Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.02 kB
import data.real.nnreal
open_locale nnreal
namespace nnreal
variables (r r' k c c₁ c₂ c₃ : ℝ≥0)
instance fact_le_of_lt [h : fact (c₁ < c₂)] : fact (c₁ ≤ c₂) := ⟨h.1.le⟩
instance fact_pos_of_one_le [hk : fact (1 ≤ c)] : fact (0 < c) :=
⟨lt_of_lt_of_le zero_lt_one hk.1⟩
instance fact_mul_pos [h1 : fact (0 < c₁)] [h2 : fact (0 < c₂)] : fact (0 < c₁ * c₂) :=
⟨mul_pos h1.out h2.out⟩
instance fact_le_mul_of_one_le_left [hk : fact (1 ≤ k)] [hc : fact (c₁ ≤ c₂)] :
fact (c₁ ≤ k * c₂) :=
⟨calc c₁ = 1 * c₁ : (one_mul _).symm ... ≤ k * c₂ : mul_le_mul' hk.1 hc.1⟩
instance fact_le_mul_of_one_le_right [hc : fact (c₁ ≤ c₂)] [hk : fact (1 ≤ k)] :
fact (c₁ ≤ c₂ * k) :=
⟨calc c₁ = c₁ * 1 : (mul_one _).symm ... ≤ c₂ * k : mul_le_mul' hc.1 hk.1⟩
instance fact_mul_le_of_le_one_left [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
fact (k * c₁ ≤ c₂) :=
⟨calc k * c₁ ≤ 1 * c₂ : mul_le_mul' hk.1 hc.1 ... = c₂ : one_mul _⟩
instance fact_mul_le_of_le_one_right [hk : fact (k ≤ 1)] [hc : fact (c₁ ≤ c₂)] :
fact (c₁ * k ≤ c₂) :=
⟨calc c₁ * k ≤ c₂ * 1 : mul_le_mul' hc.1 hk.1 ... = c₂ : mul_one _⟩
instance fact_one_le_add_one : fact (1 ≤ k + 1) :=
⟨self_le_add_left 1 k⟩
instance fact_le_refl : fact (c ≤ c) := ⟨le_rfl⟩
instance fact_le_subst_right [fact (c₁ ≤ c₂)] [h : fact (c₂ = c₃)]: fact (c₁ ≤ c₃) :=
by rwa ← h.1
instance fact_le_subst_right' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₂)]: fact (c₁ ≤ c₃) :=
by rwa ← h.1.symm
instance fact_le_subst_left [fact (c₁ ≤ c₂)] [h : fact (c₁ = c₃)]: fact (c₃ ≤ c₂) :=
by rwa ← h.1
instance fact_le_subst_left' [fact (c₁ ≤ c₂)] [h : fact (c₃ = c₁)]: fact (c₃ ≤ c₂) :=
by rwa ← h.1.symm
instance fact_inv_mul_le [h : fact (0 < r')] : fact (r'⁻¹ * (r' * c) ≤ c) :=
⟨le_of_eq $ inv_mul_cancel_left₀ (ne_of_gt h.1) _⟩
instance fact_mul_le_mul_left [h : fact (c₁ ≤ c₂)] : fact (r' * c₁ ≤ r' * c₂) :=
⟨mul_le_mul' le_rfl h.1⟩
instance fact_mul_le_mul_right [h : fact (c₁ ≤ c₂)] : fact (c₁ * r' ≤ c₂ * r') :=
⟨mul_le_mul' h.1 le_rfl⟩
instance fact_le_inv_mul_self [h1 : fact (0 < r')] [h2 : fact (r' ≤ 1)] : fact (c ≤ r'⁻¹ * c) :=
begin
constructor,
rw mul_comm,
apply le_mul_inv_of_mul_le (ne_of_gt h1.1),
nth_rewrite 1 ← mul_one c,
