Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Ashvni Narayanan. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Ashvni Narayanan | |
-/ | |
import number_theory.padics.padic_integers | |
import topology.continuous_function.compact | |
import topology.continuous_function.locally_constant | |
/-! | |
# p-adic measure theory | |
This file defines p-adic distributions and measure on the space of locally constant functions | |
from a profinite space to a normed ring. We then use the measure to construct the p-adic integral. | |
In fact, we prove that this integral is linearly and continuously extended on `C(X, A`. | |
## Main definitions and theorems | |
* `exists_finset_clopen` | |
* `measures` | |
* `integral` | |
## Implementation notes | |
TODO (optional) | |
## References | |
Introduction to Cyclotomic Fields, Washington (Chapter 12) | |
## Tags | |
p-adic L-function, p-adic integral, measure, totally disconnected, locally constant, compact, | |
Hausdorff | |
############### | |
Note (jmc): this file was copied with permission of Ashvni Narayan from | |
https://github.com/leanprover-community/mathlib/blob/f2fd1fb4507431cf2f2a873db4b97d360633fb69/src/number_theory/L_functions.lean#L453 | |
and subsequently mildly modified. | |
############### | |
-/ | |
variables (X : Type*) [topological_space X] | |
variables (A : Type*) [normed_add_comm_group A] | |
variable {X} | |
variables [compact_space X] | |
namespace set | |
lemma diff_inter_eq_empty {α : Type*} (a : set α) {b c : set α} (h : c ⊆ b) : | |
a \ b ∩ c = ∅ := | |
begin | |
ext x, | |
simp only [and_imp, mem_empty_eq, mem_inter_eq, not_and, mem_diff, iff_false], | |
intro _, | |
exact mt (@h x), | |
end | |
lemma diff_inter_mem_sUnion {α : Type*} {s : set (set α)} (a y : set α) (h : y ∈ s) : | |
(a \ ⋃₀ s) ∩ y = ∅ := | |
diff_inter_eq_empty a $ subset_sUnion_of_mem h | |
end set | |
namespace is_clopen | |
lemma is_closed_sUnion {H : Type*} [topological_space H] | |
{s : finset(set H)} (hs : ∀ x ∈ s, is_closed x) : | |
is_closed ⋃₀ (s : set(set H)) := | |
by { simpa only [← is_open_compl_iff, set.compl_sUnion, set.sInter_image] using is_open_bInter | |
(finset.finite_to_set s) (λ i hi, _), apply is_open_compl_iff.2 (hs i hi), } | |
lemma is_clopen_sUnion {H : Type*} [topological_space H] | |
(s : finset(set H)) (hs : ∀ x ∈ s, is_clopen x) : | |
is_clopen ⋃₀ (s : set(set H)) := | |
⟨is_open_sUnion (λ t ht, (hs t ht).1), is_closed_sUnion (λ t ht, (hs t ht).2) ⟩ | |
/-- The finite union of clopen sets is clopen. -/ | |
lemma clopen_finite_Union {H : Type*} [topological_space H] | |
(s : finset(set H)) (hs : ∀ x ∈ s, is_clopen x) : | |
is_clopen ⋃₀ (s : set(set H)) := | |
by { rw set.sUnion_eq_bUnion, apply is_clopen_bUnion s.finite_to_set hs, } | |
/-- Given a finite set of clopens, one can find a finite disjoint set of clopens contained in | |
it. -/ | |
lemma clopen_Union_disjoint {H : Type*} [topological_space H] | |
(s : finset(set H)) (hs : ∀ x ∈ s, is_clopen x) : | |
∃ (t : finset (set H)), | |
(∀ (x ∈ (t : set (set H))), is_clopen x) ∧ | |
⋃₀ (s : set(set H)) = ⋃₀ (t : set(set H)) ∧ | |
(∀ (x : set H) (hx : x ∈ t), ∃ z ∈ s, x ⊆ z) ∧ | |
∀ (x y : set H) (hx : x ∈ t) (hy : y ∈ t) (h : x ≠ y), x ∩ y = ∅ := | |
begin | |
classical, | |
apply finset.induction_on' s, | |
{ use ∅, simp only [finset.not_mem_empty, set.mem_empty_eq, forall_const, | |
finset.coe_empty, eq_self_iff_true, and_self, is_empty.forall_iff] }, | |
{ rintros a S h's hS aS ⟨t, clo, union, sub, disj⟩, | |
set b := a \ ⋃₀ S with hb, | |
refine ⟨insert b t, _, _, ⟨λ x hx, _, λ x y hx hy ne, _⟩⟩, | |
