Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
38.8 kB
-- import laurent_measures.functor
import data.finset.basic
import analysis.special_functions.log.base
import for_mathlib.pi_induced
import laurent_measures.thm69
-- import data.real.basic
/-!
This files introduces the maps `Θ`, `Φ` (***and `Ψ` ???***), which are the "measurifications" of
`θ`, `ϕ` (*** and `ψ` ???***)
`laurent_measures.thm69`, they are morphisms in the right category.
We then prove in **???** that `θ_ϕ_exact` of `laurent_measures.thm69` becomes a short exact sequence
in the category **???**.
-/
noncomputable theory
universe u
namespace laurent_measures_ses
open laurent_measures pseudo_normed_group comphaus_filtered_pseudo_normed_group
open comphaus_filtered_pseudo_normed_group_hom
open_locale big_operators nnreal
section phi_to_hom
-- parameter {p : ℝ≥0}
-- variables [fact(0 < p)] [fact (p < 1)]
-- local notation `r` := @r p
-- local notation `ℳ` := real_measures p
variable {r : ℝ≥0}
variables [fact (0 < r)]
variable {S : Fintype}
local notation `ℒ` := laurent_measures r
local notation `ϖ` := (Fintype.of punit : Type u)
variables {MM: Type u} [comphaus_filtered_pseudo_normed_group M]
[comphaus_filtered_pseudo_normed_group M]
def cfpng_hom_add (f g : comphaus_filtered_pseudo_normed_group_hom MM) :
(comphaus_filtered_pseudo_normed_group_hom MM) :=
begin
apply mk_of_bound (f.to_add_monoid_hom + g.to_add_monoid_hom) (f.bound.some + g.bound.some),
intro c,
refine ⟨_, _,
{ intros x hx,
simp only [comphaus_filtered_pseudo_normed_group_hom.coe_mk],
simp only [add_monoid_hom.add_apply, coe_to_add_monoid_hom],
convert pseudo_normed_group.add_mem_filtration (f.bound.some_spec hx) (g.bound.some_spec hx),
rw add_mul, },
let f: filtration Mcfiltration M(f.bound.some * c) := λ x,f x, f.bound.some_spec x.2,
have hf: continuous f:= f.continuous _ (λ x, rfl),
let g: filtration Mcfiltration M(g.bound.some * c) := λ x,g x, g.bound.some_spec x.2,
have hg: continuous g:= g.continuous _ (λ x, rfl),
simp only [add_monoid_hom.add_apply, coe_to_add_monoid_hom],
haveI : fact ((f.bound.some * c + g.bound.some * c)((f.bound.some + g.bound.some) * c) ) :=
fact.mk (le_of_eq (add_mul _ _ _).symm),
let ι : filtration M(f.bound.some * c + g.bound.some * c)filtration M
((f.bound.some + g.bound.some) * c) := cast_le,
have hι : continuous ι := continuous_cast_le _ _,
let S: filtration M(f.bound.some * c) × filtration M(g.bound.some * c)
filtration M(f.bound.some * c + g.bound.some * c) :=
λ x, ⟨x.fst + x.snd, add_mem_filtration x.fst.2 x.snd.2,
have hS:= continuous_add' (f.bound.some * c) (g.bound.some * c),
exact hι.comp (hS₀.comp (continuous.prod_mk hf₀ hg₀)),
end
def cfpng_hom_neg (f : comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :
(comphaus_filtered_pseudo_normed_group_hom M₁ M₂) :=
begin
apply mk_of_bound (- f.to_add_monoid_hom) (f.bound.some),
intro c,
refine ⟨_, _⟩,
{ intros x hx,
simp only [comphaus_filtered_pseudo_normed_group_hom.coe_mk],
convert pseudo_normed_group.neg_mem_filtration (f.bound.some_spec hx) },
let f₀ : filtration M₁ c → filtration M₂ (f.bound.some * c) := λ x, ⟨f x, f.bound.some_spec x.2⟩,
have hf₀ : continuous f₀ := f.continuous _ (λ x, rfl),
exact (continuous_neg' _).comp hf,
end
instance : add_comm_group (comphaus_filtered_pseudo_normed_group_hom MM) :=
{ add := cfpng_hom_add,
add_assoc := by {intros, ext, apply add_assoc},
zero := 0,
zero_add := by {intros, ext, apply zero_add},
add_zero := by {intros, ext, apply add_zero},
neg := cfpng_hom_neg,
add_left_neg := by {intros, ext, apply add_left_neg},
add_comm := by {intros, ext, apply add_comm} }
variable (S)
/-- The map on Laurent measures induced by multiplication by `T⁻¹ - 2` on `ℤ((T))ᵣ`. -/
def Φ : comphaus_filtered_pseudo_normed_group_hom (S) (S) := shift (1) - 2id
-- variable {S}
lemma Φ_eq_ϕ (F :S) : Φ S F = ϕ F := rfl
-- after the Φ refactor the below lemma is no longer true
-- lemma Φ_bound_by_3 [fact (r1)] :
-- (Φ S : comphaus_filtered_pseudo_normed_group_hom (S) (S)).bound_by 3 :=
-- begin
-- let sh : comphaus_filtered_pseudo_normed_group_hom (S) (S) := shift (-1),
