Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
26.6 kB
(* ========================================================================= *)
(* Pascal's hexagon theorem for projective and affine planes. *)
(* ========================================================================= *)
needs "Multivariate/cross.ml";;
(* ------------------------------------------------------------------------- *)
(* A lemma we want to justify some of the axioms. *)
(* ------------------------------------------------------------------------- *)
let NORMAL_EXISTS = prove
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN
MP_TAC(ISPEC `{u:real^3,v}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; DIMINDEX_3] THEN
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LET_TRANS THEN
EXISTS_TAC `CARD {u:real^3,v}` THEN CONJ_TAC THEN
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Type of directions. *)
(* ------------------------------------------------------------------------- *)
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
(MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let perpdir = new_definition
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;
let pardir = new_definition
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;
let DIRECTION_CLAUSES = prove
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
MESON_TAC[direction_tybij]);;
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
(`(!x. x || x) /\
(!x y. x || y <=> y || x) /\
(!x y z. x || y /\ y || z ==> x || z)`,
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let PARDIR_EQUIV = prove
(`!x y. ((||) x = (||) y) <=> x || y`,
REWRITE_TAC[FUN_EQ_THM] THEN
MESON_TAC[PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS]);;
let DIRECTION_AXIOM_1 = prove
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_2 = prove
(`!l l'. ?p. p _|_ l /\ p _|_ l'`,
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;
let DIRECTION_AXIOM_3 = prove
(`?p p' p''.
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY
(fun t -> EXISTS_TAC t THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_3; ARITH])
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
VEC3_TAC);;
let DIRECTION_AXIOM_4_WEAK = prove
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 2) cross (l cross basis 3) = vec 0)`
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;
let ORTHOGONAL_COMBINE = prove
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_4 = prove
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;
let PERPDIR_WELLDEF = prove
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let perpl,perpl_th =
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
"perpl" PERPDIR_WELLDEF;;
let line_lift_thm = lift_theorem line_tybij
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;
let point_tybij = new_type_definition "point" ("mk_point","dest_point")
(prove(`?x:line. T`,REWRITE_TAC[]));;
parse_as_infix("on",(11,"right"));;
let on = new_definition `p on l <=> perpl (dest_point p) l`;;
let POINT_CLAUSES = prove
(`((p = p') <=> (dest_point p = dest_point p')) /\
((!p. P (dest_point p)) <=> (!l. P l)) /\
((?p. P (dest_point p)) <=> (?l. P l))`,
MESON_TAC[point_tybij]);;
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;
let AXIOM_1 = prove
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
!l'. p on l' /\ p' on l' ==> (l' = l)`,
POINT_TAC LINE_AXIOM_1);;
let AXIOM_2 = prove
(`!l l'. ?p. p on l /\ p on l'`,
POINT_TAC LINE_AXIOM_2);;
let AXIOM_3 = prove
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p on l /\ p' on l /\ p'' on l)`,
POINT_TAC LINE_AXIOM_3);;
let AXIOM_4 = prove
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p on l /\ p' on l /\ p'' on l`,
POINT_TAC LINE_AXIOM_4);;
(* ------------------------------------------------------------------------- *)
(* Mappings from vectors in R^3 to projective lines and points. *)
(* ------------------------------------------------------------------------- *)
let projl = new_definition
`projl x = mk_line((||) (mk_dir x))`;;
let projp = new_definition
`projp x = mk_point(projl x)`;;
(* ------------------------------------------------------------------------- *)
