Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* More definitions and theorems and tactics about lists. *) | |
(* *) | |
(* Author: Marco Maggesi *) | |
(* University of Florence, Italy *) | |
(* http://www.math.unifi.it/~maggesi/ *) | |
(* *) | |
(* (c) Copyright, Marco Maggesi, 2005-2007 *) | |
(* ========================================================================= *) | |
parse_as_infix ("::",(23,"right"));; | |
override_interface("::",`CONS`);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some handy tactics. *) | |
(* ------------------------------------------------------------------------- *) | |
let ASSERT_TAC tm = SUBGOAL_THEN tm ASSUME_TAC;; | |
let SUFFICE_TAC thl tm = | |
SUBGOAL_THEN tm (fun th -> MESON_TAC (th :: thl));; | |
let LIST_CASES_TAC = | |
let th = prove (`!P. P [] /\ (!h t. P (h :: t)) ==> !l. P l`, | |
GEN_TAC THEN STRIP_TAC THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC []) | |
in | |
MATCH_MP_TAC th THEN CONJ_TAC THENL | |
[ALL_TAC; GEN_TAC THEN GEN_TAC];; | |
(* ------------------------------------------------------------------------- *) | |
(* Occasionally useful stuff. *) | |
(* ------------------------------------------------------------------------- *) | |
let NULL_EQ_NIL = prove | |
(`!l. NULL l <=> l = []`, | |
LIST_CASES_TAC THEN REWRITE_TAC [NULL; NOT_CONS_NIL]);; | |
let NULL_LENGTH = prove | |
(`!l. NULL l <=> LENGTH l = 0`, | |
LIST_CASES_TAC THEN REWRITE_TAC [NULL; LENGTH; NOT_SUC]);; | |
let LENGTH_FILTER_LE = prove | |
(`!f l:A list. LENGTH (FILTER f l) <= LENGTH l`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; LENGTH; LE_0] THEN | |
COND_CASES_TAC THEN | |
ASM_SIMP_TAC [LENGTH; LE_SUC; ARITH_RULE `n<=m ==> n<= SUC m`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Well-founded induction on lists. *) | |
(* ------------------------------------------------------------------------- *) | |
let list_WF = prove | |
(`!P. (!l. (!l'. LENGTH l' < LENGTH l ==> P l') ==> P l) | |
==> (!l:A list. P l)`, | |
MP_TAC (ISPEC `LENGTH:A list->num` WF_MEASURE) THEN | |
REWRITE_TAC [WF_IND; MEASURE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Delete one element from a list. *) | |
(* ------------------------------------------------------------------------- *) | |
let DELETE1 = define | |
`(!x. DELETE1 x [] = []) /\ | |
(!x h t. DELETE1 x (h :: t) = if x = h then t | |
else h :: DELETE1 x t)`;; | |
let DELETE1_ID = prove | |
(`!x l. ~MEM x l ==> DELETE1 x l = l`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC [NOT_CONS_NIL; CONS_11]);; | |
let DELETE1_APPEND = prove | |
(`!x l1 l2. DELETE1 x (APPEND l1 l2) = | |
if MEM x l1 then APPEND (DELETE1 x l1) l2 | |
else APPEND l1 (DELETE1 x l2)`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [APPEND; DELETE1; MEM] THEN | |
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM; APPEND] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let FILTER_DELETE1 = prove | |
(`!P x l. FILTER P (DELETE1 x l) = | |
if P x then DELETE1 x (FILTER P l) else FILTER P l`, | |
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REPEAT (REWRITE_TAC [DELETE1; FILTER] THEN COND_CASES_TAC) THEN | |
ASM_MESON_TAC []);; | |
let LENGTH_DELETE1 = prove | |
(`!l x:A. LENGTH (DELETE1 x l) = | |
if MEM x l then PRE (LENGTH l) else LENGTH l`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; LENGTH; DELETE1] THEN GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[PRE; LENGTH] THEN COND_CASES_TAC THEN | |