-- let shup : comphaus_filtered_pseudo_normed_group_hom (S) (S) := shift (1),
-- have Hsh : sh.bound_by 1,
-- { refine (mk_of_bound_bound_by _ _ _).mono 1 _,
-- rw [neg_neg], exact (pow_one r).le.trans (fact.out _) },
-- have Hshup : shup.bound_by 1,
-- { refine (mk_of_bound_bound_by _ _ _).mono (1) _,
-- }
-- suffices : (sh + sh + (-id)).bound_by (1 + 1 + 1),
-- { convert this using 1, ext1, dsimp only [Φ_eq_ϕ, ϕ], erw two_nsmul, }, -- was refl
-- refine (Hsh.add Hsh).add (mk_of_bound_bound_by _ _ _).neg,
-- end
lemma Φ_natural (S T : Fintype) (f : ST) (F :S) (t : T) (n :) :
Φ T (map f F) t n = laurent_measures.map f (Φ S F) t n :=
begin
simp [Φ_eq_ϕ, ϕ, finset.mul_sum],
end
end phi_to_hom
section theta
open theta real_measures
parameter (p : ℝ≥0)
local notation `r` := @r p
local notation `ℳ` := real_measures p
local notation `ℒ` := laurent_measures r
variable {S : Fintype.{u}}
local notation `ϖ` := Fintype.of (punit : Type u)
def seval__c (c : ℝ≥0) (s : S) : filtration (S) c(filtration (ℒ ϖ) c) :=
λ F,
begin
refine ⟨seval_S s F, _,
have hF := F.2,
simp only [filtration, set.mem_set_of_eq, seval_, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at ⊢ hF,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hF,
end
variable [fact (0 < p)]
lemma θ_zero : θ (0 :S) = 0 :=
begin
dsimp only [θ, theta.ϑ],
funext,
simp only [laurent_measures.zero_apply, int.cast_zero, zero_mul, tsum_zero, real_measures.zero_apply],
end
variable [fact (p < 1)]
lemma θ_add (F G :S) : θ (F + G) = θ F + θ G :=
begin
dsimp only [θ, theta.ϑ],
funext,
simp only [laurent_measures.add_apply, int.cast_add, one_div, inv_zpow', zpow_neg,
real_measures.add_apply, tsum_add],
rw ← tsum_add,
{ congr,
funext,
rw add_mul },
all_goals {apply summable_of_summable_norm, simp_rw [← inv_zpow, norm_mul, norm_zpow, norm_inv,
real.norm_two] },
exact aux_thm69.summable_smaller_radius_norm F.d half_lt_r (F.summable s) (λ n, lt_d_eq_zero _ _ _),
exact aux_thm69.summable_smaller_radius_norm G.d half_lt_r (G.summable s) (λ n, lt_d_eq_zero _ _ _),
end
--for mathlib
lemma nnreal.rpow_int_cast (x : ℝ≥0) (n : ℤ) : x ^ n = x ^ (n : ℝ) := by {
rw [← nnreal.coe_eq, nnreal.coe_zpow, ← real.rpow_int_cast, ← nnreal.coe_rpow] }
lemma nnreal.rpow_le_rpow_of_exponent_le {x : ℝ≥0} (x1 : 1 ≤ x) {y z : ℝ}
(hyz : y ≤ z) :
x ^ y ≤ x ^ z :=
by { cases x with x hx, exact real.rpow_le_rpow_of_exponent_le x1 hyz }
lemma nnreal.tsum_geom_arit_inequality (f: ℤ → ℝ) {r' :} (hr'1 : 0 < r') (hr'2 : r'1)
(hs1 : summable (λ n, f n)) (hs2 : summable (λ n,(f n)∥₊ ^ r')) :
∥ tsum (λ n, f n) ∥₊ ^ r'tsum (λ n,(f n)∥₊ ^ r' ) :=
begin
rw ← summable_norm_iff at hs1,
simp_rw ← _root_.coe_nnnorm at hs1,
rw nnreal.summable_coe at hs1,
refine le_trans (nnreal.rpow_le_rpow (nnnorm_tsum_le hs1) hr'1.le) _,
have := λ s : finset, nnreal.rpow_sum_le_sum_rpow s (λ i,f i∥₊) hr'1 hr'2,
dsimp only at this,
have s1' := filter.tendsto.comp (continuous.tendsto
(nnreal.continuous_rpow_const hr'1.le) _) hs1.has_sum,
dsimp [function.comp] at s1',
apply tendsto_le_of_eventually_le s1' hs2.has_sum,
delta filter.eventually_le,
convert filter.univ_sets _,
ext x,
simp [this],
end
lemma aux_bound (F :S) (s : S) :(b :),(F s b :) ∥₊ ^ (p :) *
(2⁻¹ ^ (p :)) ^ (b :) ≤ ∥F s b∥₊ * r ^ b :=
begin
intro b,
rw [nnreal.rpow_int_cast],
refine mul_le_mul_of_nonneg_right _ (real.rpow_nonneg_of_nonneg (nnreal.coe_nonneg _) _),
have p_le_one : (p :)1,
{ rw ← nnreal.coe_one,
exact (nnreal.coe_lt_coe.mpr $ fact.out _).le },
by_cases hF_nz : F s b = 0,
{ rw [hF_nz, int.cast_zero, nnnorm_zero, nnnorm_zero, nnreal.zero_rpow],
rw [ne.def,nnreal.coe_zero, nnreal.coe_eq,ne.def],
exact ne_of_gt (fact.out _) },
{ convert nnreal.rpow_le_rpow_of_exponent_le _ p_le_one,
{ rw nnreal.rpow_one,
refl },
{ refine not_lt.mp (λ hf, hF_nz (int.abs_lt_one_iff.mp _)),
suffices : (|F s b| :) < 1, exact_mod_cast this,
rw ← int.norm_eq_abs,
rwa [nnreal.coe_lt_coe,nnnorm_norm, real.nnnorm_of_nonneg (norm_nonneg _)] at hf } }
end
lemma θ_bound :c : ℝ≥0,F : (S), Ffiltration (S) c(θ F)filtration (S)
(1 * c) :=
begin
intros c F hF,
rw laurent_measures.mem_filtration_iff at hF,
dsimp only [laurent_measures.has_nnnorm] at hF,
