Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
-- import laurent_measures.functor | |
import data.finset.basic | |
import analysis.special_functions.log.base | |
import for_mathlib.pi_induced | |
import laurent_measures.thm69 | |
-- import data.real.basic | |
/-! | |
This files introduces the maps `Θ`, `Φ` (***and `Ψ` ???***), which are the "measurifications" of | |
`θ`, `ϕ` (*** and `ψ` ???***) | |
`laurent_measures.thm69`, they are morphisms in the right category. | |
We then prove in **???** that `θ_ϕ_exact` of `laurent_measures.thm69` becomes a short exact sequence | |
in the category **???**. | |
-/ | |
noncomputable theory | |
universe u | |
namespace laurent_measures_ses | |
open laurent_measures pseudo_normed_group comphaus_filtered_pseudo_normed_group | |
open comphaus_filtered_pseudo_normed_group_hom | |
open_locale big_operators nnreal | |
section phi_to_hom | |
-- parameter {p : ℝ≥0} | |
-- variables [fact(0 < p)] [fact (p < 1)] | |
-- local notation `r` := @r p | |
-- local notation `ℳ` := real_measures p | |
variable {r : ℝ≥0} | |
variables [fact (0 < r)] | |
variable {S : Fintype} | |
local notation `ℒ` := laurent_measures r | |
local notation `ϖ` := (Fintype.of punit : Type u) | |
variables {M₁ M₂ : Type u} [comphaus_filtered_pseudo_normed_group M₁] | |
[comphaus_filtered_pseudo_normed_group M₂] | |
def cfpng_hom_add (f g : comphaus_filtered_pseudo_normed_group_hom M₁ M₂) : | |
(comphaus_filtered_pseudo_normed_group_hom M₁ M₂) := | |
begin | |
apply mk_of_bound (f.to_add_monoid_hom + g.to_add_monoid_hom) (f.bound.some + g.bound.some), | |
intro c, | |
refine ⟨_, _⟩, | |
{ intros x hx, | |
simp only [comphaus_filtered_pseudo_normed_group_hom.coe_mk], | |
simp only [add_monoid_hom.add_apply, coe_to_add_monoid_hom], | |
convert pseudo_normed_group.add_mem_filtration (f.bound.some_spec hx) (g.bound.some_spec hx), | |
rw add_mul, }, | |
let f₀ : filtration M₁ c → filtration M₂ (f.bound.some * c) := λ x, ⟨f x, f.bound.some_spec x.2⟩, | |
have hf₀ : continuous f₀ := f.continuous _ (λ x, rfl), | |
let g₀ : filtration M₁ c → filtration M₂ (g.bound.some * c) := λ x, ⟨g x, g.bound.some_spec x.2⟩, | |
have hg₀ : continuous g₀ := g.continuous _ (λ x, rfl), | |
simp only [add_monoid_hom.add_apply, coe_to_add_monoid_hom], | |
haveI : fact ((f.bound.some * c + g.bound.some * c) ≤ ((f.bound.some + g.bound.some) * c) ) := | |
fact.mk (le_of_eq (add_mul _ _ _).symm), | |
let ι : filtration M₂ (f.bound.some * c + g.bound.some * c) → filtration M₂ | |
((f.bound.some + g.bound.some) * c) := cast_le, | |
have hι : continuous ι := continuous_cast_le _ _, | |
let S₀ : filtration M₂ (f.bound.some * c) × filtration M₂ (g.bound.some * c) → | |
filtration M₂ (f.bound.some * c + g.bound.some * c) := | |
λ x, ⟨x.fst + x.snd, add_mem_filtration x.fst.2 x.snd.2⟩, | |
have hS₀ := continuous_add' (f.bound.some * c) (g.bound.some * c), | |
exact hι.comp (hS₀.comp (continuous.prod_mk hf₀ hg₀)), | |
end | |
def cfpng_hom_neg (f : comphaus_filtered_pseudo_normed_group_hom M₁ M₂) : | |
(comphaus_filtered_pseudo_normed_group_hom M₁ M₂) := | |
begin | |
apply mk_of_bound (- f.to_add_monoid_hom) (f.bound.some), | |
intro c, | |
refine ⟨_, _⟩, | |
{ intros x hx, | |
simp only [comphaus_filtered_pseudo_normed_group_hom.coe_mk], | |
convert pseudo_normed_group.neg_mem_filtration (f.bound.some_spec hx) }, | |
let f₀ : filtration M₁ c → filtration M₂ (f.bound.some * c) := λ x, ⟨f x, f.bound.some_spec x.2⟩, | |
have hf₀ : continuous f₀ := f.continuous _ (λ x, rfl), | |
exact (continuous_neg' _).comp hf₀, | |
end | |
instance : add_comm_group (comphaus_filtered_pseudo_normed_group_hom M₁ M₂) := | |
{ add := cfpng_hom_add, | |
add_assoc := by {intros, ext, apply add_assoc}, | |
zero := 0, | |
zero_add := by {intros, ext, apply zero_add}, | |
add_zero := by {intros, ext, apply add_zero}, | |
neg := cfpng_hom_neg, | |
add_left_neg := by {intros, ext, apply add_left_neg}, | |
add_comm := by {intros, ext, apply add_comm} } | |
variable (S) | |
/-- The map on Laurent measures induced by multiplication by `T⁻¹ - 2` on `ℤ((T))ᵣ`. -/ | |
def Φ : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S) := shift (1) - 2 • id | |
-- variable {S} | |
lemma Φ_eq_ϕ (F : ℒ S) : Φ S F = ϕ F := rfl | |
-- after the Φ refactor the below lemma is no longer true | |
-- lemma Φ_bound_by_3 [fact (r ≤ 1)] : | |
-- (Φ S : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S)).bound_by 3 := | |
-- begin | |
-- let sh : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S) := shift (-1), | |
-- let shup : comphaus_filtered_pseudo_normed_group_hom (ℒ S) (ℒ S) := shift (1), | |
-- have Hsh : sh.bound_by 1, | |
-- { refine (mk_of_bound_bound_by _ _ _).mono 1 _, | |