{ rintros x hx, | |
simp only [finset.coe_insert, set.mem_insert_iff, finset.mem_coe] at hx, | |
cases hx, | |
{ rw hx, apply is_clopen.diff (hs a h's) (clopen_finite_Union _ (λ y hy, (hs y (hS hy)))), }, | |
{ apply clo x hx, }, }, | |
{ simp only [finset.coe_insert, set.sUnion_insert], rw [←union, set.diff_union_self], }, | |
{ simp only [finset.mem_insert] at hx, cases hx, | |
{ use a, rw hx, simp only [true_and, true_or, eq_self_iff_true, finset.mem_insert], | |
apply set.diff_subset, }, | |
{ rcases sub x hx with ⟨z, hz, xz⟩, refine ⟨z, _, xz⟩, | |
rw finset.mem_insert, right, assumption, }, }, | |
{ rw finset.mem_insert at hx, rw finset.mem_insert at hy, | |
have : ∀ y ∈ t, b ∩ y = ∅, | |
{ rintros y hy, rw [hb, union], apply set.diff_inter_mem_sUnion, assumption, }, | |
cases hx, | |
{ cases hy, | |
{ exfalso, apply ne, rw [hx, hy], }, | |
{ rw hx, apply this y hy, }, }, | |
{ cases hy, | |
{ rw set.inter_comm, rw hy, apply this x hx, }, | |
{ apply disj x y hx hy ne, }, }, }, }, | |
end | |
end is_clopen | |
namespace locally_constant.density | |
variables (ε : ℝ) | |
/-- Takes an element of `A` to an `ε/4`-ball centered around it. -/ | |
abbreviation h {A : Type*} [normed_add_comm_group A] : A → set A := | |
λ (x : A), metric.ball x (ε / 4) | |
/-- The set of (ε/4)-balls. -/ | |
abbreviation S {A : Type*} [normed_add_comm_group A] : set (set A) := set.range (h ε) | |
variables {A} (f : C(X, A)) | |
/-- Preimage of (ε/4)-balls. -/ | |
abbreviation B : set(set X) := { j : set X | ∃ (U ∈ ((S ε) : set(set A))), j = f ⁻¹' U } | |
lemma opens {j : set X} (hj : j ∈ (B ε f)) : is_open j := | |
begin | |
rcases hj with ⟨hj_w, ⟨hj_h_w_w, rfl⟩, rfl⟩, | |
exact continuous.is_open_preimage f.2 _ (metric.is_open_ball), | |
end | |
variable [fact (0 < ε)] | |
/-- `X` is covered by a union of preimage of finitely many elements of `S` under `f` -/ | |
lemma exists_finset_univ_sub : ∃ (t : finset (set A)), set.univ ⊆ ⨆ (i : set A) (H : i ∈ t) | |
(H : i ∈ ((S ε) : set(set A))), f ⁻¹' i := | |
begin | |
have g : (⋃₀ S ε) = (set.univ : set A), | |
{ rw set.sUnion_eq_univ_iff, rintros, refine ⟨metric.ball a (ε/4), _, _⟩, | |
{ simp only [set.mem_range, exists_apply_eq_apply], }, | |
{ simp only [metric.mem_ball, dist_self], | |
refine div_pos (fact.out _) zero_lt_four, }, }, | |
have g' : set.preimage f (⋃₀ S ε) = set.univ, | |
{ rw g, exact set.preimage_univ, }, | |
rw [set.preimage_sUnion, set.subset.antisymm_iff] at g', | |
refine is_compact.elim_finite_subcover compact_univ _ (λ i, is_open_Union | |
(λ hi, continuous.is_open_preimage (continuous_map.continuous f) i _)) g'.2, | |
cases hi with y hy, rw [←hy], refine @metric.is_open_ball A _ y (ε/4), | |
end | |
/-- Choosing a finset as given in `exists_finset_univ_sub` -/ | |
noncomputable abbreviation t : finset (set A) := classical.some (exists_finset_univ_sub ε f) | |
lemma exists_finset_univ_sub_prop : set.univ ⊆ ⨆ (i : set A) (H : i ∈ t ε f) | |
(H : i ∈ ((S ε) : set(set A))), f ⁻¹' i := classical.some_spec (exists_finset_univ_sub ε f) | |
/-- If there is a finite set of sets from `S` whose preimage forms a cover for `X`, | |
then the union of the preimages of all the sets from `S` also forms a cover. -/ | |
lemma sUnion_sub_of_finset_sub : set.univ ⊆ set.sUnion (B ε f) := | |
begin | |
rintros x hx, | |
obtain ⟨-, ⟨j, rfl⟩, -, ⟨hj, rfl⟩, -, ⟨⟨a, jS⟩, rfl⟩, fj⟩ := (exists_finset_univ_sub_prop ε f) hx, | |
exact ⟨f⁻¹' j, ⟨j, ⟨_, jS⟩, rfl⟩, fj⟩, | |
end | |
variables [t2_space X] [totally_disconnected_space X] | |
/-- If there is a finite set of sets from `S` whose preimage forms a cover for `X`, | |