rw [one_mul, real_measures.mem_filtration_iff],
dsimp only [real_measures.has_nnnorm, θ, theta.ϑ],
let T := S.2.1,
have ineq :(sT), ∥∑' (n : ℤ), ((F s n) : ℝ) * 2⁻¹ ^ n∥₊ ^ (p : ℝ) ≤ ∑' (n :),
∥ ((F s n) :) * 2⁻¹ ^ n∥₊ ^ (p :),
{ intros s hs,
apply nnreal.tsum_geom_arit_inequality (λ n, ((F s n) * 2⁻¹ ^ n)),
{ norm_num, exact fact.out _},
{ suffices : p1, assumption_mod_cast, exact fact.out _},
{ dsimp only,
obtain ⟨d, hd:= exists_bdd_filtration (r_pos) (r_lt_one) F,
apply aux_thm69.summable_smaller_radius d (F.summable s) (hd s) half_lt_r },
{ dsimp only,
simp_rw [nnnorm_mul, nnreal.mul_rpow],
have := F.summable s,
rw ← nnreal.summable_coe,
apply summable_of_nonneg_of_le (λ i, _) _ this, apply nnreal.zero_le_coe,
intro n,
push_cast,
apply mul_le_mul,
{ -- true becauseintegeris either 0 or >= 1
norm_cast,
by_cases h : F s n = 0,
{ simp only [h, norm_zero],
refine le_of_eq (real.zero_rpow _),
norm_cast,
exact ne_of_gt (fact.out _) },
{ nth_rewrite 1 (real.rpow_one (F s n)).symm,
apply real.rpow_le_rpow_of_exponent_le,
{ rw [int.norm_eq_abs, le_abs'],
norm_cast,
rcases lt_trichotomy 0 (F s n) with (hF|hF|hF),
{ right, linarith },
{ exact false.elim (h hF.symm) },
{ left, change _ ≤ -(1 : ℤ), linarith, } },
{ norm_cast, exact fact.out _ } } },
{ apply le_of_eq,
rw [← r_coe],
rw real.norm_of_nonneg,
{ -- can't use pow_mul yet because one is int one is real
rw [real.rpow_int_cast,real.rpow_int_cast],
rw [real.rpow_mul, mul_comm, real.rpow_mul];
norm_num },
{ apply zpow_nonneg,
norm_num } },
{ refine (real.rpow_pos_of_pos _ _).le,
rw norm_pos_iff,
apply zpow_ne_zero,
norm_num, },
{ apply norm_nonneg, } } },
apply (finset.sum_le_sum ineq).trans,
simp_rw [nnnorm_mul, nnnorm_zpow, nnnorm_inv, nnreal.mul_rpow, real.nnnorm_two,
nnreal.rpow_int_cast, ← nnreal.rpow_mul (2 : ℝ≥0)⁻¹, mul_comm, nnreal.rpow_mul (2 : ℝ≥0)⁻¹],
apply le_trans _ hF,
apply finset.sum_le_sum,
intros s hs,
apply tsum_le_tsum,
exact aux_bound p F s,
refine nnreal.summable_of_le _ (F.2 s),
exacts [aux_bound p F s, F.2 s],
end
lemma θ_bound' : ∀ c : ℝ≥0, ∀ F : (ℒ S), F ∈ filtration (ℒ S) c → (θ F) ∈ filtration (ℳ S)
c :=by { simpa [one_mul] using (θ_bound p)}
def θ_to_add : (ℒ S) →+ (ℳ S) :=
{ to_fun := λ F, θ F,
map_zero' := θ_zero,
map_add' := θ_add, }
variable (S)
open theta metric real_measures
def seval_ℳ_c (c : ℝ≥0) (s : S) : filtration (ℳ S) c → (filtration (ℳ ϖ) c) :=
λ x,
begin
refine ⟨(λ _, x.1 s), _⟩,
have hx := x.2,
simp only [filtration, set.mem_set_of_eq, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at ⊢ hx,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hx,
end
-- **[FAE]** From here everything might be useless until `lemma inducing_cast_ℳ`: check
-- also the `variable (c : ℝ≥0)` issue; the idea is to replace cast_ℳ_c with α, for which
-- everything seems to work
variable (c : ℝ≥0)
def box := {F : (ℳ S) // ∀ s, ∥ F s ∥₊ ^ (p : ℝ) ≤ c }
instance : has_coe (box S c) (ℳ S) := by {dsimp only [box], apply_instance}
instance : topological_space (ℳ S) := by {dsimp only [real_measures], apply_instance}
instance : topological_space (box S c) := by {dsimp only [box], apply_instance}
def equiv_box_ϖ : (box S c) ≃ Π (s : S), (filtration (ℳ ϖ) c) :=
begin
fconstructor,
{ intros F s,
use seval_ℳ S s F.1,
simp only [real_measures.mem_filtration_iff, nnnorm, fintype.univ_punit,
finset.sum_singleton, seval_ℳ],
exact F.2 s },
{ intro G,
use λ s, (G s).1 punit.star,
intro s,
simpa only [real_measures.mem_filtration_iff, nnnorm, fintype.univ_punit,
finset.sum_singleton, seval_ℳ] using (G s).2 },
{ intro _,
ext s,
simpa only [seval_ℳ] },
{ intro G,
ext s,
simp only [seval_ℳ, subtype.val_eq_coe, subtype.coe_mk],
induction x,
refl }
end
def homeo_box_ϖ : (box S c) ≃ₜ Π (s : S), (filtration (ℳ ϖ) c) :=
{ to_equiv := equiv_box_ϖ S c,
continuous_to_fun := begin
apply continuous_pi,
intro s,
dsimp only [equiv_box_ϖ, seval_ℳ],
refine continuous_subtype_mk (λ (x : box p S c), equiv_box_ϖ._proof_3 p S c x s)
(continuous_pi (λ (i : ↥(Fintype.of punit)), _)),
exact continuous_pi_iff.mp continuous_induced_dom s,
end,
continuous_inv_fun :=
begin
dsimp only [equiv_box_ϖ, seval_ℳ],
