,x5} /\ | |
~collinear {x2,x3,x6} /\ | |
~collinear {x4,x5,x1} /\ | |
~collinear {x4,x5,x2} /\ | |
~collinear {x4,x5,x3} /\ | |
~collinear {x4,x6,x1} /\ | |
~collinear {x4,x6,x2} /\ | |
~collinear {x4,x6,x3} /\ | |
~collinear {x5,x6,x1} /\ | |
~collinear {x5,x6,x2} /\ | |
~collinear {x5,x6,x3} | |
==> affine_conic con /\ | |
x1 IN con /\ x2 IN con /\ x3 IN con /\ | |
x4 IN con /\ x5 IN con /\ x6 IN con /\ | |
collinear {x1,x9,x5} /\ | |
collinear {x1,x8,x6} /\ | |
collinear {x2,x9,x4} /\ | |
collinear {x2,x7,x6} /\ | |
collinear {x3,x8,x4} /\ | |
collinear {x3,x7,x5} | |
==> collinear {x7,x8,x9}`, | |
REWRITE_TAC[COLLINEAR_PROJECTIVIZE; AFFINE_PROJECTIVE_CONIC] THEN | |
REPEAT(GEN_TAC ORELSE DISCH_TAC) THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP PASCAL) THEN | |
ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special case of a circle where nondegeneracy is simpler. *) | |
(* ------------------------------------------------------------------------- *) | |
let COLLINEAR_NOT_COCIRCULAR = prove | |
(`!r c x y z:real^2. | |
dist(c,x) = r /\ dist(c,y) = r /\ dist(c,z) = r /\ | |
~(x = y) /\ ~(x = z) /\ ~(y = z) | |
==> ~collinear {x,y,z}`, | |
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN | |
REWRITE_TAC[GSYM DOT_EQ_0] THEN | |
ONCE_REWRITE_TAC[COLLINEAR_3] THEN | |
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL; DOT_2] THEN | |
REWRITE_TAC[dist; NORM_EQ_SQUARE; CART_EQ; DIMINDEX_2; FORALL_2; | |
DOT_2; VECTOR_SUB_COMPONENT] THEN | |
CONV_TAC REAL_RING);; | |
let PASCAL_AFFINE_CIRCLE = prove | |
(`!c r x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2. | |
PAIRWISE (\x y. ~(x = y)) [x1;x2;x3;x4;x5;x6] /\ | |
dist(c,x1) = r /\ dist(c,x2) = r /\ dist(c,x3) = r /\ | |
dist(c,x4) = r /\ dist(c,x5) = r /\ dist(c,x6) = r /\ | |
collinear {x1,x9,x5} /\ | |
collinear {x1,x8,x6} /\ | |
collinear {x2,x9,x4} /\ | |
collinear {x2,x7,x6} /\ | |
collinear {x3,x8,x4} /\ | |
collinear {x3,x7,x5} | |
==> collinear {x7,x8,x9}`, | |
GEN_TAC THEN GEN_TAC THEN | |
MP_TAC(SPEC `{x:real^2 | dist(c,x) = r}` PASCAL_AFFINE) THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
REWRITE_TAC[PAIRWISE; ALL; IN_ELIM_THM] THEN | |
GEN_REWRITE_TAC LAND_CONV [IMP_IMP] THEN | |
DISCH_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REPEAT CONJ_TAC THEN MATCH_MP_TAC COLLINEAR_NOT_COCIRCULAR THEN | |
MAP_EVERY EXISTS_TAC [`r:real`; `c:real^2`] THEN ASM_REWRITE_TAC[]; | |
REWRITE_TAC[affine_conic; dist; NORM_EQ_SQUARE] THEN | |
ASM_CASES_TAC `&0 <= r` THEN ASM_REWRITE_TAC[] THENL | |
[MAP_EVERY EXISTS_TAC | |
[`&1`; `&1`; `&0`; `-- &2 * (c:real^2)$1`; `-- &2 * (c:real^2)$2`; | |
`(c:real^2)$1 pow 2 + (c:real^2)$2 pow 2 - r pow 2`] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
REWRITE_TAC[DOT_2; VECTOR_SUB_COMPONENT] THEN REAL_ARITH_TAC; | |
REPLICATE_TAC 5 (EXISTS_TAC `&0`) THEN EXISTS_TAC `&1` THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REAL_ARITH_TAC]]);; | |