Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11 kB
(* ========================================================================= *)
(* More definitions and theorems and tactics about lists. *)
(* *)
(* Author: Marco Maggesi *)
(* University of Florence, Italy *)
(* http://www.math.unifi.it/~maggesi/ *)
(* *)
(* (c) Copyright, Marco Maggesi, 2005-2007 *)
(* ========================================================================= *)
parse_as_infix ("::",(23,"right"));;
override_interface("::",`CONS`);;
(* ------------------------------------------------------------------------- *)
(* Some handy tactics. *)
(* ------------------------------------------------------------------------- *)
let ASSERT_TAC tm = SUBGOAL_THEN tm ASSUME_TAC;;
let SUFFICE_TAC thl tm =
SUBGOAL_THEN tm (fun th -> MESON_TAC (th :: thl));;
let LIST_CASES_TAC =
let th = prove (`!P. P [] /\ (!h t. P (h :: t)) ==> !l. P l`,
GEN_TAC THEN STRIP_TAC THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC [])
in
MATCH_MP_TAC th THEN CONJ_TAC THENL
[ALL_TAC; GEN_TAC THEN GEN_TAC];;
(* ------------------------------------------------------------------------- *)
(* Occasionally useful stuff. *)
(* ------------------------------------------------------------------------- *)
let NULL_EQ_NIL = prove
(`!l. NULL l <=> l = []`,
LIST_CASES_TAC THEN REWRITE_TAC [NULL; NOT_CONS_NIL]);;
let NULL_LENGTH = prove
(`!l. NULL l <=> LENGTH l = 0`,
LIST_CASES_TAC THEN REWRITE_TAC [NULL; LENGTH; NOT_SUC]);;
let LENGTH_FILTER_LE = prove
(`!f l:A list. LENGTH (FILTER f l) <= LENGTH l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; LENGTH; LE_0] THEN
COND_CASES_TAC THEN
ASM_SIMP_TAC [LENGTH; LE_SUC; ARITH_RULE `n<=m ==> n<= SUC m`]);;
(* ------------------------------------------------------------------------- *)
(* Well-founded induction on lists. *)
(* ------------------------------------------------------------------------- *)
let list_WF = prove
(`!P. (!l. (!l'. LENGTH l' < LENGTH l ==> P l') ==> P l)
==> (!l:A list. P l)`,
MP_TAC (ISPEC `LENGTH:A list->num` WF_MEASURE) THEN
REWRITE_TAC [WF_IND; MEASURE]);;
(* ------------------------------------------------------------------------- *)
(* Delete one element from a list. *)
(* ------------------------------------------------------------------------- *)
let DELETE1 = define
`(!x. DELETE1 x [] = []) /\
(!x h t. DELETE1 x (h :: t) = if x = h then t
else h :: DELETE1 x t)`;;
let DELETE1_ID = prove
(`!x l. ~MEM x l ==> DELETE1 x l = l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC [NOT_CONS_NIL; CONS_11]);;
let DELETE1_APPEND = prove
(`!x l1 l2. DELETE1 x (APPEND l1 l2) =
if MEM x l1 then APPEND (DELETE1 x l1) l2
else APPEND l1 (DELETE1 x l2)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [APPEND; DELETE1; MEM] THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM; APPEND] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);;
let FILTER_DELETE1 = prove
(`!P x l. FILTER P (DELETE1 x l) =
if P x then DELETE1 x (FILTER P l) else FILTER P l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REPEAT (REWRITE_TAC [DELETE1; FILTER] THEN COND_CASES_TAC) THEN
ASM_MESON_TAC []);;
let LENGTH_DELETE1 = prove
(`!l x:A. LENGTH (DELETE1 x l) =
if MEM x l then PRE (LENGTH l) else LENGTH l`,
LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; LENGTH; DELETE1] THEN GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[PRE; LENGTH] THEN COND_CASES_TAC THEN
REWRITE_TAC [ARITH_RULE `SUC (PRE n)=n <=> ~(n=0)`; LENGTH_EQ_NIL] THEN
ASM_MESON_TAC [MEM]);;
let MEM_DELETE1_MEM_IMP = prove
(`!h t x. MEM x (DELETE1 h t) ==> MEM x t`,
GEN_TAC THEN LIST_INDUCT_TAC THEN GEN_TAC THEN
REWRITE_TAC [MEM; DELETE1] THEN COND_CASES_TAC THEN
REWRITE_TAC [MEM] THEN STRIP_TAC THEN ASM_SIMP_TAC []);;
let NOT_MEM_DELETE1 = prove
(`!t h x. ~MEM x t ==> ~MEM x (DELETE1 h t)`,
LIST_INDUCT_TAC THEN GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC [MEM; DELETE1] THEN
COND_CASES_TAC THEN REWRITE_TAC [MEM; DE_MORGAN_THM] THEN
STRIP_TAC THEN ASM_SIMP_TAC []);;
let MEM_DELETE1 = prove
(`!l x y:A. MEM x l /\ ~(x = y) ==> MEM x (DELETE1 y l)`,
LIST_INDUCT_TAC THEN REWRITE_TAC [MEM; DELETE1] THEN
GEN_TAC THEN GEN_TAC THEN COND_CASES_TAC THENL
[EXPAND_TAC "h" THEN MESON_TAC [];
REWRITE_TAC [MEM] THEN ASM_MESON_TAC []]);;
let ALL_DELETE1_ALL_IMP = prove
(`!P x l. P x /\ ALL P (DELETE1 x l) ==> ALL P l`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC [ALL; DELETE1] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC [ALL]);;
(* ------------------------------------------------------------------------- *)
(* Counting occurrences of a given element in a list. *)
(* ------------------------------------------------------------------------- *)
let COUNT = define
`(!x. COUNT x [] = 0) /\
(!x h t. COUNT x (CONS h t) = if x=h then SUC (COUNT x t) else COUNT x t)`;;
let COUNT_LENGTH_FILTER = prove
(`!x l. COUNT x l = LENGTH (FILTER ((=) x) l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC [COUNT; FILTER; LENGTH] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC [LENGTH]);;
let COUNT_FILTER = prove
(`!P x l. COUNT x (FILTER P l) =
if P x then COUNT x l else 0`,
GEN_TAC THEN GEN_TAC THEN LIST_INDUCT_TAC THEN
REPEAT (ASM_REWRITE_TAC [COUNT; FILTER] THEN COND_CASES_TAC) THEN
ASM_MESON_TAC []);;
let COUNT_APPEND = prove
(`!x l1 l2. COUNT x (APPEND l1 l2) = COUNT x l1 + COUNT x l2`,
REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_APPEND; FILTER_APPEND]);;
let COUNT_LE_LENGTH = prove
(`!x l. COUNT x l <= LENGTH l`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC [COUNT; LENGTH; LE_REFL] THEN COND_CASES_TAC THEN
ASM_SIMP_TAC [LE_SUC; ARITH_RULE `n<=m ==> n <= SUC m`]);;
let COUNT_ZERO = prove
(`!x l. COUNT x l = 0 <=> ~MEM x l`,
GEN_TAC THEN REWRITE_TAC [COUNT_LENGTH_FILTER; LENGTH_EQ_NIL] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC [FILTER; MEM] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [NOT_CONS_NIL]);;
let MEM_COUNT = prove
(`!x l. MEM x l <=> ~(COUNT x l = 0)`,
MESON_TAC [COUNT_ZERO]);;
let COUNT_DELETE1 = prove
(`!y x l. COUNT y (DELETE1 (x:A) l) =
if y=x /\ MEM x l then PRE (COUNT y l) else COUNT y l`,
REWRITE_TAC [COUNT_LENGTH_FILTER; FILTER_DELETE1] THEN REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MEM_FILTER; LENGTH_DELETE1]);;
(* ------------------------------------------------------------------------- *)
(* Duplicates in a list. *)
(* ------------------------------------------------------------------------- *)
let LIST_UNIQ_RULES, LIST_UNIQ_INDUCT, LIST_UNIQ_CASES =
new_inductive_definition
`LIST_UNIQ [] /\