refine continuous_subtype_mk (λ (x : ↥S → ↥(filtration (real_measures p (Fintype.of punit)) c)),
equiv_box_ϖ._proof_4 p S c x) _,
apply continuous_pi,
intro s,
have h : continuous (λ (a : S → (filtration (ℳ ϖ) c)), (a s).val)
:= continuous.subtype_coe (continuous_apply s),
have H := continuous_apply punit.star,
exact H.comp h,
end}
def α : filtration (ℳ S) c → box S c :=
begin
intro x,
use x,
have hx := x.2,
intro s,
simp only [filtration, set.mem_set_of_eq, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at hx,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hx,
end
lemma coe_α_coe : (coe : (box S c) → (ℳ S)) ∘ (α S c) = coe := by {funext _, refl}
lemma inducing_α : inducing (α S c) :=
begin
have ind_ind := @induced_compose _ _ (ℳ S) _ (α p S c) coe,
rw [coe_α_coe p S c] at ind_ind,
exact {induced := eq.symm ind_ind},
end
lemma seval_ℳ_α_commute (c : ℝ≥0) (s : S) :
(λ F, ((homeo_box_ϖ S c) ∘ (α S c)) F s) = (λ F, seval_ℳ_c S c s F) := rfl
lemma seval_ℳ_α_commute' {X : Type*} (c : ℝ≥0) {f : X → filtration (ℳ S) c} (s : S) :
(λ x, ((homeo_box_ϖ S c) ∘ (α S c)) (f x) s) = (λ x, seval_ℳ_c S c s (f x)) :=
begin
ext z,
have h_commute := @seval_ℳ_α_commute p S _ _ c s,
have := congr_fun h_commute (f z),
simp only at this,
rw this,
end
@[nolint unused_arguments]
def seval_ℒ_bdd_c (c : ℝ≥0) (S : Fintype) (A : finset ℤ) (s : S) :
laurent_measures_bdd r S A c → laurent_measures_bdd r ϖ A c :=
begin
intro F,
use λ _, F s,
have hF := F.2,
simp only [filtration, set.mem_set_of_eq, seval_ℒ, nnnorm, laurent_measures.coe_mk,
fintype.univ_punit, finset.sum_singleton] at ⊢ hF,
have := finset.sum_le_sum_of_subset (finset.singleton_subset_iff.mpr $ finset.mem_univ_val _),
rw finset.sum_singleton at this,
apply le_trans this hF,
end
lemma continuous_seval_ℒ_c (c : ℝ≥0) (s : S) : continuous (seval_ℒ_c c s) :=
begin
rw laurent_measures.continuous_iff,
intro A,
let := seval_ℒ_bdd_c p c S A s,
have h_trunc : (@truncate r ϖ c A) ∘ (seval_ℒ_c p c s) =
(seval_ℒ_bdd_c p c S A s) ∘ (@truncate r S c A),
{ ext ⟨F, hF⟩ π k,
dsimp only [seval_ℒ_bdd_c, seval_ℒ_c],
refl },
rw h_trunc,
apply continuous.comp,
apply continuous_of_discrete_topology,
apply truncate_continuous,
end
section topological_generalities
open metric set
variables {X : Type*} [topological_space X]
lemma reduction_balls {c : ℝ≥0} (f : X(closed_ball (0 :) c)) (H :y : (closed_ball 0 c),
∀ ε : ℝ, is_open (f⁻¹' (ball y ε))) : continuous f :=
begin
rw continuous_def,
intros _ hU,
rw is_open_iff_forall_mem_open,
intros x hx,
obtain ⟨ε, h₀, hε⟩ := (is_open_iff.mp hU) (f x) (mem_preimage.mp hx),
use f⁻¹' (ball (f x) ε),
exact ⟨preimage_mono hε, H (f x) ε, mem_ball_self h₀⟩,
end
lemma mem_filtration_le_monomial (F : filtration (ℒ ϖ) c) (n :) :
∥ ((F.1 punit.star n) :) ∥ ≤ c * ( r⁻¹ ^ n) :=
begin
have h_le :' n : ℤ, ∥ ((F.1 punit.star n) : ℝ) ∥ * r ^ n ≤ c,
{ have := (laurent_measures.mem_filtration_iff F.1 c).mp F.2,
rw laurent_measures.nnnorm_def at this,
simp only [fintype.univ_punit, finset.sum_singleton, ← nnreal.coe_le_coe,
nnreal.coe_tsum, nnreal.coe_mul, nnreal.coe_zpow, laurent_measures.coe_nnnorm] at this,
exact this },
have := @sum_le_tsum ℝ _ _ _ _ (λ n, ∥ ((F.1 punit.star n) : ℝ) ∥ * r ^ n) {n} _
(F.1.summable punit.star),
simp only [finset.sum_singleton, zpow_coe_nat] at this,
replace h_le := this.trans h_le,
rwa [← inv_mul_le_iff', inv_pow, inv_inv ((r :) ^ n), mul_comm],
{ apply pow_pos, rw inv_pos, apply r_pos },
{ rintros b -,
simp only [subtype.val_eq_coe],
exact mul_nonneg (norm_nonneg _) (zpow_nonneg (le_of_lt (nnreal.coe_pos.mpr r_pos)) b) },
end
lemma mem_filtration_sum_le_geom (F : filtration (ℒ ϖ) c) (B :) : ∥ ∑' n : {x : ℕ // B ≤ x},
((F.1 punit.star n) : ℝ) * 2⁻¹ ^ n.1 ∥ ≤ ∥ (c : ℝ) * ∑' n : {x : ℕ // Bx}, (2⁻¹ * r⁻¹) ^ n.1:=
begin
have two_r_nonneg : 0(2⁻¹ * r⁻¹ :) := by {refine mul_nonneg (inv_nonneg.2 two_pos.le) (inv_nonneg.2 r.2) },
have h_inj : function.injective (coe : {x : ℕ // Bx} → ℕ) := subtype.coe_injective,
have geom_pos : (0 :)c *' (n : {x // B ≤ x}), (2⁻¹ * r⁻¹) ^ n.1,
{ apply mul_nonneg c.2 (tsum_nonneg _),
intro b,
apply pow_nonneg (two_r_nonneg) },