REWRITE_TAC [ARITH_RULE `SUC (PRE n)=n <=> ~(n=0)`; LENGTH_EQ_NIL] THEN | |
ASM_MESON_TAC [MEM]);; | |
let MEM_DELETE1_MEM_IMP = prove | |
(`!h t x. MEM x (DELETE1 h t) ==> MEM x t`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN GEN_TAC THEN | |
REWRITE_TAC [MEM; DELETE1] THEN COND_CASES_TAC THEN | |
REWRITE_TAC [MEM] THEN STRIP_TAC THEN ASM_SIMP_TAC []);; | |
let NOT_MEM_DELETE1 = prove | |
(`!t h x. ~MEM x t ==> ~MEM x (DELETE1 h t)`, | |
LIST_INDUCT_TAC THEN GEN_TAC THEN GEN_TAC THEN | |
REWRITE_TAC [MEM; DELETE1] THEN | |
COND_CASES_TAC THEN REWRITE_TAC [MEM; DE_MORGAN_THM] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC []);; | |
let MEM_DELETE1 = prove | |
(`!l x y:A. MEM x l /\ ~(x = y) ==> MEM x (DELETE1 y l)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN | |
GEN_TAC THEN GEN_TAC THEN COND_CASES_TAC THENL | |
[EXPAND_TAC "h" THEN MESON_TAC []; | |
REWRITE_TAC [MEM] THEN ASM_MESON_TAC []]);; | |
let ALL_DELETE1_ALL_IMP = prove | |
(`!P x l. P x /\ ALL P (DELETE1 x l) ==> ALL P l`, | |
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC [ALL; DELETE1] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC [ALL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Counting occurrences of a given element in a list. *) | |
(* ------------------------------------------------------------------------- *) | |
let COUNT = define | |
`(!x. COUNT x [] = 0) /\ | |
(!x h t. COUNT x (CONS h t) = if x=h then SUC (COUNT x t) else COUNT x t)`;; | |
let COUNT_LENGTH_FILTER = prove | |
(`!x l. COUNT x l = LENGTH (FILTER ((=) x) l)`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [COUNT; FILTER; LENGTH] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC [LENGTH]);; | |
let COUNT_FILTER = prove | |
(`!P x l. COUNT x (FILTER P l) = | |
if P x then COUNT x l else 0`, | |
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REPEAT (ASM_REWRITE_TAC [COUNT; FILTER] THEN COND_CASES_TAC) THEN | |
ASM_MESON_TAC []);; | |
let COUNT_APPEND = prove | |
(`!x l1 l2. COUNT x (APPEND l1 l2) = COUNT x l1 + COUNT x l2`, | |
REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_APPEND; FILTER_APPEND]);; | |
let COUNT_LE_LENGTH = prove | |
(`!x l. COUNT x l <= LENGTH l`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC [COUNT; LENGTH; LE_REFL] THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC [LE_SUC; ARITH_RULE `n<=m ==> n <= SUC m`]);; | |
let COUNT_ZERO = prove | |
(`!x l. COUNT x l = 0 <=> ~MEM x l`, | |
GEN_TAC THEN REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_EQ_NIL] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; MEM] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC [NOT_CONS_NIL]);; | |
let MEM_COUNT = prove | |
(`!x l. MEM x l <=> ~(COUNT x l = 0)`, | |
MESON_TAC [COUNT_ZERO]);; | |
let COUNT_DELETE1 = prove | |
(`!y x l. COUNT y (DELETE1 (x:A) l) = | |
if y=x /\ MEM x l then PRE (COUNT y l) else COUNT y l`, | |
REWRITE_TAC [COUNT_LENGTH_FILTER; FILTER_DELETE1] THEN REPEAT GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM_FILTER; LENGTH_DELETE1]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Duplicates in a list. *) | |
(* ------------------------------------------------------------------------- *) | |
let LIST_UNIQ_RULES, LIST_UNIQ_INDUCT, LIST_UNIQ_CASES = | |
new_inductive_definition | |
`LIST_UNIQ [] /\ | |
(!x xs. LIST_UNIQ xs /\ ~MEM x xs ==> LIST_UNIQ (x :: xs))`;; | |