-- rw [neg_neg], exact (pow_one r).le.trans (fact.out _) }, | |
-- have Hshup : shup.bound_by 1, | |
-- { refine (mk_of_bound_bound_by _ _ _).mono (1) _, | |
-- } | |
-- suffices : (sh + sh + (-id)).bound_by (1 + 1 + 1), | |
-- { convert this using 1, ext1, dsimp only [Φ_eq_ϕ, ϕ], erw two_nsmul, }, -- was refl | |
-- refine (Hsh.add Hsh).add (mk_of_bound_bound_by _ _ _).neg, | |
-- end | |
lemma Φ_natural (S T : Fintype) (f : S ⟶ T) (F : ℒ S) (t : T) (n : ℤ) : | |
Φ T (map f F) t n = laurent_measures.map f (Φ S F) t n := | |
begin | |
simp [Φ_eq_ϕ, ϕ, finset.mul_sum], | |
end | |
end phi_to_hom | |
section theta | |
open theta real_measures | |
parameter (p : ℝ≥0) | |
local notation `r` := @r p | |
local notation `ℳ` := real_measures p | |
local notation `ℒ` := laurent_measures r | |
variable {S : Fintype.{u}} | |
local notation `ϖ` := Fintype.of (punit : Type u) | |
def seval_ℒ_c (c : ℝ≥0) (s : S) : filtration (ℒ S) c → (filtration (ℒ ϖ) c) := | |
λ F, | |
begin | |
refine ⟨seval_ℒ S s F, _⟩, | |
have hF := F.2, | |
simp only [filtration, set.mem_set_of_eq, seval_ℒ, nnnorm, laurent_measures.coe_mk, | |
fintype.univ_punit, finset.sum_singleton] at ⊢ hF, | |
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _), | |
rw finset.sum_singleton at this, | |
apply le_trans this hF, | |
end | |
variable [fact (0 < p)] | |
lemma θ_zero : θ (0 : ℒ S) = 0 := | |
begin | |
dsimp only [θ, theta.ϑ], | |
funext, | |
simp only [laurent_measures.zero_apply, int.cast_zero, zero_mul, tsum_zero, real_measures.zero_apply], | |
end | |
variable [fact (p < 1)] | |
lemma θ_add (F G : ℒ S) : θ (F + G) = θ F + θ G := | |
begin | |
dsimp only [θ, theta.ϑ], | |
funext, | |
simp only [laurent_measures.add_apply, int.cast_add, one_div, inv_zpow', zpow_neg, | |
real_measures.add_apply, tsum_add], | |
rw ← tsum_add, | |
{ congr, | |
funext, | |
rw add_mul }, | |
all_goals {apply summable_of_summable_norm, simp_rw [← inv_zpow, norm_mul, norm_zpow, norm_inv, | |
real.norm_two] }, | |
exact aux_thm69.summable_smaller_radius_norm F.d half_lt_r (F.summable s) (λ n, lt_d_eq_zero _ _ _), | |
exact aux_thm69.summable_smaller_radius_norm G.d half_lt_r (G.summable s) (λ n, lt_d_eq_zero _ _ _), | |
end | |
--for mathlib | |
lemma nnreal.rpow_int_cast (x : ℝ≥0) (n : ℤ) : x ^ n = x ^ (n : ℝ) := by { | |
rw [← nnreal.coe_eq, nnreal.coe_zpow, ← real.rpow_int_cast, ← nnreal.coe_rpow] } | |
lemma nnreal.rpow_le_rpow_of_exponent_le {x : ℝ≥0} (x1 : 1 ≤ x) {y z : ℝ} | |
(hyz : y ≤ z) : | |
x ^ y ≤ x ^ z := | |
by { cases x with x hx, exact real.rpow_le_rpow_of_exponent_le x1 hyz } | |
lemma nnreal.tsum_geom_arit_inequality (f: ℤ → ℝ) {r' : ℝ} (hr'1 : 0 < r') (hr'2 : r' ≤ 1) | |
(hs1 : summable (λ n, f n)) (hs2 : summable (λ n, ∥(f n)∥₊ ^ r')) : | |
∥ tsum (λ n, f n) ∥₊ ^ r' ≤ tsum (λ n, ∥(f n)∥₊ ^ r' ) := | |
begin | |
rw ← summable_norm_iff at hs1, | |
simp_rw ← _root_.coe_nnnorm at hs1, | |
rw nnreal.summable_coe at hs1, | |
refine le_trans (nnreal.rpow_le_rpow (nnnorm_tsum_le hs1) hr'1.le) _, | |
have := λ s : finset ℤ, nnreal.rpow_sum_le_sum_rpow s (λ i, ∥f i∥₊) hr'1 hr'2, | |
dsimp only at this, | |
have s1' := filter.tendsto.comp (continuous.tendsto | |
(nnreal.continuous_rpow_const hr'1.le) _) hs1.has_sum, | |
dsimp [function.comp] at s1', | |
apply tendsto_le_of_eventually_le s1' hs2.has_sum, | |
delta filter.eventually_le, | |
convert filter.univ_sets _, | |
ext x, | |
simp [this], | |
end | |
lemma aux_bound (F : ℒ S) (s : S) : ∀ (b : ℤ), ∥(F s b : ℝ) ∥₊ ^ (p : ℝ) * | |
(2⁻¹ ^ (p : ℝ)) ^ (b : ℝ) ≤ ∥F s b∥₊ * r ^ b := | |
begin | |
intro b, | |
rw [nnreal.rpow_int_cast], | |
refine mul_le_mul_of_nonneg_right _ (real.rpow_nonneg_of_nonneg (nnreal.coe_nonneg _) _), | |
have p_le_one : (p : ℝ) ≤ 1, | |
{ rw ← nnreal.coe_one, | |
exact (nnreal.coe_lt_coe.mpr $ fact.out _).le }, | |
by_cases hF_nz : F s b = 0, | |
{ rw [hF_nz, int.cast_zero, nnnorm_zero, nnnorm_zero, nnreal.zero_rpow], | |
rw [ne.def, ← nnreal.coe_zero, nnreal.coe_eq, ← ne.def], | |
exact ne_of_gt (fact.out _) }, | |
{ convert nnreal.rpow_le_rpow_of_exponent_le _ p_le_one, | |
{ rw nnreal.rpow_one, | |
refl }, | |
{ refine not_lt.mp (λ hf, hF_nz (int.abs_lt_one_iff.mp _)), | |
suffices : (|F s b| : ℝ) < 1, exact_mod_cast this, | |
rw ← int.norm_eq_abs, | |
rwa [← nnreal.coe_lt_coe, ← nnnorm_norm, real.nnnorm_of_nonneg (norm_nonneg _)] at hf } } | |
end | |
lemma θ_bound : ∀ c : ℝ≥0, ∀ F : (ℒ S), F ∈ filtration (ℒ S) c → (θ F) ∈ filtration (ℳ S) | |
(1 * c) := | |
begin | |
intros c F hF, | |
rw laurent_measures.mem_filtration_iff at hF, | |
dsimp only [laurent_measures.has_nnnorm] at hF, | |
rw [one_mul, real_measures.mem_filtration_iff], | |