nth_rewrite 1 [real.norm_eq_abs],
rw [abs_eq_self.mpr geom_pos],
apply (norm_tsum_le_tsum_norm _).trans,
rw [← tsum_mul_left],
apply tsum_le_tsum,
{ intro b,
rw [norm_mul, mul_pow, mul_comm ((2⁻¹ : ℝ) ^ b.1) _, ← mul_assoc],
rw [norm_pow, norm_inv, real.norm_two ],
apply (mul_le_mul_right _).mpr,
apply mem_filtration_le_monomial p c F,
simp only [one_div, inv_pos, pow_pos, zero_lt_bit0, zero_lt_one] },
swap,
{ by_cases hc : (c : ℝ) ≠ 0,
{ rw [← summable_mul_left_iff hc],
have two_r_lt : (2⁻¹ * r⁻¹ : ℝ) < 1,
{ have := (div_lt_one (nnreal.coe_lt_coe.mpr (r_pos))).mpr half_lt_r,
simp only [← inv_eq_one_div] at this ⊢,
rw [div_eq_mul_inv, nnreal.coe_inv] at this,
convert this,
assumption', },
exact (summable_geometric_of_lt_1 two_r_nonneg two_r_lt).comp_injective h_inj,
},
{ rw not_ne_iff at hc,
simp_rw [hc, zero_mul],
exact summable_zero }, },
all_goals { simp_rw [norm_mul, norm_pow, norm_inv, real.norm_two, subtype.val_eq_coe],
refine ((aux_thm69.summable_iff_on_nat_less F.1.d _).mp (aux_thm69.summable_smaller_radius_norm
F.1.d (half_lt_r) (F.1.summable punit.star)
(λ n, lt_d_eq_zero F.1 punit.star n))).comp_injective h_inj,
intros n hn,
rw [lt_d_eq_zero F.1 punit.star n hn, norm_zero, zero_mul] },
end
def geom_B_nat (ε :) (hε : 0 < ε) : {B : ℕ // ∀ (F : filtration (ℒ ϖ) c),tsum (λ b :
{n : ℕ // Bn }, ((F.1 punit.star b.1) :) * 2⁻¹ ^ b.1 )< ε ^ (p⁻¹ :)} :=
begin
let g := (λ n :, (c :) * ((2⁻¹ * r⁻¹) ^ n)),
have := tendsto_tsum_compl_at_top_zero g,
rw tendsto_at_top at this,
have h_pos : 0 < ε ^ (p⁻¹ :) := real.rpow_pos_of_pos hε _,
specialize this (ε ^ (p⁻¹ :)) h_pos,
let A := this.some,
let B: option ℕ → ℕ := λ a : (option), option.rec_on a (0 :) (λ n, n),
set B := (BA.max).succ with hB,
use B,
have h_incl : Afinset.range B,
rw finset.le_eq_subset,
{ by_cases H : A.nonempty,
{ intros a ha,
obtain ⟨s, hs:= finset.max_of_nonempty H,
replace hB : s.succ = B, { simp only [*, option.mem_def], refl, },
have h_mem := finset.mem_range_succ_iff.mpr (finset.le_max_of_mem ha hs),
rwa hB at h_mem },
{ intros a ha,
rw [finset.not_nonempty_iff_eq_empty] at H,
finish }},
let hA := this.some_spec,
specialize hA (finset.range B) h_incl,
rw [real.dist_0_eq_abs,real.norm_eq_abs] at hA,
intro F,
apply lt_of_le_of_lt (mem_filtration_sum_le_geom p c F B),
convert hA using 1,
apply congr_arg,
simp_rw [subtype.val_eq_coe,tsum_mul_left],
have set_eq : {n : ℕ | Bn} = {n : ℕ | nfinset.range B} :=
by {simp only [finset.mem_range, not_lt]},
exact tsum_congr_subtype g set_eq,
end
def eq_le_int_nat (B :) : {n : ℤ // (B :)n }{n : ℕ // Bn} :=
{ to_fun :=
begin
intro b,
use (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans b.2)).some,
rw ← int.coe_nat_le,
convert b.2,
exact (Exists.some_spec (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans b.2))).symm,
end,
inv_fun := λ n,n, by {simp only [coe_coe, int.coe_nat_le], from n.2},
left_inv :=
begin
rintro ⟨_, h,
simp only [coe_coe, subtype.coe_mk],
exact (Exists.some_spec (int.eq_coe_of_zero_le ((int.coe_nat_nonneg B).trans h))).symm,
end,
right_inv :=
begin
rintro ⟨_, h,
simp only [coe_coe, subtype.coe_mk, int.coe_nat_inj'],
exact ((@exists_eq' _ _).some_spec).symm,
end, }
def geom_B_int (ε :) (hε : 0 < ε) : {B : ℤ // ∀ (F : filtration (ℒ ϖ) c),tsum (λ b :
{n : ℤ // Bn }, ((F.1 punit.star b.1) :) * 2⁻¹ ^ b.1 )< ε ^ (p⁻¹ :)} :=
begin
let ℬ := geom_B_nat p c ε hε,
let B :=.1,
let hB :=.2,
use B,
intro F,
specialize hB F,
convert hB using 1,
apply congr_arg,
exact ((eq_le_int_nat B).symm.tsum_eq (λ b : {n : ℤ // ↑Bn },
((F.1 punit.star b.1) :) * 2⁻¹ ^ b.1 )).symm,
end
def geom_B (ε :) (hε : 0 < ε) ::= (geom_B_int c ε hε).1
lemma tail_B (ε :) (hε : 0 < ε) :(F : filtration (ℒ ϖ) c),tsum (λ b : {n : ℤ // geom_B c ε hε ≤ n },
((F.1 punit.star b.1) :) * 2⁻¹ ^ b.1 )< ε ^ (p⁻¹ :) :=
begin
intro F,
have := (geom_B_int p c ε hε).2 F,
exact this,
end
def U (F : filtration (ℒ ϖ) c) (B :) : set (filtration (ℒ ϖ) c) :=
λ G, ∀ s n, n < BF s n = G s n
lemma mem_U (F : filtration (ℒ ϖ) c) (B :) : F(U c F B) := λ _ _ _, rfl
lemma explodes_pow_r (ρ : ℝ≥0) (h: 0 < ρ.1) (h: ρ.1 < 1) (c : ℝ≥0) :
∃ n₀ : ℤ, ∀ (m :), m < n₀ → c < ρ ^ m :=
begin