(* Mappings in the other direction, to (some) homogeneous coordinates. *)
(* ------------------------------------------------------------------------- *)
let PROJL_TOTAL = prove
(`!l. ?x. ~(x = vec 0) /\ l = projl x`,
GEN_TAC THEN
SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL
[MESON_TAC[fst line_tybij; snd line_tybij];
REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN
MESON_TAC[direction_tybij]]);;
let homol = new_specification ["homol"]
(REWRITE_RULE[SKOLEM_THM] PROJL_TOTAL);;
let PROJP_TOTAL = prove
(`!p. ?x. ~(x = vec 0) /\ p = projp x`,
REWRITE_TAC[projp] THEN MESON_TAC[PROJL_TOTAL; point_tybij]);;
let homop_def = new_definition
`homop p = homol(dest_point p)`;;
let homop = prove
(`!p. ~(homop p = vec 0) /\ p = projp(homop p)`,
GEN_TAC THEN REWRITE_TAC[homop_def; projp; MESON[point_tybij]
`p = mk_point l <=> dest_point p = l`] THEN
MATCH_ACCEPT_TAC homol);;
(* ------------------------------------------------------------------------- *)
(* Key equivalences of concepts in projective space and homogeneous coords. *)
(* ------------------------------------------------------------------------- *)
let parallel = new_definition
`parallel x y <=> x cross y = vec 0`;;
let ON_HOMOL = prove
(`!p l. p on l <=> orthogonal (homop p) (homol l)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN
REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN
REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN
MESON_TAC[homol; homop; direction_tybij]);;
let EQ_HOMOL = prove
(`!l l'. l = l' <=> parallel (homol l) (homol l')`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN
REWRITE_TAC[projl; MESON[fst line_tybij; snd line_tybij]
`mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN
MESON_TAC[homol; direction_tybij]);;
let EQ_HOMOP = prove
(`!p p'. p = p' <=> parallel (homop p) (homop p')`,
REWRITE_TAC[homop_def; GSYM EQ_HOMOL] THEN
MESON_TAC[point_tybij]);;
(* ------------------------------------------------------------------------- *)
(* A "welldefinedness" result for homogeneous coordinate map. *)
(* ------------------------------------------------------------------------- *)
let PARALLEL_PROJL_HOMOL = prove
(`!x. parallel x (homol(projl x))`,
GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN
DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN
REWRITE_TAC[MESON[fst line_tybij; snd line_tybij]
`dest_line(mk_line((||) l)) = (||) l`] THEN
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN
ASM_MESON_TAC[direction_tybij]);;
let PARALLEL_PROJP_HOMOP = prove
(`!x. parallel x (homop(projp x))`,
REWRITE_TAC[homop_def; projp; REWRITE_RULE[] point_tybij] THEN
REWRITE_TAC[PARALLEL_PROJL_HOMOL]);;
let PARALLEL_PROJP_HOMOP_EXPLICIT = prove
(`!x. ~(x = vec 0) ==> ?a. ~(a = &0) /\ homop(projp x) = a % x`,
MP_TAC PARALLEL_PROJP_HOMOP THEN MATCH_MP_TAC MONO_FORALL THEN
REWRITE_TAC[parallel; CROSS_EQ_0; COLLINEAR_LEMMA] THEN
GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[homop] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `c:real` THEN ASM_CASES_TAC `c = &0` THEN
ASM_REWRITE_TAC[homop; VECTOR_MUL_LZERO]);;
(* ------------------------------------------------------------------------- *)
(* Brackets, collinearity and their connection. *)
(* ------------------------------------------------------------------------- *)
let bracket = define
`bracket[a;b;c] = det(vector[homop a;homop b;homop c])`;;
let COLLINEAR = new_definition
`COLLINEAR s <=> ?l. !p. p IN s ==> p on l`;;
let COLLINEAR_SINGLETON = prove
(`!a. COLLINEAR {a}`,
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[AXIOM_1; AXIOM_3]);;
let COLLINEAR_PAIR = prove
(`!a b. COLLINEAR{a,b}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:point = b` THEN
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SINGLETON] THEN
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[AXIOM_1]);;
let COLLINEAR_TRIPLE = prove
(`!a b c. COLLINEAR{a,b,c} <=> ?l. a on l /\ b on l /\ c on l`,
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let COLLINEAR_BRACKET = prove
(`!p1 p2 p3. COLLINEAR {p1,p2,p3} <=> bracket[p1;p2;p3] = &0`,
let lemma = prove
(`!a b c x y.