dsimp only [real_measures.has_nnnorm, θ, theta.ϑ], | |
let T := S.2.1, | |
have ineq : ∀ (s ∈ T), ∥∑' (n : ℤ), ((F s n) : ℝ) * 2⁻¹ ^ n∥₊ ^ (p : ℝ) ≤ ∑' (n : ℤ), | |
∥ ((F s n) : ℝ) * 2⁻¹ ^ n∥₊ ^ (p : ℝ), | |
{ intros s hs, | |
apply nnreal.tsum_geom_arit_inequality (λ n, ((F s n) * 2⁻¹ ^ n)), | |
{ norm_num, exact fact.out _}, | |
{ suffices : p ≤ 1, assumption_mod_cast, exact fact.out _}, | |
{ dsimp only, | |
obtain ⟨d, hd⟩ := exists_bdd_filtration (r_pos) (r_lt_one) F, | |
apply aux_thm69.summable_smaller_radius d (F.summable s) (hd s) half_lt_r }, | |
{ dsimp only, | |
simp_rw [nnnorm_mul, nnreal.mul_rpow], | |
have := F.summable s, | |
rw ← nnreal.summable_coe, | |
apply summable_of_nonneg_of_le (λ i, _) _ this, apply nnreal.zero_le_coe, | |
intro n, | |
push_cast, | |
apply mul_le_mul, | |
{ -- true because ∥integer∥ is either 0 or >= 1 | |
norm_cast, | |
by_cases h : F s n = 0, | |
{ simp only [h, norm_zero], | |
refine le_of_eq (real.zero_rpow _), | |
norm_cast, | |
exact ne_of_gt (fact.out _) }, | |
{ nth_rewrite 1 (real.rpow_one (∥F s n∥)).symm, | |
apply real.rpow_le_rpow_of_exponent_le, | |
{ rw [int.norm_eq_abs, le_abs'], | |
norm_cast, | |
rcases lt_trichotomy 0 (F s n) with (hF|hF|hF), | |
{ right, linarith }, | |
{ exact false.elim (h hF.symm) }, | |
{ left, change _ ≤ -(1 : ℤ), linarith, } }, | |
{ norm_cast, exact fact.out _ } } }, | |
{ apply le_of_eq, | |
rw [← r_coe], | |
rw real.norm_of_nonneg, | |
{ -- can't use pow_mul yet because one is int one is real | |
rw [← real.rpow_int_cast, ← real.rpow_int_cast], | |
rw [← real.rpow_mul, mul_comm, real.rpow_mul]; | |
norm_num }, | |
{ apply zpow_nonneg, | |
norm_num } }, | |
{ refine (real.rpow_pos_of_pos _ _).le, | |
rw norm_pos_iff, | |
apply zpow_ne_zero, | |
norm_num, }, | |
{ apply norm_nonneg, } } }, | |
apply (finset.sum_le_sum ineq).trans, | |
simp_rw [nnnorm_mul, nnnorm_zpow, nnnorm_inv, nnreal.mul_rpow, real.nnnorm_two, | |
nnreal.rpow_int_cast, ← nnreal.rpow_mul (2 : ℝ≥0)⁻¹, mul_comm, nnreal.rpow_mul (2 : ℝ≥0)⁻¹], | |
apply le_trans _ hF, | |
apply finset.sum_le_sum, | |
intros s hs, | |
apply tsum_le_tsum, | |
exact aux_bound p F s, | |
refine nnreal.summable_of_le _ (F.2 s), | |
exacts [aux_bound p F s, F.2 s], | |
end | |
lemma θ_bound' : ∀ c : ℝ≥0, ∀ F : (ℒ S), F ∈ filtration (ℒ S) c → (θ F) ∈ filtration (ℳ S) | |
c :=by { simpa [one_mul] using (θ_bound p)} | |
def θ_to_add : (ℒ S) →+ (ℳ S) := | |
{ to_fun := λ F, θ F, | |
map_zero' := θ_zero, | |
map_add' := θ_add, } | |
variable (S) | |
open theta metric real_measures | |
def seval_ℳ_c (c : ℝ≥0) (s : S) : filtration (ℳ S) c → (filtration (ℳ ϖ) c) := | |
λ x, | |
begin | |
refine ⟨(λ _, x.1 s), _⟩, | |
have hx := x.2, | |
simp only [filtration, set.mem_set_of_eq, nnnorm, laurent_measures.coe_mk, | |
fintype.univ_punit, finset.sum_singleton] at ⊢ hx, | |
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _), | |
rw finset.sum_singleton at this, | |
apply le_trans this hx, | |
end | |
-- **[FAE]** From here everything might be useless until `lemma inducing_cast_ℳ`: check | |
-- also the `variable (c : ℝ≥0)` issue; the idea is to replace cast_ℳ_c with α, for which | |
-- everything seems to work | |
variable (c : ℝ≥0) | |
def box := {F : (ℳ S) // ∀ s, ∥ F s ∥₊ ^ (p : ℝ) ≤ c } | |
instance : has_coe (box S c) (ℳ S) := by {dsimp only [box], apply_instance} | |
instance : topological_space (ℳ S) := by {dsimp only [real_measures], apply_instance} | |
instance : topological_space (box S c) := by {dsimp only [box], apply_instance} | |
def equiv_box_ϖ : (box S c) ≃ Π (s : S), (filtration (ℳ ϖ) c) := | |
begin | |
fconstructor, | |
{ intros F s, | |
use seval_ℳ S s F.1, | |
simp only [real_measures.mem_filtration_iff, nnnorm, fintype.univ_punit, | |
finset.sum_singleton, seval_ℳ], | |
exact F.2 s }, | |
{ intro G, | |
use λ s, (G s).1 punit.star, | |
intro s, | |
simpa only [real_measures.mem_filtration_iff, nnnorm, fintype.univ_punit, | |
finset.sum_singleton, seval_ℳ] using (G s).2 }, | |
{ intro _, | |
ext s, | |
simpa only [seval_ℳ] }, | |
{ intro G, | |
ext s, | |
simp only [seval_ℳ, subtype.val_eq_coe, subtype.coe_mk], | |
induction x, | |
refl } | |
end | |
def homeo_box_ϖ : (box S c) ≃ₜ Π (s : S), (filtration (ℳ ϖ) c) := | |
{ to_equiv := equiv_box_ϖ S c, | |
continuous_to_fun := begin | |
apply continuous_pi, | |
intro s, | |
dsimp only [equiv_box_ϖ, seval_ℳ], | |
refine continuous_subtype_mk (λ (x : box p S c), equiv_box_ϖ._proof_3 p S c x s) | |
(continuous_pi (λ (i : ↥(Fintype.of punit)), _)), | |
exact continuous_pi_iff.mp continuous_induced_dom s, | |
end, | |
continuous_inv_fun := | |
begin | |
dsimp only [equiv_box_ϖ, seval_ℳ], | |