(!x xs. LIST_UNIQ xs /\ ~MEM x xs ==> LIST_UNIQ (x :: xs))`;;
let LIST_UNIQ = prove
(`LIST_UNIQ [] /\
(!x. LIST_UNIQ [x]) /\
(!x xs. LIST_UNIQ (x :: xs) <=> ~MEM x xs /\ LIST_UNIQ xs)`,
SIMP_TAC [LIST_UNIQ_RULES; MEM] THEN
REPEAT GEN_TAC THEN EQ_TAC THENL
[ONCE_REWRITE_TAC [ISPEC `h :: t` LIST_UNIQ_CASES] THEN
REWRITE_TAC [CONS_11; NOT_CONS_NIL] THEN
DISCH_THEN (CHOOSE_THEN CHOOSE_TAC) THEN ASM_REWRITE_TAC [];
SIMP_TAC [LIST_UNIQ_RULES]]);;
let LIST_UNIQ_EQ_PAIRWISE_DISTINCT = prove
(`LIST_UNIQ = PAIRWISE (\x y. ~(x = y))`,
REWRITE_TAC[FUN_EQ_THM] THEN
MATCH_MP_TAC list_INDUCT THEN ASM_REWRITE_TAC[LIST_UNIQ; PAIRWISE] THEN
SIMP_TAC[GSYM ALL_MEM] THEN MESON_TAC[]);;
(* !!! forse e' meglio con IMP? *)
(* Magari LIST_UNIQ_COUNT + COUNT_LIST_UNIQ *)
let LIST_UNIQ_COUNT = prove
(`!l. LIST_UNIQ l <=> (!x:A. COUNT x l = if MEM x l then 1 else 0)`,
let IFF_EXPAND = MESON [] `(p <=> q) <=> (p ==> q) /\ (q ==> p)` in
REWRITE_TAC [IFF_EXPAND; FORALL_AND_THM] THEN CONJ_TAC THENL
[MATCH_MP_TAC LIST_UNIQ_INDUCT THEN REWRITE_TAC [COUNT; MEM] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[ONE];
LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; COUNT; MEM] THEN
DISCH_TAC THEN FIRST_ASSUM (MP_TAC o SPEC `h:A`) THEN
SIMP_TAC [MEM_COUNT; ONE; SUC_INJ] THEN DISCH_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN GEN_TAC THEN
FIRST_ASSUM (MP_TAC o SPEC `x:A`) THEN
REWRITE_TAC [MEM_COUNT] THEN ARITH_TAC]);;
let LIST_UNIQ_DELETE1 = prove
(`!l x. LIST_UNIQ l ==> LIST_UNIQ (DELETE1 x l)`,
LIST_INDUCT_TAC THEN GEN_TAC THEN
REWRITE_TAC [LIST_UNIQ; DELETE1] THEN STRIP_TAC THEN
COND_CASES_TAC THEN ASM_SIMP_TAC [LIST_UNIQ; NOT_MEM_DELETE1]);;
let DELETE1_LIST_UNIQ = prove
(`!l x:A. ~MEM x (DELETE1 x l) /\ LIST_UNIQ (DELETE1 x l)
==> LIST_UNIQ l`,
LIST_INDUCT_TAC THEN REWRITE_TAC [LIST_UNIQ; DELETE1; MEM] THEN
GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC [MEM; LIST_UNIQ] THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC [MEM_DELETE1];
FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `x:A` THEN
ASM_REWRITE_TAC []]);;
let LIST_UNIQ_APPEND = prove
(`!l m. LIST_UNIQ (APPEND l m) <=>
LIST_UNIQ l /\ LIST_UNIQ m /\
!x. ~(MEM x l /\ MEM x m)`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[APPEND; LIST_UNIQ; MEM; MEM_APPEND] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Lists and finite sets. *)
(* ------------------------------------------------------------------------- *)
let CARD_LENGTH = prove
(`!l:A list. CARD (set_of_list l) <= LENGTH l`,
LIST_INDUCT_TAC THEN
SIMP_TAC [set_of_list; CARD_CLAUSES; LENGTH;
FINITE_SET_OF_LIST; ARITH] THEN
COND_CASES_TAC THENL
[MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `LENGTH (t:A list)`
THEN ASM_REWRITE_TAC [] THEN ARITH_TAC;
ASM_REWRITE_TAC [LE_SUC]]);;
let LIST_UNIQ_CARD_LENGTH = prove
(`!l:A list. LIST_UNIQ l <=> CARD (set_of_list l) = LENGTH l`,
LIST_INDUCT_TAC THEN SIMP_TAC [LIST_UNIQ; set_of_list; FINITE_SET_OF_LIST;
LENGTH; CARD_CLAUSES; IN_SET_OF_LIST] THEN
FIRST_X_ASSUM SUBST1_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[SUC_INJ] THEN MP_TAC (SPEC `t:A list` CARD_LENGTH) THEN
ARITH_TAC);;
let LIST_UNIQ_LIST_OF_SET = prove
(`!s. FINITE s ==> LIST_UNIQ(list_of_set s)`,
SIMP_TAC[LIST_UNIQ_CARD_LENGTH; SET_OF_LIST_OF_SET; LENGTH_LIST_OF_SET]);;