x cross y = vec 0 /\ ~(x = vec 0) /\
orthogonal a x /\ orthogonal b x /\ orthogonal c x
==> orthogonal a y /\ orthogonal b y /\ orthogonal c y`,
REWRITE_TAC[orthogonal] THEN VEC3_TAC) in
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[COLLINEAR_TRIPLE; bracket; ON_HOMOL; LEFT_IMP_EXISTS_THM] THEN
MP_TAC homol THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[DET_3; orthogonal; DOT_3; VECTOR_3; CART_EQ;
DIMINDEX_3; FORALL_3; VEC_COMPONENT] THEN
CONV_TAC REAL_RING;
ASM_CASES_TAC `p1:point = p2` THENL
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_PAIR]; ALL_TAC] THEN
POP_ASSUM MP_TAC THEN
REWRITE_TAC[parallel; COLLINEAR_TRIPLE; bracket; EQ_HOMOP; ON_HOMOL] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC `mk_line((||) (mk_dir(homop p1 cross homop p2)))` THEN
MATCH_MP_TAC lemma THEN EXISTS_TAC `homop p1 cross homop p2` THEN
ASM_REWRITE_TAC[ORTHOGONAL_CROSS] THEN
REWRITE_TAC[orthogonal] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
ONCE_REWRITE_TAC[CROSS_TRIPLE] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
ASM_REWRITE_TAC[DOT_CROSS_DET] THEN
REWRITE_TAC[GSYM projl; GSYM parallel; PARALLEL_PROJL_HOMOL]]);;
(* ------------------------------------------------------------------------- *)
(* Conics and bracket condition for 6 points to be on a conic. *)
(* ------------------------------------------------------------------------- *)
let homogeneous_conic = new_definition
`homogeneous_conic con <=>
?a b c d e f.
~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\
con = {x:real^3 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$3 pow 2 +
d * x$1 * x$2 + e * x$1 * x$3 + f * x$2 * x$3 = &0}`;;
let projective_conic = new_definition
`projective_conic con <=>
?c. homogeneous_conic c /\ con = {p | (homop p) IN c}`;;
let HOMOGENEOUS_CONIC_BRACKET = prove
(`!con x1 x2 x3 x4 x5 x6.
homogeneous_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con
==> det(vector[x6;x1;x4]) * det(vector[x6;x2;x3]) *
det(vector[x5;x1;x3]) * det(vector[x5;x2;x4]) =
det(vector[x6;x1;x3]) * det(vector[x6;x2;x4]) *
det(vector[x5;x1;x4]) * det(vector[x5;x2;x3])`,
REPEAT GEN_TAC THEN REWRITE_TAC[homogeneous_conic; EXTENSION] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; DET_3; VECTOR_3] THEN
CONV_TAC REAL_RING);;
let PROJECTIVE_CONIC_BRACKET = prove
(`!con p1 p2 p3 p4 p5 p6.
projective_conic con /\
p1 IN con /\ p2 IN con /\ p3 IN con /\
p4 IN con /\ p5 IN con /\ p6 IN con
==> bracket[p6;p1;p4] * bracket[p6;p2;p3] *
bracket[p5;p1;p3] * bracket[p5;p2;p4] =
bracket[p6;p1;p3] * bracket[p6;p2;p4] *
bracket[p5;p1;p4] * bracket[p5;p2;p3]`,
REPEAT GEN_TAC THEN REWRITE_TAC[bracket; projective_conic] THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
MATCH_MP_TAC HOMOGENEOUS_CONIC_BRACKET THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Pascal's theorem with all the nondegeneracy principles we use directly. *)
(* ------------------------------------------------------------------------- *)
let PASCAL_DIRECT = prove
(`!con x1 x2 x3 x4 x5 x6 x6 x8 x9.