convert_to ∃ n:,(m :), (- m :) < - n₀ → (c :) < ρ ^ ( - m :) using 0,
{ simp only [neg_lt_neg_iff, int.coe_nat_lt, zpow_neg, zpow_coe_nat, eq_iff_iff],
split,
{ rintro ⟨n, hn₀⟩,
induction n,
{ use n,
intros m hm,
rw [int.coe_nat_lt] at hm,
replace hm := neg_lt.mpr (lt_of_le_of_lt (neg_le_self (int.coe_nat_nonneg _)) hm),
specialize hn(- m) hm,
rwa [nnreal.coe_lt_coe, nnreal.coe_zpow, zpow_neg] at hn},
{ use n+ 1,
intros m hm,
rw [int.coe_nat_lt,neg_lt_neg_iff,int.neg_succ_of_nat_coe] at hm,
specialize hn(- m) hm,
rwa [nnreal.coe_lt_coe, nnreal.coe_zpow, zpow_neg] at hn},},
{ rintro ⟨n, hn₀⟩,
use - n,
rintro ⟨mhm,
{ have := right.neg_nonpos_iff.mpr (int.of_nat_nonneg n),
rw [int.of_nat_eq_coe] at this,
replace := ne_of_lt (lt_of_lt_of_le (lt_of_le_of_lt (int.of_nat_nonneg m) hm) this),
finish },
{ rw [int.neg_succ_of_nat_coe, neg_lt_neg_iff, int.coe_nat_lt] at hm,
specialize hn(m + 1) hm,
rwa [int.neg_succ_of_nat_coe,nnreal.coe_lt_coe, zpow_neg, zpow_coe_nat, nnreal.coe_inv,
nnreal.coe_pow] }}},
have h := (tendsto_pow_at_top_nhds_within_0_of_lt_1 hh).inv_tendsto_zero,
simp_rw [zpow_coe_nat] at h,
have : (λ (n :), ρ.1 ^ (n :))⁻¹ = (λ (n :), ρ.1 ^ (- n :)) := by {ext,
simp only [pi.inv_apply, zpow_neg] },
rw [this, filter.tendsto_at_top] at h,
specialize h (c + 1),
rw [nnreal.val_eq_coe] at h,
simp_rw [nnreal.coe_zpow] at h,
obtain ⟨n, hn₀⟩ := filter.eventually.exists_forall_of_at_top h,
use n,
intros m hm,
rw [neg_lt_neg_iff, int.coe_nat_lt] at hm,
replace hm := le_of_lt hm,
specialize hnm hm,
rw nnreal.coe_zpow at hn,
refine lt_of_lt_of_le _ hn,
exact lt_add_one _,
end
lemma is_open_U (F : filtration (ℒ ϖ) c) (B :) : is_open (U c F B) :=
begin
let ι : filtration (ℒ ϖ) c → Π (i :),:=
λ t i, truncate {i} t punit.stari,by simp,
have hι : continuous ι,
{ rw continuous_pi_iff, intros i,
dsimp [ι],
change continuous ((λ (t : laurent_measures_bdd r ϖ {i} c),
t punit.stari,by simp)truncate {i}),
refine continuous.comp continuous_bot (truncate_continuous «r» (Fintype.of punit) c {i}) },
obtain ⟨n,h₀⟩ :n:,(m :) (H : ℒ ϖ) (hH : Hfiltration (ℒ ϖ) c),
m < n₀ → H punit.star m = 0,
{ obtain ⟨n,h₀⟩ :n:,(m :), m < n₀ → c < r^m := explodes_pow_r r r_pos r_lt_one c,
use n, intros m H hH hm,
exact eq_zero_of_filtration H _ hH punit.star m (hm hm) },
classical,
let UU : set (Π (i :),) :=
set.pi (set.Ico nB) (λ i, if iset.Ico nB then { F punit.star i } else),
have hUU : is_open UU,
{ apply is_open_set_pi, exact finite_Ico nB,
intros a ha, trivial },
convert hUU.preimage hι,
ext G,
split,
{ intros hG, dsimp [U, UU, ι] athG,
intros i hi, rw if_pos hi,
simp only [mem_singleton_iff],
symmetry,
apply hG, exact hi.2 },
{ intros hG, dsimp [U, UU, ι] athG,
rintros ⟨⟩ n hn,
symmetry,
by_cases hn' : n < n₀,
{ erw [h₀ n G.1 G.2 hn', hn F.1 F.2 hn'] },
push_neg at hn',
specialize hG n, simpa [hn', hn] using hG },
end
end topological_generalities
def θ_c (c : ℝ≥0) (T : Fintype) : (filtration (laurent_measures r T) c) →
(filtration (real_measures p T) c) :=
begin
intro f,
rw [← one_mul c],
use ⟨θ f, θ_bound p c f f.2⟩,
end
lemma commute_seval_ℒ_ℳ (c : ℝ≥0) (s : S) :
(θ_c c (Fintype.of punit)) ∘ (seval_ℒ_c c s) = (seval_ℳ_c S c s) ∘ (θ_c c S) := by simpa only
[seval_ℳ_c, seval_ℒ_c, seval_ℒ, θ_c, one_mul, subtype.coe_mk, eq_mpr_eq_cast, set_coe_cast]
lemma continuous_of_seval_ℳ_comp_continuous (c : ℝ≥0) {X : Type*} [topological_space X]
{f : X → (filtration (ℳ S) c)} : (∀ s, continuous ((seval_ℳ_c S c s) ∘ f)) → continuous f :=
begin
intro H,
replace H : ∀ (s : S), continuous (λ x : X, ((homeo_box_ϖ p S c) ∘ (α p S c)) (f x) s),
{ intro,
rw [seval_ℳ_α_commute' p S c s],
exact H s },
rw ← continuous_pi_iff at H,
convert_to (continuous (λ x, (homeo_box_ϖ p S c) (α p S c (f x)))) using 0,
{ apply eq_iff_iff.mpr,
rw [homeomorph.comp_continuous_iff, (inducing_α p S c).continuous_iff] },
exact H,
end
lemma tsum_subtype_sub {f g : ℤ → ℝ} {B :}
(hf : summable (λ (b : {x // Bx}), f b * 2⁻¹ ^ b.1))
(hg : summable (λ (b : {x // Bx}), g b * 2⁻¹ ^ b.1)) :
∥ tsum ((λ (b :), (((g b) :) - f b) * 2⁻¹ ^ b)(coe : {b | Bb} → ℤ))=
∥ ∑' (b : {x // B ≤ x}), (g b : ℝ) * 2⁻¹ ^ b.1 - ∑' (b : {x // Bx}),