refine continuous_subtype_mk (λ (x : ↥S → ↥(filtration (real_measures p (Fintype.of punit)) c)), | |
equiv_box_ϖ._proof_4 p S c x) _, | |
apply continuous_pi, | |
intro s, | |
have h : continuous (λ (a : S → (filtration (ℳ ϖ) c)), (a s).val) | |
:= continuous.subtype_coe (continuous_apply s), | |
have H := continuous_apply punit.star, | |
exact H.comp h, | |
end} | |
def α : filtration (ℳ S) c → box S c := | |
begin | |
intro x, | |
use x, | |
have hx := x.2, | |
intro s, | |
simp only [filtration, set.mem_set_of_eq, nnnorm, laurent_measures.coe_mk, | |
fintype.univ_punit, finset.sum_singleton] at hx, | |
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _), | |
rw finset.sum_singleton at this, | |
apply le_trans this hx, | |
end | |
lemma coe_α_coe : (coe : (box S c) → (ℳ S)) ∘ (α S c) = coe := by {funext _, refl} | |
lemma inducing_α : inducing (α S c) := | |
begin | |
have ind_ind := @induced_compose _ _ (ℳ S) _ (α p S c) coe, | |
rw [coe_α_coe p S c] at ind_ind, | |
exact {induced := eq.symm ind_ind}, | |
end | |
lemma seval_ℳ_α_commute (c : ℝ≥0) (s : S) : | |
(λ F, ((homeo_box_ϖ S c) ∘ (α S c)) F s) = (λ F, seval_ℳ_c S c s F) := rfl | |
lemma seval_ℳ_α_commute' {X : Type*} (c : ℝ≥0) {f : X → filtration (ℳ S) c} (s : S) : | |
(λ x, ((homeo_box_ϖ S c) ∘ (α S c)) (f x) s) = (λ x, seval_ℳ_c S c s (f x)) := | |
begin | |
ext z, | |
have h_commute := @seval_ℳ_α_commute p S _ _ c s, | |
have := congr_fun h_commute (f z), | |
simp only at this, | |
rw this, | |
end | |
@[nolint unused_arguments] | |
def seval_ℒ_bdd_c (c : ℝ≥0) (S : Fintype) (A : finset ℤ) (s : S) : | |
laurent_measures_bdd r S A c → laurent_measures_bdd r ϖ A c := | |
begin | |
intro F, | |
use λ _, F s, | |
have hF := F.2, | |
simp only [filtration, set.mem_set_of_eq, seval_ℒ, nnnorm, laurent_measures.coe_mk, | |
fintype.univ_punit, finset.sum_singleton] at ⊢ hF, | |
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _), | |
rw finset.sum_singleton at this, | |
apply le_trans this hF, | |
end | |
lemma continuous_seval_ℒ_c (c : ℝ≥0) (s : S) : continuous (seval_ℒ_c c s) := | |
begin | |
rw laurent_measures.continuous_iff, | |
intro A, | |
let := seval_ℒ_bdd_c p c S A s, | |
have h_trunc : (@truncate r ϖ c A) ∘ (seval_ℒ_c p c s) = | |
(seval_ℒ_bdd_c p c S A s) ∘ (@truncate r S c A), | |
{ ext ⟨F, hF⟩ π k, | |
dsimp only [seval_ℒ_bdd_c, seval_ℒ_c], | |
refl }, | |
rw h_trunc, | |
apply continuous.comp, | |
apply continuous_of_discrete_topology, | |
apply truncate_continuous, | |
end | |
section topological_generalities | |
open metric set | |
variables {X : Type*} [topological_space X] | |
lemma reduction_balls {c : ℝ≥0} (f : X → (closed_ball (0 : ℝ) c)) (H : ∀ y : (closed_ball 0 c), | |
∀ ε : ℝ, is_open (f⁻¹' (ball y ε))) : continuous f := | |
begin | |
rw continuous_def, | |
intros _ hU, | |
rw is_open_iff_forall_mem_open, | |
intros x hx, | |
obtain ⟨ε, h₀, hε⟩ := (is_open_iff.mp hU) (f x) (mem_preimage.mp hx), | |
use f⁻¹' (ball (f x) ε), | |
exact ⟨preimage_mono hε, H (f x) ε, mem_ball_self h₀⟩, | |
end | |
lemma mem_filtration_le_monomial (F : filtration (ℒ ϖ) c) (n : ℕ) : | |
∥ ((F.1 punit.star n) : ℝ) ∥ ≤ c * ( r⁻¹ ^ n) := | |
begin | |
have h_le : ∑' n : ℤ, ∥ ((F.1 punit.star n) : ℝ) ∥ * r ^ n ≤ c, | |
{ have := (laurent_measures.mem_filtration_iff F.1 c).mp F.2, | |
rw laurent_measures.nnnorm_def at this, | |
simp only [fintype.univ_punit, finset.sum_singleton, ← nnreal.coe_le_coe, | |
nnreal.coe_tsum, nnreal.coe_mul, nnreal.coe_zpow, laurent_measures.coe_nnnorm] at this, | |
exact this }, | |
have := @sum_le_tsum ℝ _ _ _ _ (λ n, ∥ ((F.1 punit.star n) : ℝ) ∥ * r ^ n) {n} _ | |
(F.1.summable punit.star), | |
simp only [finset.sum_singleton, zpow_coe_nat] at this, | |
replace h_le := this.trans h_le, | |
rwa [← inv_mul_le_iff', inv_pow, inv_inv ((r : ℝ) ^ n), mul_comm], | |
{ apply pow_pos, rw inv_pos, apply r_pos }, | |
{ rintros b -, | |
simp only [subtype.val_eq_coe], | |
exact mul_nonneg (norm_nonneg _) (zpow_nonneg (le_of_lt (nnreal.coe_pos.mpr r_pos)) b) }, | |
end | |
lemma mem_filtration_sum_le_geom (F : filtration (ℒ ϖ) c) (B : ℕ) : ∥ ∑' n : {x : ℕ // B ≤ x}, | |
((F.1 punit.star n) : ℝ) * 2⁻¹ ^ n.1 ∥ ≤ ∥ (c : ℝ) * ∑' n : {x : ℕ // B ≤ x}, (2⁻¹ * r⁻¹) ^ n.1 ∥ := | |
begin | |
have two_r_nonneg : 0 ≤ (2⁻¹ * r⁻¹ : ℝ) := by {refine mul_nonneg (inv_nonneg.2 two_pos.le) (inv_nonneg.2 r.2) }, | |
have h_inj : function.injective (coe : {x : ℕ // B ≤ x} → ℕ) := subtype.coe_injective, | |
have geom_pos : (0 : ℝ) ≤ c * ∑' (n : {x // B ≤ x}), (2⁻¹ * r⁻¹) ^ n.1, | |
{ apply mul_nonneg c.2 (tsum_nonneg _), | |
intro b, | |
apply pow_nonneg (two_r_nonneg) }, | |
nth_rewrite 1 [real.norm_eq_abs], | |
rw [abs_eq_self.mpr geom_pos], | |