let LIST_UNIQ = prove | |
(`LIST_UNIQ [] /\ | |
(!x. LIST_UNIQ [x]) /\ | |
(!x xs. LIST_UNIQ (x :: xs) <=> ~MEM x xs /\ LIST_UNIQ xs)`, | |
SIMP_TAC [LIST_UNIQ_RULES; MEM] THEN | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[ONCE_REWRITE_TAC [ISPEC `h :: t` LIST_UNIQ_CASES] THEN | |
REWRITE_TAC [CONS_11; NOT_CONS_NIL] THEN | |
DISCH_THEN (CHOOSE_THEN CHOOSE_TAC) THEN ASM_REWRITE_TAC []; | |
SIMP_TAC [LIST_UNIQ_RULES]]);; | |
let LIST_UNIQ_EQ_PAIRWISE_DISTINCT = prove | |
(`LIST_UNIQ = PAIRWISE (\x y. ~(x = y))`, | |
REWRITE_TAC[FUN_EQ_THM] THEN | |
MATCH_MP_TAC list_INDUCT THEN ASM_REWRITE_TAC[LIST_UNIQ; PAIRWISE] THEN | |
SIMP_TAC[GSYM ALL_MEM] THEN MESON_TAC[]);; | |
(* !!! forse e' meglio con IMP? *) | |
(* Magari LIST_UNIQ_COUNT + COUNT_LIST_UNIQ *) | |
let LIST_UNIQ_COUNT = prove | |
(`!l. LIST_UNIQ l <=> (!x:A. COUNT x l = if MEM x l then 1 else 0)`, | |
let IFF_EXPAND = MESON [] `(p <=> q) <=> (p ==> q) /\ (q ==> p)` in | |
REWRITE_TAC [IFF_EXPAND; FORALL_AND_THM] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC LIST_UNIQ_INDUCT THEN REWRITE_TAC [COUNT; MEM] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ONE]; | |
LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; COUNT; MEM] THEN | |
DISCH_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `h:A`) THEN | |
SIMP_TAC [MEM_COUNT; ONE; SUC_INJ] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN | |
FIRST_ASSUM (MP_TAC o SPEC `x:A`) THEN | |
REWRITE_TAC [MEM_COUNT] THEN ARITH_TAC]);; | |
let LIST_UNIQ_DELETE1 = prove | |
(`!l x. LIST_UNIQ l ==> LIST_UNIQ (DELETE1 x l)`, | |
LIST_INDUCT_TAC THEN GEN_TAC THEN | |
REWRITE_TAC [LIST_UNIQ; DELETE1] THEN STRIP_TAC THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC [LIST_UNIQ; NOT_MEM_DELETE1]);; | |
let DELETE1_LIST_UNIQ = prove | |
(`!l x:A. ~MEM x (DELETE1 x l) /\ LIST_UNIQ (DELETE1 x l) | |
==> LIST_UNIQ l`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; DELETE1; MEM] THEN | |
GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC [MEM; LIST_UNIQ] THEN STRIP_TAC THEN CONJ_TAC THENL | |
[ASM_MESON_TAC [MEM_DELETE1]; | |
FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `x:A` THEN | |
ASM_REWRITE_TAC []]);; | |
let LIST_UNIQ_APPEND = prove | |
(`!l m. LIST_UNIQ (APPEND l m) <=> | |
LIST_UNIQ l /\ LIST_UNIQ m /\ | |
!x. ~(MEM x l /\ MEM x m)`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LIST_UNIQ; MEM; MEM_APPEND] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lists and finite sets. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_LENGTH = prove | |
(`!l:A list. CARD (set_of_list l) <= LENGTH l`, | |
LIST_INDUCT_TAC THEN | |
SIMP_TAC [set_of_list; CARD_CLAUSES; LENGTH; | |
FINITE_SET_OF_LIST; ARITH] THEN | |
COND_CASES_TAC THENL | |
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `LENGTH (t:A list)` | |
THEN ASM_REWRITE_TAC [] THEN ARITH_TAC; | |
ASM_REWRITE_TAC [LE_SUC]]);; | |
let LIST_UNIQ_CARD_LENGTH = prove | |
(`!l:A list. LIST_UNIQ l <=> CARD (set_of_list l) = LENGTH l`, | |
LIST_INDUCT_TAC THEN SIMP_TAC [LIST_UNIQ; set_of_list; FINITE_SET_OF_LIST; | |
LENGTH; CARD_CLAUSES; IN_SET_OF_LIST] THEN | |
FIRST_X_ASSUM SUBST1_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[SUC_INJ] THEN MP_TAC (SPEC `t:A list` CARD_LENGTH) THEN | |
ARITH_TAC);; | |
let LIST_UNIQ_LIST_OF_SET = prove | |
(`!s. FINITE s ==> LIST_UNIQ(list_of_set s)`, | |
SIMP_TAC[LIST_UNIQ_CARD_LENGTH; SET_OF_LIST_OF_SET; LENGTH_LIST_OF_SET]);; | |