~COLLINEAR {x2,x5,x7} /\
~COLLINEAR {x1,x2,x5} /\
~COLLINEAR {x1,x3,x6} /\
~COLLINEAR {x2,x4,x6} /\
~COLLINEAR {x3,x4,x5} /\
~COLLINEAR {x1,x5,x7} /\
~COLLINEAR {x2,x5,x9} /\
~COLLINEAR {x1,x2,x6} /\
~COLLINEAR {x3,x6,x8} /\
~COLLINEAR {x2,x4,x5} /\
~COLLINEAR {x2,x4,x7} /\
~COLLINEAR {x2,x6,x8} /\
~COLLINEAR {x3,x4,x6} /\
~COLLINEAR {x3,x5,x8} /\
~COLLINEAR {x1,x3,x5}
==> projective_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con /\
COLLINEAR {x1,x9,x5} /\
COLLINEAR {x1,x8,x6} /\
COLLINEAR {x2,x9,x4} /\
COLLINEAR {x2,x7,x6} /\
COLLINEAR {x3,x8,x4} /\
COLLINEAR {x3,x7,x5}
==> COLLINEAR {x7,x8,x9}`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[TAUT `a /\ b /\ c /\ d /\ e /\ f /\ g /\ h ==> p <=>
a /\ b /\ c /\ d /\ e /\ f /\ g ==> h ==> p`] THEN
DISCH_THEN(MP_TAC o MATCH_MP PROJECTIVE_CONIC_BRACKET) THEN
REWRITE_TAC[COLLINEAR_BRACKET; IMP_IMP; GSYM CONJ_ASSOC] THEN
MATCH_MP_TAC(TAUT `!q. (p ==> q) /\ (q ==> r) ==> p ==> r`) THEN
EXISTS_TAC
`bracket[x1;x2;x5] * bracket[x1;x3;x6] *
bracket[x2;x4;x6] * bracket[x3;x4;x5] =
bracket[x1;x2;x6] * bracket[x1;x3;x5] *
bracket[x2;x4;x5] * bracket[x3;x4;x6] /\
bracket[x1;x5;x7] * bracket[x2;x5;x9] =
--bracket[x1;x2;x5] * bracket[x5;x9;x7] /\
bracket[x1;x2;x6] * bracket[x3;x6;x8] =
bracket[x1;x3;x6] * bracket[x2;x6;x8] /\
bracket[x2;x4;x5] * bracket[x2;x9;x7] =
--bracket[x2;x4;x7] * bracket[x2;x5;x9] /\
bracket[x2;x4;x7] * bracket[x2;x6;x8] =
--bracket[x2;x4;x6] * bracket[x2;x8;x7] /\
bracket[x3;x4;x6] * bracket[x3;x5;x8] =
bracket[x3;x4;x5] * bracket[x3;x6;x8] /\
bracket[x1;x3;x5] * bracket[x5;x8;x7] =
--bracket[x1;x5;x7] * bracket[x3;x5;x8]` THEN
CONJ_TAC THENL
[REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
REWRITE_TAC[IMP_CONJ] THEN
REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
`a = b /\ x:real = y ==> a * x = b * y`))) THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
REWRITE_TAC[REAL_NEG_NEG] THEN
RULE_ASSUM_TAC(REWRITE_RULE[COLLINEAR_BRACKET]) THEN
REWRITE_TAC[REAL_MUL_AC] THEN ASM_REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
ASM_REWRITE_TAC[REAL_EQ_MUL_LCANCEL] THEN
FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* With longer but more intuitive non-degeneracy conditions, basically that *)
(* the 6 points divide into two groups of 3 and no 3 are collinear unless *)
(* they are all in the same group. *)
(* ------------------------------------------------------------------------- *)
let PASCAL = prove
(`!con x1 x2 x3 x4 x5 x6 x6 x8 x9.
~COLLINEAR {x1,x2,x4} /\
~COLLINEAR {x1,x2,x5} /\
~COLLINEAR {x1,x2,x6} /\
~COLLINEAR {x1,x3,x4} /\
~COLLINEAR {x1,x3,x5} /\
~COLLINEAR {x1,x3,x6} /\
~COLLINEAR {x2,x3,x4} /\
~COLLINEAR {x2,x3,x5} /\
~COLLINEAR {x2,x3,x6} /\
~COLLINEAR {x4,x5,x1} /\
~COLLINEAR {x4,x5,x2} /\
~COLLINEAR {x4,x5,x3} /\
~COLLINEAR {x4,x6,x1} /\
~COLLINEAR {x4,x6,x2} /\
~COLLINEAR {x4,x6,x3} /\
~COLLINEAR {x5,x6,x1} /\
~COLLINEAR {x5,x6,x2} /\
~COLLINEAR {x5,x6,x3}
==> projective_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con /\
COLLINEAR {x1,x9,x5} /\
COLLINEAR {x1,x8,x6} /\
COLLINEAR {x2,x9,x4} /\
COLLINEAR {x2,x7,x6} /\
COLLINEAR {x3,x8,x4} /\
COLLINEAR {x3,x7,x5}
==> COLLINEAR {x7,x8,x9}`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
DISCH_THEN(fun th ->
MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN DISCH_TAC THEN
MP_TAC th THEN MATCH_MP_TAC PASCAL_DIRECT THEN
ASSUME_TAC(funpow 7 CONJUNCT2 th)) THEN
REPEAT CONJ_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[COLLINEAR_BRACKET; bracket; DET_3; VECTOR_3] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Homogenization and hence mapping from affine to projective plane. *)
(* ------------------------------------------------------------------------- *)
let homogenize = new_definition
`(homogenize:real^2->real^3) x = vector[x$1; x$2; &1]`;;
let projectivize = new_definition
`projectivize = projp o homogenize`;;
let HOMOGENIZE_NONZERO = prove
(`!x. ~(homogenize x = vec 0)`,
REWRITE_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3;
homogenize] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Conic in affine plane. *)
(* ------------------------------------------------------------------------- *)
let affine_conic = new_definition
`affine_conic con <=>
?a b c d e f.
