Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The SECG-recommended elliptic curve secp256k1. *) | |
(* ========================================================================= *) | |
needs "EC/weierstrass.ml";; | |
needs "EC/excluderoots.ml";; | |
needs "EC/computegroup.ml";; | |
add_curve weierstrass_curve;; | |
add_curveneg weierstrass_neg;; | |
add_curveadd weierstrass_add;; | |
(* ------------------------------------------------------------------------- *) | |
(* The SECG curve parameters, copied from the SEC 2 document. *) | |
(* See https://www.secg.org/sec2-v2.pdf *) | |
(* ------------------------------------------------------------------------- *) | |
let p_256k1 = define `p_256k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F`;; | |
let n_256k1 = define `n_256k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141`;; | |
let G_256K1 = define `G_256K1 = SOME(&0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798:int,&0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8:int)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Also parameters beta and lambda for an endomorphism. *) | |
(* ------------------------------------------------------------------------- *) | |
let p256k1_beta = define `p256k1_beta = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee`;; | |
let p256k1_lambda = define `p256k1_lambda = 0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Primality of the field characteristic and group order. *) | |
(* ------------------------------------------------------------------------- *) | |
let P_256K1 = prove | |
(`p_256k1 = 2 EXP 256 - 2 EXP 32 - 977`, | |
REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let P_256K1_ALT = prove | |
(`p_256k1 = | |
2 EXP 256 - 2 EXP 32 - 2 EXP 9 - 2 EXP 8 - 2 EXP 7 - 2 EXP 6 - 2 EXP 4 - 1`, | |
REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let PRIME_P256K1 = time prove | |
(`prime p_256k1`, | |
REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "29"; "31"; "41"; "53"; "67"; | |
"83"; "97"; "101"; "103"; "131"; "239"; "271"; "419"; "443"; "887"; "971"; | |
"1373"; "1627"; "2621"; "2657"; "4423"; "5323"; "7723"; "13441"; "20113"; | |
"24809"; "41201"; "96557"; "1206781"; "7240687"; "13331831"; "107590001"; | |
"173378833005251801"; "22149492674086928081353"; | |
"132896956044521568488119"; "255515944373312847190720520512484175977"; | |
"205115282021455665897114700593932402728804164701536103180137503955397371"]);; | |
let PRIME_N256K1 = time prove | |
(`prime n_256k1`, | |
REWRITE_TAC[n_256k1] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "37"; "41"; "59"; | |
"67"; "73"; "97"; "109"; "113"; "149"; "199"; "293"; "461"; "631"; "797"; | |
"1409"; "1871"; "2011"; "2731"; "2861"; "4051"; "9349"; "16699"; "28181"; | |
"85831"; "120233"; "305873"; "1627771"; "4681609"; "44706919"; | |
"545358713"; "297159362677"; "107361793816595537"; | |
"174723607534414371449"; "29047611873442575647497758179"; | |
"341948486974166000522343609283189"]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of the curve group and proof of its key properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let p256k1_group = define | |
`p256k1_group = weierstrass_group(integer_mod_ring p_256k1,&0,&7)`;; | |
let P256K1_GROUP = prove | |
(`group_carrier p256k1_group = | |
weierstrass_curve(integer_mod_ring p_256k1,&0,&7) /\ | |
group_id p256k1_group = | |
NONE /\ | |
group_inv p256k1_group = | |
weierstrass_neg(integer_mod_ring p_256k1,&0,&7) /\ | |
group_mul p256k1_group = | |
weierstrass_add(integer_mod_ring p_256k1,&0,&7)`, | |
REWRITE_TAC[p256k1_group] THEN | |
MATCH_MP_TAC WEIERSTRASS_GROUP THEN | |
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P256K1] THEN | |
REWRITE_TAC[p_256k1; weierstrass_nonsingular] THEN | |
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
add_ecgroup [p_256k1] P256K1_GROUP;; | |
let NO_ROOTS_256K1 = prove | |
(`!x:int. ~((x pow 3 + &7 == &0) (mod &p_256k1))`, | |
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P256K1 [p_256k1]);; | |
let GENERATOR_IN_GROUP_CARRIER_256K1 = prove | |
(`G_256K1 IN group_carrier p256k1_group`, | |
REWRITE_TAC[G_256K1] THEN CONV_TAC ECGROUP_CARRIER_CONV);; | |
let GROUP_ELEMENT_ORDER_G256K1 = prove | |
(`group_element_order p256k1_group G_256K1 = n_256k1`, | |
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; | |