apply (norm_tsum_le_tsum_norm _).trans, | |
rw [← tsum_mul_left], | |
apply tsum_le_tsum, | |
{ intro b, | |
rw [norm_mul, mul_pow, mul_comm ((2⁻¹ : ℝ) ^ b.1) _, ← mul_assoc], | |
rw [norm_pow, norm_inv, real.norm_two ], | |
apply (mul_le_mul_right _).mpr, | |
apply mem_filtration_le_monomial p c F, | |
simp only [one_div, inv_pos, pow_pos, zero_lt_bit0, zero_lt_one] }, | |
swap, | |
{ by_cases hc : (c : ℝ) ≠ 0, | |
{ rw [← summable_mul_left_iff hc], | |
have two_r_lt : (2⁻¹ * r⁻¹ : ℝ) < 1, | |
{ have := (div_lt_one (nnreal.coe_lt_coe.mpr (r_pos))).mpr half_lt_r, | |
simp only [← inv_eq_one_div] at this ⊢, | |
rw [div_eq_mul_inv, nnreal.coe_inv] at this, | |
convert this, | |
assumption', }, | |
exact (summable_geometric_of_lt_1 two_r_nonneg two_r_lt).comp_injective h_inj, | |
}, | |
{ rw not_ne_iff at hc, | |
simp_rw [hc, zero_mul], | |
exact summable_zero }, }, | |
all_goals { simp_rw [norm_mul, norm_pow, norm_inv, real.norm_two, subtype.val_eq_coe], | |
refine ((aux_thm69.summable_iff_on_nat_less F.1.d _).mp (aux_thm69.summable_smaller_radius_norm | |
F.1.d (half_lt_r) (F.1.summable punit.star) | |
(λ n, lt_d_eq_zero F.1 punit.star n))).comp_injective h_inj, | |
intros n hn, | |
rw [lt_d_eq_zero F.1 punit.star n hn, norm_zero, zero_mul] }, | |
end | |
def geom_B_nat (ε : ℝ) (hε : 0 < ε) : {B : ℕ // ∀ (F : filtration (ℒ ϖ) c), ∥ tsum (λ b : | |
{n : ℕ // B ≤ n }, ((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 ) ∥ < ε ^ (p⁻¹ : ℝ)} := | |
begin | |
let g := (λ n : ℕ, (c : ℝ) * ((2⁻¹ * r⁻¹) ^ n)), | |
have := tendsto_tsum_compl_at_top_zero g, | |
rw tendsto_at_top at this, | |
have h_pos : 0 < ε ^ (p⁻¹ : ℝ) := real.rpow_pos_of_pos hε _, | |
specialize this (ε ^ (p⁻¹ : ℝ)) h_pos, | |
let A := this.some, | |
let B₀ : option ℕ → ℕ := λ a : (option ℕ), option.rec_on a (0 : ℕ) (λ n, n), | |
set B := (B₀ A.max).succ with hB, | |
use B, | |
have h_incl : A ≤ finset.range B, | |
rw finset.le_eq_subset, | |
{ by_cases H : A.nonempty, | |
{ intros a ha, | |
obtain ⟨s, hs⟩ := finset.max_of_nonempty H, | |
replace hB : s.succ = B, { simp only [*, option.mem_def], refl, }, | |
have h_mem := finset.mem_range_succ_iff.mpr (finset.le_max_of_mem ha hs), | |
rwa hB at h_mem }, | |
{ intros a ha, | |
rw [finset.not_nonempty_iff_eq_empty] at H, | |
finish }}, | |
let hA := this.some_spec, | |
specialize hA (finset.range B) h_incl, | |
rw [real.dist_0_eq_abs, ← real.norm_eq_abs] at hA, | |
intro F, | |
apply lt_of_le_of_lt (mem_filtration_sum_le_geom p c F B), | |
convert hA using 1, | |
apply congr_arg, | |
simp_rw [subtype.val_eq_coe, ← tsum_mul_left], | |
have set_eq : {n : ℕ | B ≤ n} = {n : ℕ | n ∉ finset.range B} := | |
by {simp only [finset.mem_range, not_lt]}, | |
exact tsum_congr_subtype g set_eq, | |
end | |
def eq_le_int_nat (B : ℕ) : {n : ℤ // (B : ℤ) ≤ n } ≃ {n : ℕ // B ≤ n} := | |
{ to_fun := | |
begin | |
intro b, | |
use (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans b.2)).some, | |
rw ← int.coe_nat_le, | |
convert b.2, | |
exact (Exists.some_spec (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans b.2))).symm, | |
end, | |
inv_fun := λ n, ⟨n, by {simp only [coe_coe, int.coe_nat_le], from n.2}⟩, | |
left_inv := | |
begin | |
rintro ⟨_, h⟩, | |
simp only [coe_coe, subtype.coe_mk], | |
exact (Exists.some_spec (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans h))).symm, | |
end, | |
right_inv := | |
begin | |
rintro ⟨_, h⟩, | |
simp only [coe_coe, subtype.coe_mk, int.coe_nat_inj'], | |
exact ((@exists_eq' _ _).some_spec).symm, | |
end, } | |
def geom_B_int (ε : ℝ) (hε : 0 < ε) : {B : ℤ // ∀ (F : filtration (ℒ ϖ) c), ∥ tsum (λ b : | |
{n : ℤ // B ≤ n }, ((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 ) ∥ < ε ^ (p⁻¹ : ℝ)} := | |
begin | |
let ℬ := geom_B_nat p c ε hε, | |
let B := ℬ.1, | |
let hB := ℬ.2, | |
use B, | |
intro F, | |
specialize hB F, | |
convert hB using 1, | |
apply congr_arg, | |
exact ((eq_le_int_nat B).symm.tsum_eq (λ b : {n : ℤ // ↑B ≤ n }, | |
((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 )).symm, | |
end | |
def geom_B (ε : ℝ) (hε : 0 < ε) : ℤ := (geom_B_int c ε hε).1 | |
lemma tail_B (ε : ℝ) (hε : 0 < ε) : ∀ (F : filtration (ℒ ϖ) c), ∥ tsum (λ b : {n : ℤ // geom_B c ε hε ≤ n }, | |
((F.1 punit.star b.1) : ℝ) * 2⁻¹ ^ b.1 ) ∥ < ε ^ (p⁻¹ : ℝ) := | |
begin | |
intro F, | |
have := (geom_B_int p c ε hε).2 F, | |
exact this, | |
end | |
def U (F : filtration (ℒ ϖ) c) (B : ℤ) : set (filtration (ℒ ϖ) c) := | |
λ G, ∀ s n, n < B → F s n = G s n | |
lemma mem_U (F : filtration (ℒ ϖ) c) (B : ℤ) : F ∈ (U c F B) := λ _ _ _, rfl | |
lemma explodes_pow_r (ρ : ℝ≥0) (h₀ : 0 < ρ.1) (h₁ : ρ.1 < 1) (c : ℝ≥0) : | |
∃ n₀ : ℤ, ∀ (m : ℤ), m < n₀ → c < ρ ^ m := | |