~(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 /\ e = &0 /\ f = &0) /\
con = {x:real^2 | a * x$1 pow 2 + b * x$2 pow 2 + c * x$1 * x$2 +
d * x$1 + e * x$2 + f = &0}`;;
(* ------------------------------------------------------------------------- *)
(* Relationships between affine and projective notions. *)
(* ------------------------------------------------------------------------- *)
let COLLINEAR_PROJECTIVIZE = prove
(`!a b c. collinear{a,b,c} <=>
COLLINEAR{projectivize a,projectivize b,projectivize c}`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COLLINEAR_3] THEN
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL] THEN
REWRITE_TAC[COLLINEAR_BRACKET; projectivize; o_THM; bracket] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `det(vector[homogenize a; homogenize b; homogenize c]) = &0` THEN
CONJ_TAC THENL
[REWRITE_TAC[homogenize; DOT_2; VECTOR_SUB_COMPONENT; DET_3; VECTOR_3] THEN
CONV_TAC REAL_RING;
MAP_EVERY (MP_TAC o C SPEC PARALLEL_PROJP_HOMOP)
[`homogenize a`; `homogenize b`; `homogenize c`] THEN
MAP_EVERY (MP_TAC o C SPEC HOMOGENIZE_NONZERO)
[`a:real^2`; `b:real^2`; `c:real^2`] THEN
MAP_EVERY (MP_TAC o CONJUNCT1 o C SPEC homop)
[`projp(homogenize a)`; `projp(homogenize b)`; `projp(homogenize c)`] THEN
REWRITE_TAC[parallel; cross; CART_EQ; DIMINDEX_3; FORALL_3; VECTOR_3;
DET_3; VEC_COMPONENT] THEN
CONV_TAC REAL_RING]);;
let AFFINE_PROJECTIVE_CONIC = prove
(`!con. affine_conic con <=> ?con'. projective_conic con' /\
con = {x | projectivize x IN con'}`,
REWRITE_TAC[affine_conic; projective_conic; homogeneous_conic] THEN
GEN_TAC THEN REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[MESON[]
`(?con' con a b c d e f. P con' con a b c d e f) <=>
(?a b d e f c con' con. P con' con a b c d e f)`] THEN
MAP_EVERY (fun s ->
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC(mk_var(s,`:real`)) THEN REWRITE_TAC[])
["a"; "b"; "c"; "d"; "e"; "f"] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[IN_ELIM_THM; projectivize; o_THM] THEN
BINOP_TAC THENL [CONV_TAC TAUT; AP_TERM_TAC] THEN
REWRITE_TAC[EXTENSION] THEN X_GEN_TAC `x:real^2` THEN
MP_TAC(SPEC `x:real^2` HOMOGENIZE_NONZERO) THEN
DISCH_THEN(MP_TAC o MATCH_MP PARALLEL_PROJP_HOMOP_EXPLICIT) THEN
DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; VECTOR_MUL_COMPONENT] THEN
REWRITE_TAC[homogenize; VECTOR_3] THEN
UNDISCH_TAC `~(k = &0)` THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Hence Pascal's theorem for the affine plane. *)
(* ------------------------------------------------------------------------- *)
let PASCAL_AFFINE = prove
(`!con x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2.