GENERATOR_IN_GROUP_CARRIER_256K1; PRIME_N256K1] THEN | |
REWRITE_TAC[G_256K1; el 1 (CONJUNCTS P256K1_GROUP); | |
option_DISTINCT] THEN | |
REWRITE_TAC[n_256k1] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN | |
REFL_TAC);; | |
let FINITE_GROUP_CARRIER_256K1 = prove | |
(`FINITE(group_carrier p256k1_group)`, | |
REWRITE_TAC[P256K1_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; | |
FIELD_INTEGER_MOD_RING; PRIME_P256K1] THEN | |
REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let SIZE_P256K1_GROUP = prove | |
(`group_carrier p256k1_group HAS_SIZE n_256k1`, | |
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN | |
EXISTS_TAC `G_256K1:(int#int)option` THEN | |
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_256K1; | |
GROUP_ELEMENT_ORDER_G256K1; | |
FINITE_GROUP_CARRIER_256K1] THEN | |
REWRITE_TAC[P256K1_GROUP] THEN CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhand o rand) | |
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN | |
REWRITE_TAC[PRIME_P256K1] THEN ANTS_TAC THENL | |
[REWRITE_TAC[p_256k1] THEN CONV_TAC NUM_REDUCE_CONV; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN | |
SIMP_TAC[CARD_INTEGER_MOD_RING; p_256k1; ARITH] THEN | |
REWRITE_TAC[n_256k1] THEN CONV_TAC NUM_REDUCE_CONV; | |
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN | |
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN | |
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_256k1; PAIR_EQ] THEN | |
CONV_TAC INT_REDUCE_CONV] THEN | |
ASM_CASES_TAC `y:int = &0` THENL | |
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_256K1) THEN | |
REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ; p_256k1; INT_REM_ZERO]; | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH | |
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN | |
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN | |
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE | |
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE | |
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN | |
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);; | |
let GENERATED_P256K1_GROUP = prove | |
(`subgroup_generated p256k1_group {G_256K1} = p256k1_group`, | |
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; | |
GENERATOR_IN_GROUP_CARRIER_256K1; | |
FINITE_GROUP_CARRIER_256K1] THEN | |
REWRITE_TAC[GROUP_ELEMENT_ORDER_G256K1; | |
REWRITE_RULE[HAS_SIZE] SIZE_P256K1_GROUP]);; | |
let CYCLIC_P256K1_GROUP = prove | |
(`cyclic_group p256k1_group`, | |
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P256K1_GROUP]);; | |
let ABELIAN_P256K1_GROUP = prove | |
(`abelian_group p256k1_group`, | |
MESON_TAC[CYCLIC_P256K1_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Easily computable endomorphism of secp256k1 curve. *) | |
(* ------------------------------------------------------------------------- *) | |
let GROUP_ENDOMORPHISM_TRIPLEX_BETA = prove | |
(`group_endomorphism p256k1_group | |
(weierstrass_triplex (integer_mod_ring p_256k1) (&p256k1_beta))`, | |
REWRITE_TAC[p256k1_group] THEN MATCH_MP_TAC GROUP_ENDOMORPHISM_TRIPLEX THEN | |
SIMP_TAC[INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; INTEGER_MOD_RING_POW; | |
p_256k1; IN_INSERT; FIELD_INTEGER_MOD_RING; ARITH; p256k1_beta; | |
IN_ELIM_THM; weierstrass_nonsingular; INTEGER_MOD_RING_OF_NUM] THEN | |
REWRITE_TAC[REWRITE_RULE[p_256k1] PRIME_P256K1] THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
let P256K1_TRIPLEX_BETA = prove | |
(`!x. x IN group_carrier p256k1_group | |
==> weierstrass_triplex (integer_mod_ring p_256k1) (&p256k1_beta) x = | |
group_pow p256k1_group x p256k1_lambda`, | |
GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV o ONCE_DEPTH_CONV) | |
[GSYM GENERATED_P256K1_GROUP] THEN | |
MATCH_MP_TAC GROUP_HOMOMORPHISMS_EQ_ON_GENERATORS THEN | |
EXISTS_TAC `p256k1_group` THEN | |
SIMP_TAC[ABELIAN_GROUP_HOMOMORPHISM_POWERING; ABELIAN_P256K1_GROUP] THEN | |
REWRITE_TAC[GSYM group_endomorphism] THEN | |
REWRITE_TAC[GROUP_ENDOMORPHISM_TRIPLEX_BETA; ETA_AX] THEN | |
REWRITE_TAC[IMP_CONJ_ALT; IN_SING; FORALL_UNWIND_THM2] THEN | |
DISCH_TAC THEN | |
SIMP_TAC[weierstrass_triplex; p256k1_beta; p256k1_lambda; G_256K1] THEN | |
CONV_TAC(RAND_CONV ECGROUP_POW_CONV) THEN | |
REWRITE_TAC[option_INJ; PAIR_EQ] THEN | |
REWRITE_TAC[INTEGER_MOD_RING; p_256k1] THEN CONV_TAC INT_REDUCE_CONV);; | |