begin | |
convert_to ∃ n₀ : ℕ, ∀ (m : ℕ), (- m : ℤ) < - n₀ → (c : ℝ) < ρ ^ ( - m : ℤ) using 0, | |
{ simp only [neg_lt_neg_iff, int.coe_nat_lt, zpow_neg, zpow_coe_nat, eq_iff_iff], | |
split, | |
{ rintro ⟨n₀, hn₀⟩, | |
induction n₀, | |
{ use n₀, | |
intros m hm, | |
rw [← int.coe_nat_lt] at hm, | |
replace hm := neg_lt.mpr (lt_of_le_of_lt (neg_le_self (int.coe_nat_nonneg _)) hm), | |
specialize hn₀ (- m) hm, | |
rwa [← nnreal.coe_lt_coe, nnreal.coe_zpow, zpow_neg] at hn₀ }, | |
{ use n₀ + 1, | |
intros m hm, | |
rw [← int.coe_nat_lt, ← neg_lt_neg_iff, ← int.neg_succ_of_nat_coe] at hm, | |
specialize hn₀ (- m) hm, | |
rwa [← nnreal.coe_lt_coe, nnreal.coe_zpow, zpow_neg] at hn₀ },}, | |
{ rintro ⟨n₀, hn₀⟩, | |
use - n₀, | |
rintro ⟨m⟩ hm, | |
{ have := right.neg_nonpos_iff.mpr (int.of_nat_nonneg n₀), | |
rw [int.of_nat_eq_coe] at this, | |
replace := ne_of_lt (lt_of_lt_of_le (lt_of_le_of_lt (int.of_nat_nonneg m) hm) this), | |
finish }, | |
{ rw [int.neg_succ_of_nat_coe, neg_lt_neg_iff, int.coe_nat_lt] at hm, | |
specialize hn₀ (m + 1) hm, | |
rwa [int.neg_succ_of_nat_coe, ← nnreal.coe_lt_coe, zpow_neg, zpow_coe_nat, nnreal.coe_inv, | |
nnreal.coe_pow] }}}, | |
have h := (tendsto_pow_at_top_nhds_within_0_of_lt_1 h₀ h₁).inv_tendsto_zero, | |
simp_rw [← zpow_coe_nat] at h, | |
have : (λ (n : ℕ), ρ.1 ^ (n : ℤ))⁻¹ = (λ (n : ℕ), ρ.1 ^ (- n : ℤ)) := by {ext, | |
simp only [pi.inv_apply, zpow_neg] }, | |
rw [this, filter.tendsto_at_top] at h, | |
specialize h (c + 1), | |
rw [nnreal.val_eq_coe] at h, | |
simp_rw [← nnreal.coe_zpow] at h, | |
obtain ⟨n₀, hn₀⟩ := filter.eventually.exists_forall_of_at_top h, | |
use n₀, | |
intros m hm, | |
rw [neg_lt_neg_iff, int.coe_nat_lt] at hm, | |
replace hm := le_of_lt hm, | |
specialize hn₀ m hm, | |
rw nnreal.coe_zpow at hn₀, | |
refine lt_of_lt_of_le _ hn₀, | |
exact lt_add_one _, | |
end | |
lemma is_open_U (F : filtration (ℒ ϖ) c) (B : ℤ) : is_open (U c F B) := | |
begin | |
let ι : filtration (ℒ ϖ) c → Π (i : ℤ), ℤ := | |
λ t i, truncate {i} t punit.star ⟨i,by simp⟩, | |
have hι : continuous ι, | |
{ rw continuous_pi_iff, intros i, | |
dsimp [ι], | |
change continuous ((λ (t : laurent_measures_bdd r ϖ {i} c), | |
t punit.star ⟨i,by simp⟩) ∘ truncate {i}), | |
refine continuous.comp continuous_bot (truncate_continuous «r» (Fintype.of punit) c {i}) }, | |
obtain ⟨n₀,h₀⟩ : ∃ n₀ : ℤ, ∀ (m : ℤ) (H : ℒ ϖ) (hH : H ∈ filtration (ℒ ϖ) c), | |
m < n₀ → H punit.star m = 0, | |
{ obtain ⟨n₀,h₀⟩ : ∃ n₀ : ℤ, ∀ (m : ℤ), m < n₀ → c < r^m := explodes_pow_r r r_pos r_lt_one c, | |
use n₀, intros m H hH hm, | |
exact eq_zero_of_filtration H _ hH punit.star m (h₀ m hm) }, | |
classical, | |
let UU : set (Π (i : ℤ), ℤ) := | |
set.pi (set.Ico n₀ B) (λ i, if i ∈ set.Ico n₀ B then { F punit.star i } else ⊤), | |
have hUU : is_open UU, | |
{ apply is_open_set_pi, exact finite_Ico n₀ B, | |
intros a ha, trivial }, | |
convert hUU.preimage hι, | |
ext G, | |
split, | |
{ intros hG, dsimp [U, UU, ι] at ⊢ hG, | |
intros i hi, rw if_pos hi, | |
simp only [mem_singleton_iff], | |
symmetry, | |
apply hG, exact hi.2 }, | |
{ intros hG, dsimp [U, UU, ι] at ⊢ hG, | |
rintros ⟨⟩ n hn, | |
symmetry, | |
by_cases hn' : n < n₀, | |
{ erw [h₀ n G.1 G.2 hn', h₀ n F.1 F.2 hn'] }, | |
push_neg at hn', | |
specialize hG n, simpa [hn', hn] using hG }, | |
end | |
end topological_generalities | |
def θ_c (c : ℝ≥0) (T : Fintype) : (filtration (laurent_measures r T) c) → | |
(filtration (real_measures p T) c) := | |
begin | |
intro f, | |
rw [← one_mul c], | |
use ⟨θ f, θ_bound p c f f.2⟩, | |
end | |
lemma commute_seval_ℒ_ℳ (c : ℝ≥0) (s : S) : | |
(θ_c c (Fintype.of punit)) ∘ (seval_ℒ_c c s) = (seval_ℳ_c S c s) ∘ (θ_c c S) := by simpa only | |
[seval_ℳ_c, seval_ℒ_c, seval_ℒ, θ_c, one_mul, subtype.coe_mk, eq_mpr_eq_cast, set_coe_cast] | |
lemma continuous_of_seval_ℳ_comp_continuous (c : ℝ≥0) {X : Type*} [topological_space X] | |
{f : X → (filtration (ℳ S) c)} : (∀ s, continuous ((seval_ℳ_c S c s) ∘ f)) → continuous f := | |
begin | |
intro H, | |
replace H : ∀ (s : S), continuous (λ x : X, ((homeo_box_ϖ p S c) ∘ (α p S c)) (f x) s), | |
{ intro, | |
rw [seval_ℳ_α_commute' p S c s], | |
exact H s }, | |
rw ← continuous_pi_iff at H, | |
convert_to (continuous (λ x, (homeo_box_ϖ p S c) (α p S c (f x)))) using 0, | |
{ apply eq_iff_iff.mpr, | |
rw [homeomorph.comp_continuous_iff, (inducing_α p S c).continuous_iff] }, | |
exact H, | |
end | |
lemma tsum_subtype_sub {f g : ℤ → ℝ} {B : ℤ} | |
(hf : summable (λ (b : {x // B ≤ x}), f b * 2⁻¹ ^ b.1)) | |
(hg : summable (λ (b : {x // B ≤ x}), g b * 2⁻¹ ^ b.1)) : | |
∥ tsum ((λ (b : ℤ), (((g b) : ℝ) - f b) * 2⁻¹ ^ b) ∘ (coe : {b | B ≤ b} → ℤ)) ∥ = | |