~collinear {x1,x2,x4} /\
~collinear {x1,x2,x5} /\
~collinear {x1,x2,x6} /\
~collinear {x1,x3,x4} /\
~collinear {x1,x3,x5} /\
~collinear {x1,x3,x6} /\
~collinear {x2,x3,x4} /\
~collinear {x2,x3,x5} /\
~collinear {x2,x3,x6} /\
~collinear {x4,x5,x1} /\
~collinear {x4,x5,x2} /\
~collinear {x4,x5,x3} /\
~collinear {x4,x6,x1} /\
~collinear {x4,x6,x2} /\
~collinear {x4,x6,x3} /\
~collinear {x5,x6,x1} /\
~collinear {x5,x6,x2} /\
~collinear {x5,x6,x3}
==> affine_conic con /\
x1 IN con /\ x2 IN con /\ x3 IN con /\
x4 IN con /\ x5 IN con /\ x6 IN con /\
collinear {x1,x9,x5} /\
collinear {x1,x8,x6} /\
collinear {x2,x9,x4} /\
collinear {x2,x7,x6} /\
collinear {x3,x8,x4} /\
collinear {x3,x7,x5}
==> collinear {x7,x8,x9}`,
REWRITE_TAC[COLLINEAR_PROJECTIVIZE; AFFINE_PROJECTIVE_CONIC] THEN
REPEAT(GEN_TAC ORELSE DISCH_TAC) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP PASCAL) THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Special case of a circle where nondegeneracy is simpler. *)
(* ------------------------------------------------------------------------- *)
let COLLINEAR_NOT_COCIRCULAR = prove
(`!r c x y z:real^2.
dist(c,x) = r /\ dist(c,y) = r /\ dist(c,z) = r /\
~(x = y) /\ ~(x = z) /\ ~(y = z)
==> ~collinear {x,y,z}`,
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
REWRITE_TAC[GSYM DOT_EQ_0] THEN
ONCE_REWRITE_TAC[COLLINEAR_3] THEN
REWRITE_TAC[GSYM DOT_CAUCHY_SCHWARZ_EQUAL; DOT_2] THEN
REWRITE_TAC[dist; NORM_EQ_SQUARE; CART_EQ; DIMINDEX_2; FORALL_2;
DOT_2; VECTOR_SUB_COMPONENT] THEN
CONV_TAC REAL_RING);;
let PASCAL_AFFINE_CIRCLE = prove
(`!c r x1 x2 x3 x4 x5 x6 x7 x8 x9:real^2.
PAIRWISE (\x y. ~(x = y)) [x1;x2;x3;x4;x5;x6] /\
dist(c,x1) = r /\ dist(c,x2) = r /\ dist(c,x3) = r /\
dist(c,x4) = r /\ dist(c,x5) = r /\ dist(c,x6) = r /\
collinear {x1,x9,x5} /\
collinear {x1,x8,x6} /\
collinear {x2,x9,x4} /\
collinear {x2,x7,x6} /\
collinear {x3,x8,x4} /\
collinear {x3,x7,x5}
==> collinear {x7,x8,x9}`,
GEN_TAC THEN GEN_TAC THEN
MP_TAC(SPEC `{x:real^2 | dist(c,x) = r}` PASCAL_AFFINE) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REWRITE_TAC[PAIRWISE; ALL; IN_ELIM_THM] THEN
GEN_REWRITE_TAC LAND_CONV [IMP_IMP] THEN
DISCH_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT CONJ_TAC THEN MATCH_MP_TAC COLLINEAR_NOT_COCIRCULAR THEN
MAP_EVERY EXISTS_TAC [`r:real`; `c:real^2`] THEN ASM_REWRITE_TAC[];
REWRITE_TAC[affine_conic; dist; NORM_EQ_SQUARE] THEN
ASM_CASES_TAC `&0 <= r` THEN ASM_REWRITE_TAC[] THENL
[MAP_EVERY EXISTS_TAC
[`&1`; `&1`; `&0`; `-- &2 * (c:real^2)$1`; `-- &2 * (c:real^2)$2`;
`(c:real^2)$1 pow 2 + (c:real^2)$2 pow 2 - r pow 2`] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
REWRITE_TAC[DOT_2; VECTOR_SUB_COMPONENT] THEN REAL_ARITH_TAC;
REPLICATE_TAC 5 (EXISTS_TAC `&0`) THEN EXISTS_TAC `&1` THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REAL_ARITH_TAC]]);;