(f b :) * 2⁻¹ ^ b.1:=
begin
rw [tsum_sub hg hf, tsum_eq_tsum_of_has_sum_iff_has_sum],
intro _,
simp_rw [sub_mul, iff_eq_eq],
refl,
end
lemma aux_summability_no_norm (F : filtration (ℒ ϖ) c) : summable
(λ b :, (((F punit.star b) :) * 2⁻¹ ^ b)) := aux_thm69.summable_smaller_radius F.1.d (F.1.summable punit.star)
(λ n, lt_d_eq_zero F.1 punit.star n) half_lt_r
lemma aux_summability_subtype (F : filtration (ℒ ϖ) c) (B :) : summable (λ b : {x : ℤ // Bx},
(((F punit.star b) :) * 2⁻¹ ^ b.1)) :=
by {exact (aux_summability_no_norm p c F).comp_injective subtype.coe_injective}
lemma pos_ε_pow (ε :) (hε : 0 < ε) : 0 < (ε / (2 : ℝ) ^ p.1) := by {apply div_pos hε
(real.rpow_pos_of_pos _ _), simp only [zero_lt_bit0, zero_lt_one]}
lemma dist_lt_of_mem_U (ε : ℝ≥0) (hε : 0 < ε) (F G : filtration (ℒ ϖ) c) :
G ∈ (U c F (geom_B c (ε / (2 :) ^ p.1) (pos_ε_pow ε hε))) → ∥ ((θ_c c ϖ G) : (ℳ ϖ)) - (θ_c c ϖ) F< ε :=
begin
intro h_mem_G,
rw real_measures.norm_def,
simp only [fintype.univ_punit, real_measures.sub_apply, finset.sum_singleton],
rw [real.rpow_lt_rpow_iff _ _ _,real.rpow_mul,
mul_inv_cancel, real.rpow_one],
rotate,
{ rw ← nnreal.coe_zero,
exact ne_of_gt (nnreal.coe_lt_coe.mpr (fact.out _)) },
{ apply norm_nonneg },
{ apply real.rpow_nonneg_of_nonneg (norm_nonneg _) },
{ rw ← nnreal.coe_zero,
exact ε.2 },
{ rw [inv_pos,nnreal.coe_zero],
exact (nnreal.coe_lt_coe.mpr (fact.out _)) },
simp only [θ_c, one_mul, eq_mpr_eq_cast, set_coe_cast, subtype.coe_mk],
dsimp only [θ, ϑ],
have h_B :b :, b < (geom_B p c (ε / 2 ^ p.1) (pos_ε_pow p ε hε)) → ((G punit.star b) : ℝ) - (F punit.star b) = 0,
{ intros b hb,
simp only [h_mem_G punit.star b hb, sub_self] },
rw [← tsum_sub],
rotate,
{exact (aux_summability_no_norm p c G)},
{exact (aux_summability_no_norm p c F)},
simp_rw [← sub_mul],
set B := (geom_B p c (ε / 2 ^ p.1) (pos_ε_pow p ε hε)) with def_B,
let f := λ b :, ((((G : (ℒ ϖ)) punit.star b) - ((F : (ℒ ϖ)) punit.star b)) :)
* 2⁻¹ ^ b,
let g : ({ b : ℤ | Bb}) → ℝ := fcoe,
let i : function.support g → ℤ := (coe : { b : ℤ | Bb} → ℤ)(coe : function.support g{ b : ℤ | Bb}),
have hi : ∀ ⦃x y :(function.support g), i x = i y → ↑x =y,
{intros _ _ h,
simp only [subtype.coe_inj] at h,
rwa [subtype.coe_inj] },
have hf : function.support fset.range i,
{ intros a ha,
simp only [f, function.mem_support, ne.def] at ha,
have ha' : B ≤ a,
{ by_contra',
specialize h_B a this,
simp only [one_div, inv_zpow', zpow_neg, mul_eq_zero, inv_eq_zero, not_or_distrib] at ha,
replace ha := ha.1,
simpa only },
simp only [set.mem_set_of_eq, function.mem_support, ne.def, set.mem_range, set_coe.exists],
use [a, ha', ha, refl _] },
have hF := tail_B p c (ε.1 / 2 ^ p.1) (pos_ε_pow p ε hε) F,
have hG := tail_B p c (ε.1 / 2 ^ p.1) (pos_ε_pow p ε hε) G,
have h02 : (0 :)2 := two_pos.le,
have h02p : (0 :)2 ^ p.val := real.rpow_nonneg_of_nonneg h02 _,
rw [real.div_rpow ε.2 h02p,real.rpow_mul h02] at hF hG,
simp_rw [@subtype.val_eq_coe _ _ p] at hF hG,
have hp0 : (p :)0 := nnreal.coe_ne_zero.mpr (ne_of_gt (fact.out _)),
rw [mul_inv_cancel hp0, real.rpow_one] at hF hG,
rw [tsum_eq_tsum_of_ne_zero_bij i hi hf (λ _, refl _)],
dsimp only [f, g],
rw [tsum_subtype_sub],
rotate,
{ exact (aux_summability_subtype p c F B) },
{ exact (aux_summability_subtype p c G B) },
apply lt_of_le_of_lt (norm_sub_le _ _),
convert add_lt_add hG hF,
simp only [nnreal.val_eq_coe, add_halves'],
end
lemma coe_pow_half (η : ℝ) (η_pos' : 0 < η) (η₀ : ℝ≥0) (hη₀ : η₀ = ⟨η, le_of_lt η_pos'⟩) :
(η / 2) ^ (p : ℝ) = ((η₀ ^ (p : ℝ) : ℝ)) / 2 ^ (p.1) := by {rw [real.div_rpow (le_of_lt η_pos') _,
nnreal.val_eq_coe, hη₀, subtype.coe_mk], simp only [zero_le_bit0, zero_le_one]}
section
variables {c}
def ξ (F : filtration (ℒ ϖ) c) ::=
(homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)
def hξ (F : filtration (ℒ ϖ) c) :
ξ F = (homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F) := rfl
lemma speed_aux' (ε η : ℝ) (η₀ : ℝ≥0) (hη₀ : η = η₀)
(y : (closed_ball (0 : ℝ) (c ^ (p : ℝ)⁻¹)))
(F G : (filtration (ℒ (Fintype.of punit)) c))
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ))
(h_pos : 0 < (η / 2) ^ (p:ℝ))
(hp : 0 < (p:ℝ))