∥ ∑' (b : {x // B ≤ x}), (g b : ℝ) * 2⁻¹ ^ b.1 - ∑' (b : {x // B ≤ x}), | |
(f b : ℝ) * 2⁻¹ ^ b.1 ∥ := | |
begin | |
rw [← tsum_sub hg hf, tsum_eq_tsum_of_has_sum_iff_has_sum], | |
intro _, | |
simp_rw [sub_mul, iff_eq_eq], | |
refl, | |
end | |
lemma aux_summability_no_norm (F : filtration (ℒ ϖ) c) : summable | |
(λ b : ℤ, (((F punit.star b) : ℝ) * 2⁻¹ ^ b)) := aux_thm69.summable_smaller_radius F.1.d (F.1.summable punit.star) | |
(λ n, lt_d_eq_zero F.1 punit.star n) half_lt_r | |
lemma aux_summability_subtype (F : filtration (ℒ ϖ) c) (B : ℤ) : summable (λ b : {x : ℤ // B ≤ x}, | |
(((F punit.star b) : ℝ) * 2⁻¹ ^ b.1)) := | |
by {exact (aux_summability_no_norm p c F).comp_injective subtype.coe_injective} | |
lemma pos_ε_pow (ε : ℝ) (hε : 0 < ε) : 0 < (ε / (2 : ℝ) ^ p.1) := by {apply div_pos hε | |
(real.rpow_pos_of_pos _ _), simp only [zero_lt_bit0, zero_lt_one]} | |
lemma dist_lt_of_mem_U (ε : ℝ≥0) (hε : 0 < ε) (F G : filtration (ℒ ϖ) c) : | |
G ∈ (U c F (geom_B c (ε / (2 : ℝ) ^ p.1) (pos_ε_pow ε hε))) → ∥ ((θ_c c ϖ G) : (ℳ ϖ)) - (θ_c c ϖ) F ∥ < ε := | |
begin | |
intro h_mem_G, | |
rw real_measures.norm_def, | |
simp only [fintype.univ_punit, real_measures.sub_apply, finset.sum_singleton], | |
rw [← real.rpow_lt_rpow_iff _ _ _, ← real.rpow_mul, | |
mul_inv_cancel, real.rpow_one], | |
rotate, | |
{ rw ← nnreal.coe_zero, | |
exact ne_of_gt (nnreal.coe_lt_coe.mpr (fact.out _)) }, | |
{ apply norm_nonneg }, | |
{ apply real.rpow_nonneg_of_nonneg (norm_nonneg _) }, | |
{ rw ← nnreal.coe_zero, | |
exact ε.2 }, | |
{ rw [inv_pos, ← nnreal.coe_zero], | |
exact (nnreal.coe_lt_coe.mpr (fact.out _)) }, | |
simp only [θ_c, one_mul, eq_mpr_eq_cast, set_coe_cast, subtype.coe_mk], | |
dsimp only [θ, ϑ], | |
have h_B : ∀ b : ℤ, b < (geom_B p c (ε / 2 ^ p.1) (pos_ε_pow p ε hε)) → ((G punit.star b) : ℝ) - (F punit.star b) = 0, | |
{ intros b hb, | |
simp only [h_mem_G punit.star b hb, sub_self] }, | |
rw [← tsum_sub], | |
rotate, | |
{exact (aux_summability_no_norm p c G)}, | |
{exact (aux_summability_no_norm p c F)}, | |
simp_rw [← sub_mul], | |
set B := (geom_B p c (ε / 2 ^ p.1) (pos_ε_pow p ε hε)) with def_B, | |
let f := λ b : ℤ, ((((G : (ℒ ϖ)) punit.star b) - ((F : (ℒ ϖ)) punit.star b)) : ℝ) | |
* 2⁻¹ ^ b, | |
let g : ({ b : ℤ | B ≤ b}) → ℝ := f ∘ coe, | |
let i : function.support g → ℤ := (coe : { b : ℤ | B ≤ b} → ℤ) ∘ (coe : function.support g → { b : ℤ | B ≤ b}), | |
have hi : ∀ ⦃x y : ↥(function.support g)⦄, i x = i y → ↑x = ↑y, | |
{intros _ _ h, | |
simp only [subtype.coe_inj] at h, | |
rwa [subtype.coe_inj] }, | |
have hf : function.support f ⊆ set.range i, | |
{ intros a ha, | |
simp only [f, function.mem_support, ne.def] at ha, | |
have ha' : B ≤ a, | |
{ by_contra', | |
specialize h_B a this, | |
simp only [one_div, inv_zpow', zpow_neg, mul_eq_zero, inv_eq_zero, not_or_distrib] at ha, | |
replace ha := ha.1, | |
simpa only }, | |
simp only [set.mem_set_of_eq, function.mem_support, ne.def, set.mem_range, set_coe.exists], | |
use [a, ha', ha, refl _] }, | |
have hF := tail_B p c (ε.1 / 2 ^ p.1) (pos_ε_pow p ε hε) F, | |
have hG := tail_B p c (ε.1 / 2 ^ p.1) (pos_ε_pow p ε hε) G, | |
have h02 : (0 : ℝ) ≤ 2 := two_pos.le, | |
have h02p : (0 : ℝ) ≤ 2 ^ p.val := real.rpow_nonneg_of_nonneg h02 _, | |
rw [real.div_rpow ε.2 h02p, ← real.rpow_mul h02] at hF hG, | |
simp_rw [@subtype.val_eq_coe _ _ p] at hF hG, | |
have hp0 : (p : ℝ) ≠ 0 := nnreal.coe_ne_zero.mpr (ne_of_gt (fact.out _)), | |
rw [mul_inv_cancel hp0, real.rpow_one] at hF hG, | |
rw [tsum_eq_tsum_of_ne_zero_bij i hi hf (λ _, refl _)], | |
dsimp only [f, g], | |
rw [tsum_subtype_sub], | |
rotate, | |
{ exact (aux_summability_subtype p c F B) }, | |
{ exact (aux_summability_subtype p c G B) }, | |
apply lt_of_le_of_lt (norm_sub_le _ _), | |
convert add_lt_add hG hF, | |
simp only [nnreal.val_eq_coe, add_halves'], | |
end | |
lemma coe_pow_half (η : ℝ) (η_pos' : 0 < η) (η₀ : ℝ≥0) (hη₀ : η₀ = ⟨η, le_of_lt η_pos'⟩) : | |
(η / 2) ^ (p : ℝ) = ((η₀ ^ (p : ℝ) : ℝ)) / 2 ^ (p.1) := by {rw [real.div_rpow (le_of_lt η_pos') _, | |
nnreal.val_eq_coe, hη₀, subtype.coe_mk], simp only [zero_le_bit0, zero_le_one]} | |
section | |
variables {c} | |
def ξ (F : filtration (ℒ ϖ) c) : ℝ := | |
(homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F) | |
def hξ (F : filtration (ℒ ϖ) c) : | |
ξ F = (homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F) := rfl | |
lemma speed_aux' (ε η : ℝ) (η₀ : ℝ≥0) (hη₀ : η = η₀) | |
(y : (closed_ball (0 : ℝ) (c ^ (p : ℝ)⁻¹))) | |
(F G : (filtration (ℒ (Fintype.of punit)) c)) | |
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε) | |
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ)) | |
(h_pos : 0 < (η / 2) ^ (p:ℝ)) | |