exact mul_le_mul (le_of_eq rfl) h2.1 (le_of_lt h1.1) zero_le',
end
instance fact_le_max_left (a b c : ℝ≥0) [h : fact (a ≤ b)] : fact (a ≤ max b c) :=
⟨h.1.trans $ le_max_left _ _⟩
instance fact_one_le_mul_self (a : ℝ≥0) [h : fact (1 ≤ a)] : fact (1 ≤ a * a) :=
⟨calc (1 : ℝ≥0) = 1 * 1 : (mul_one 1).symm
... ≤ a * a : mul_le_mul' h.1 h.1⟩
instance one_le_add {a b : ℝ≥0} [ha : fact (1 ≤ a)] : fact (1 ≤ a + b) :=
⟨le_trans ha.1 $ by simp⟩
instance one_le_add' {a b : ℝ≥0} [hb : fact (1 ≤ b)] : fact (1 ≤ a + b) :=
⟨le_trans hb.1 $ by simp⟩
instance fact_one_le_pow {n : ℕ} {a : ℝ≥0} [h : fact (1 ≤ a)] : fact (1 ≤ a^n) :=
begin
cases n,
{ simpa only [pow_zero] using nnreal.fact_le_refl _ },
{ rwa @one_le_pow_iff _ _ _ nnreal.covariant_mul, apply nat.succ_ne_zero }
end
instance fact_pow_le_one {n : ℕ} {a : ℝ≥0} [h : fact (a ≤ 1)] : fact (a^n ≤ 1) :=
begin
cases n,
{ simpa only [pow_zero] using nnreal.fact_le_refl _ },
{ rwa @pow_le_one_iff _ _ _ nnreal.covariant_mul, apply nat.succ_ne_zero }
end
lemma fact_le_pow_mul_of_le_pow_succ_mul {n : ℕ} (r : ℝ≥0)
[fact (r ≤ 1)] [h : fact (c₂ ≤ r ^ (n+1) * c₁)] :
fact (c₂ ≤ r ^ n * c₁) :=
begin
refine ⟨h.1.trans _⟩,
rw [pow_succ, mul_assoc],
apply fact.out
end
instance fact_le_mul_add : fact (c * c₁ + c * c₂ ≤ c * (c₁ + c₂)) :=
by { rw mul_add, exact nnreal.fact_le_refl _ }
instance fact_nat_cast_pos (N : ℕ) [hN: fact (0 < N)] : fact (0 < (N:ℝ≥0)) :=
⟨nat.cast_pos.mpr hN.1⟩
instance fact_nat_cast_inv_le_one (N : ℕ) : fact ((N:ℝ≥0)⁻¹ ≤ 1) :=
begin
by_cases hN : N = 0,
{ subst hN, simp only [nat.cast_zero, inv_zero, zero_le'], exact ⟨trivial⟩ },
{ rw [inv_le, mul_one], swap, { exact_mod_cast hN },
norm_cast,
rw nat.add_one_le_iff,
exact ⟨nat.pos_of_ne_zero hN⟩, }
end
instance fact_inv_le_one [H : fact (1 ≤ c)] : fact (c⁻¹ ≤ 1) :=
begin
by_cases hc : c = 0,
{ rw hc at H, exact (not_le_of_lt zero_lt_one H.1).elim },
rwa [inv_le hc, mul_one]
end
instance fact_one_le_two : fact ((1:ℝ≥0) ≤ 2) := ⟨one_le_two⟩
instance fact_two_pow_inv_le_two_pow_inv (N : ℕ) : fact ((2 ^ N : ℝ≥0)⁻¹ ≤ (2 ^ N : ℕ)⁻¹) :=
⟨le_of_eq $ by norm_cast⟩
instance fact_two_pow_inv_le_one (N : ℕ) : fact ((2 ^ N : ℝ≥0)⁻¹ ≤ 1) :=
⟨le_trans (nnreal.fact_two_pow_inv_le_two_pow_inv N).1 $ fact.out _⟩
end nnreal
#lint- only unused_arguments def_lemma doc_blame