(η_pos' : 0 < η)
(h_η_η₀ : (η / 2) ^ (p:ℝ) = ↑η₀ ^ (p:ℝ) / 2 ^ p.val) (h_pos'')
(hG : GU c F (geom_B c ((↑η₀ ^ (p:) / 2 ^ p.val)) h_pos'')) :
∥(θ_c c (Fintype.of punit) G).val - (θ_c c (Fintype.of punit) F).val∥ < η ^ (p:ℝ) :=
begin
have foo : 0 < η₀ ^ (p:ℝ),
{ apply real.rpow_pos_of_pos, rw ← hη₀, exact η_pos' },
-- exact dist_lt_of_mem_U p c (η₀ ^ (p : ℝ)) (real.rpow_pos_of_pos η_pos' _) F G hG
have := dist_lt_of_mem_U p c (η₀ ^ (p : ℝ)) foo F G hG,
convert this,
end
lemma speed_aux (ε η : ℝ) (η₀ : ℝ≥0) (hη₀ : η = η₀)
(y : (closed_ball (0 : ℝ) (c ^ (p : ℝ)⁻¹)))
(F G : (filtration (ℒ (Fintype.of punit)) c))
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p :))
(h_pos : 0 < (η / 2) ^ (p:ℝ))
(hp : 0 < (p:ℝ))
(η_pos' : 0 < η)
(h_η_η₀ : (η / 2) ^ (p:ℝ) = ↑η₀ ^ (p:ℝ) / 2 ^ p.val) (h_pos'')
(hG : G ∈ U c F (geom_B c ((↑η₀ ^ (p:ℝ) / 2 ^ p.val)) h_pos'')) :
|ξ G - ξ F| < ε - |ξ F - y| :=
begin
repeat {rw hξ},
rw [← real_measures.dist_eq,
← real.rpow_lt_rpow_iff
(real.rpow_nonneg_of_nonneg (real_measures.norm_nonneg _) _) (sub_nonneg.mpr (le_of_lt hF)) hp,
← real.rpow_mul (real_measures.norm_nonneg _),
inv_mul_cancel (ne_of_gt hp), real.rpow_one, ← hη],
apply speed_aux', assumption'
end
lemma speed (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ)))
(F G : filtration (ℒ ϖ) c)
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p : ℝ))
(hG : G ∈ U c F (geom_B c ((η / 2) ^ (p:ℝ)) h_pos)) :
|(ξ G) - (ξ F)| + |(ξ F) - y| < ε - |(ξ F) - y| + |(ξ F) - y| :=
begin
have hp : 0 < (p : ℝ), { rw [← nnreal.coe_zero, nnreal.coe_lt_coe], from fact.out _ },
have η_pos' : 0 < η := by {rw hη, from (sub_pos.mpr hF)},
set η₀ : ℝ≥0 := ⟨η, le_of_lt η_pos'⟩ with hη₀,
have h_η_η₀ := @coe_pow_half p _ _ η η_pos' η₀ hη₀,
simp_rw [h_η_η₀] at hG,
apply add_lt_add_right,
apply @speed_aux p _ _ c ε η η₀ _ y F G,
assumption',
rw hη₀, refl,
end
end
lemma U_subset_preimage' (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ)))
(F : filtration (ℒ ϖ) c)
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p :))
(G : (filtration ((Fintype.of punit)) c))
(hG : GU c F (geom_B c ((η / 2) ^ (p:ℝ)) h_pos)) :
|ξ G - y| < ε :=
begin
have aux : |(ξ p G) - (ξ p F)| + |(ξ p F) - y | < ε - | (ξ p F) - y | + | (ξ p F) - y |,
{ apply speed; assumption },
replace aux : |(ξ p G) - (ξ p F)| + |(ξ p F) - y | < ε,
{ rwa [sub_add_cancel ε (| (ξ p F) - y |)] at aux },
have := lt_of_le_of_lt (abs_sub_le (ξ p G) (ξ p F) y) aux,
rw ← real.norm_eq_abs at this ⊢,
exact this,
end
lemma U_subset_preimage (ε η : ℝ) (y : closed_ball (0 : ℝ) (c ^ (p⁻¹ : ℝ)))
(F : filtration (ℒ ϖ) c)
(hF : |(((homeo_filtration_ϖ_ball c) (θ_c c (Fintype.of punit) F)) : ℝ) - y| < ε)
(hη : η = ε - |(homeo_filtration_ϖ_ball c (θ_c c ϖ F)) - y|) (h_pos : 0 < (η / 2) ^ (p :)) :
(U c F (geom_B c ((η / 2) ^ (p : ℝ)) h_pos) ) ⊆
((homeo_filtration_ϖ_ball c) ∘ θ_c c (ϖ) ⁻¹' (ball y ε)) :=
begin
intros G hG,
simp only [set.mem_preimage, one_mul, eq_self_iff_true, eq_mpr_eq_cast, set_coe_cast,
function.comp_app, mem_ball, subtype.dist_eq, real.dist_eq],
apply U_subset_preimage'; assumption,
end
-- This is the main continuity property needed in `ses2.lean`
theorem continuous_θ_c (c : ℝ≥0) : continuous (θ_c c S) :=
begin
apply continuous_of_seval_ℳ_comp_continuous,
intro s,
rw ← commute_seval_ℒ_ℳ,
refine continuous.comp _ (continuous_seval_ℒ_c p S c s),
apply (homeo_filtration_ϖ_ball c).comp_continuous_iff.mp,
apply reduction_balls,
intros y ε,
rw is_open_iff_forall_mem_open,
intros F hF,
simp only [set.mem_preimage, one_mul, eq_self_iff_true, eq_mpr_eq_cast, set_coe_cast,
function.comp_app, mem_ball, subtype.dist_eq, real.dist_eq] at hF,
set η := ε - |(homeo_filtration_ϖ_ball c (θ_c p c ϖ F)) - y| with hη,
have η_pos' : 0 < η := by {rw hη, from (sub_pos.mpr hF)},
have η_pos : 0 < (η / 2) ^ (p : ℝ) := real.rpow_pos_of_pos (half_pos η_pos') _,
set V := U p c F (geom_B p c ((η / 2) ^ (p :)) η_pos) with hV,
simp_rw [real.div_rpow (le_of_lt η_pos') (le_of_lt (@two_pos ℝ _ _))] at hV,
use V,
exact and.intro (U_subset_preimage p c ε η y F hF hη η_pos)
(and.intro (is_open_U p c F _) (mem_U p c F _)),
end
end theta
end laurent_measures_ses