(hp : 0 < (p:ℝ)) | |
(η_pos' : 0 < η) | |
(h_η_η₀ : (η / 2) ^ (p:ℝ) = ↑η₀ ^ (p:ℝ) / 2 ^ p.val) (h_pos'') | |
(hG : G ∈ U c F (geom_B c ((↑η₀ ^ (p:ℝ) / 2 ^ p.val)) h_pos'')) : | |
∥(θ_c c (Fintype.of punit) G).val - (θ_c c (Fintype.of punit) F).val∥ < η ^ (p:ℝ) := | |
begin | |
have foo : 0 < η₀ ^ (p:ℝ), | |
{ apply real.rpow_pos_of_pos, rw ← hη₀, exact η_pos' }, | |
-- exact dist_lt_of_mem_U p c (η₀ ^ (p : ℝ)) (real.rpow_pos_of_pos η_pos' _) F G hG | |
have := dist_lt_of_mem_U p c (η₀ ^ (p : ℝ)) foo F G hG, | |
convert this, | |
end | |
lemma speed_aux (ε η : ℝ) (η₀ : ℝ≥0) (hη₀ : η = η₀) | |
(y : (closed_ball (0 : ℝ) (c ^ (p : ℝ)⁻¹))) | |
(F G : (filtration (ℒ (Fintype.of punit)) c)) | |
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε) | |
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ)) | |
(h_pos : 0 < (η / 2) ^ (p:ℝ)) | |
(hp : 0 < (p:ℝ)) | |
(η_pos' : 0 < η) | |
(h_η_η₀ : (η / 2) ^ (p:ℝ) = ↑η₀ ^ (p:ℝ) / 2 ^ p.val) (h_pos'') | |
(hG : G ∈ U c F (geom_B c ((↑η₀ ^ (p:ℝ) / 2 ^ p.val)) h_pos'')) : | |
|ξ G - ξ F| < ε - |ξ F - y| := | |
begin | |
repeat {rw hξ}, | |
rw [← real_measures.dist_eq, | |
← real.rpow_lt_rpow_iff | |
(real.rpow_nonneg_of_nonneg (real_measures.norm_nonneg _) _) (sub_nonneg.mpr (le_of_lt hF)) hp, | |
← real.rpow_mul (real_measures.norm_nonneg _), | |
inv_mul_cancel (ne_of_gt hp), real.rpow_one, ← hη], | |
apply speed_aux', assumption' | |
end | |
lemma speed (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ))) | |
(F G : filtration (ℒ ϖ) c) | |
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε) | |
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ)) | |
(hG : G ∈ U c F (geom_B c ((η / 2) ^ (p:ℝ)) h_pos)) : | |
|(ξ G) - (ξ F)| + |(ξ F) - y| < ε - |(ξ F) - y| + |(ξ F) - y| := | |
begin | |
have hp : 0 < (p : ℝ), { rw [← nnreal.coe_zero, nnreal.coe_lt_coe], from fact.out _ }, | |
have η_pos' : 0 < η := by {rw hη, from (sub_pos.mpr hF)}, | |
set η₀ : ℝ≥0 := ⟨η, le_of_lt η_pos'⟩ with hη₀, | |
have h_η_η₀ := @coe_pow_half p _ _ η η_pos' η₀ hη₀, | |
simp_rw [h_η_η₀] at hG, | |
apply add_lt_add_right, | |
apply @speed_aux p _ _ c ε η η₀ _ y F G, | |
assumption', | |
rw hη₀, refl, | |
end | |
end | |
lemma U_subset_preimage' (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ))) | |
(F : filtration (ℒ ϖ) c) | |
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε) | |
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ)) | |
(G : (filtration (ℒ (Fintype.of punit)) c)) | |
(hG : G ∈ U c F (geom_B c ((η / 2) ^ (p:ℝ)) h_pos)) : | |
|ξ G - y| < ε := | |
begin | |
have aux : |(ξ p G) - (ξ p F)| + |(ξ p F) - y | < ε - | (ξ p F) - y | + | (ξ p F) - y |, | |
{ apply speed; assumption }, | |
replace aux : |(ξ p G) - (ξ p F)| + |(ξ p F) - y | < ε, | |
{ rwa [sub_add_cancel ε (| (ξ p F) - y |)] at aux }, | |
have := lt_of_le_of_lt (abs_sub_le (ξ p G) (ξ p F) y) aux, | |
rw ← real.norm_eq_abs at this ⊢, | |
exact this, | |
end | |
lemma U_subset_preimage (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ))) | |
(F : filtration (ℒ ϖ) c) | |
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε) | |
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ)) : | |
(U c F (geom_B c ((η / 2) ^ (p : ℝ)) h_pos) ) ⊆ | |
((homeo_filtration_ϖ_ball c) ∘ θ_c c (ϖ) ⁻¹' (ball y ε)) := | |
begin | |
intros G hG, | |
simp only [set.mem_preimage, one_mul, eq_self_iff_true, eq_mpr_eq_cast, set_coe_cast, | |
function.comp_app, mem_ball, subtype.dist_eq, real.dist_eq], | |
apply U_subset_preimage'; assumption, | |
end | |
-- This is the main continuity property needed in `ses2.lean` | |
theorem continuous_θ_c (c : ℝ≥0) : continuous (θ_c c S) := | |
begin | |
apply continuous_of_seval_ℳ_comp_continuous, | |
intro s, | |
rw ← commute_seval_ℒ_ℳ, | |
refine continuous.comp _ (continuous_seval_ℒ_c p S c s), | |
apply (homeo_filtration_ϖ_ball c).comp_continuous_iff.mp, | |
apply reduction_balls, | |
intros y ε, | |
rw is_open_iff_forall_mem_open, | |
intros F hF, | |
simp only [set.mem_preimage, one_mul, eq_self_iff_true, eq_mpr_eq_cast, set_coe_cast, | |
function.comp_app, mem_ball, subtype.dist_eq, real.dist_eq] at hF, | |
set η := ε - |(homeo_filtration_ϖ_ball c (θ_c p c ϖ F)) - y| with hη, | |
have η_pos' : 0 < η := by {rw hη, from (sub_pos.mpr hF)}, | |
have η_pos : 0 < (η / 2) ^ (p : ℝ) := real.rpow_pos_of_pos (half_pos η_pos') _, | |
set V := U p c F (geom_B p c ((η / 2) ^ (p : ℝ)) η_pos) with hV, | |
simp_rw [real.div_rpow (le_of_lt η_pos') (le_of_lt (@two_pos ℝ _ _))] at hV, | |
use V, | |
exact and.intro (U_subset_preimage p c ε η y F hF hη η_pos) | |
(and.intro (is_open_U p c F _) (mem_U p c F _)), | |
end | |
end theta | |
end laurent_measures_ses | |