then there is a cover of `X` by clopen sets, with the image of each set being | |
contained in an element of `S`. -/ | |
def set_clopen : set (set X) := {j : set X | ∃ (U : set X) (hU : U ∈ (B ε f)), | |
j ∈ classical.some (topological_space.is_topological_basis.open_eq_sUnion | |
(@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hU))} | |
lemma mem_set_clopen {x : set X} : x ∈ (set_clopen ε f) ↔ ∃ (U : set X) (hU : U ∈ (B ε f)), | |
x ∈ classical.some (topological_space.is_topological_basis.open_eq_sUnion | |
(@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hU)) := iff.rfl | |
/-- Elements of `set_clopen` are clopen. -/ | |
lemma set_clopen_sub_clopen_set : (set_clopen ε f) ⊆ {s : set X | is_clopen s} := | |
begin | |
intros j hj, | |
obtain ⟨W, hW, hj⟩ := (mem_set_clopen ε f).1 hj, | |
obtain ⟨H, -⟩ := classical.some_spec (topological_space.is_topological_basis.open_eq_sUnion | |
(@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hW)), | |
exact H hj, | |
end | |
/-- `set_clopen` covers X. -/ | |
lemma univ_sub_sUnion_set_clopen : set.univ ⊆ ⋃₀ (set_clopen ε f) := | |
begin | |
rintros x hx, rw set.mem_sUnion, | |
have f' := @loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _, | |
have sUnion_sub_of_finset_sub := sUnion_sub_of_finset_sub ε f, | |
-- writing `f⁻¹' U` as a union of basis elements (clopen sets) | |
conv at sUnion_sub_of_finset_sub { congr, skip, rw set.sUnion_eq_Union, congr, funext, | |
apply_congr classical.some_spec (classical.some_spec | |
(topological_space.is_topological_basis.open_eq_sUnion f' (opens ε f i.prop))), }, | |
rw set.Union at sUnion_sub_of_finset_sub, | |
have g3 := sUnion_sub_of_finset_sub hx, | |
simp only [exists_prop, set.mem_Union, set.mem_range, set_coe.exists, exists_exists_eq_and, | |
set.supr_eq_Union, set.mem_set_of_eq, subtype.coe_mk] at g3, | |
rcases g3 with ⟨U, hU, a, ha, xa⟩, | |
refine ⟨a, _, xa⟩, | |
rw mem_set_clopen, | |
simp only [exists_prop, set.mem_range, exists_exists_eq_and, set.mem_set_of_eq], | |
refine ⟨U, hU, ha⟩, | |
end | |
/-- The image of each element of `set_clopen` is contained in an element of `S`. -/ | |
lemma exists_B_of_mem_clopen {x : set X} (hx : x ∈ set_clopen ε f) : | |
∃ (U : set X) (H : U ∈ B ε f), x ⊆ U := | |
begin | |
rcases hx with ⟨U, hU, xU⟩, refine ⟨U, hU, _⟩, | |
obtain ⟨H, H1⟩ := classical.some_spec | |
(topological_space.is_topological_basis.open_eq_sUnion | |
(@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) (opens ε f hU)), | |
rw H1, intros u hu, simp only [exists_prop, set.mem_set_of_eq], | |
refine ⟨x, _, hu⟩, | |
convert xU, | |
ext, simp only [exists_prop, iff_self], | |
end | |
/-- Every element of `set_clopen` is open. -/ | |
lemma mem_set_clopen_is_open (i : (set_clopen ε f)) : is_open (i : set X) := | |
topological_space.is_topological_basis.is_open (@loc_compact_Haus_tot_disc_of_zero_dim X _ _ _ _) | |
((set_clopen_sub_clopen_set ε f) i.2) | |
/-- A restatement of `univ_sub_sUnion_set_clopen`. -/ | |
lemma cover : (set.univ : set X) ⊆ ⋃ (i : (set_clopen ε f)), ↑i := | |
by { convert univ_sub_sUnion_set_clopen ε f, rw set.sUnion_eq_Union, } | |
/-- Obtain a finite subcover of `set_clopen` using the compactness of `X`. -/ | |
noncomputable abbreviation s' := classical.some (is_compact.elim_finite_subcover | |
(@compact_univ X _ _) _ (mem_set_clopen_is_open ε f) (cover ε f)) | |
/-- Coercing a subset of `set_clopen` in `s'` to `set X`. -/ | |
abbreviation s1 := λ (x : s' ε f), (x.1 : set X) | |
/-- The range of `s1` is finite. -/ | |
lemma fin : (set.range (s1 ε f)).finite := | |
by { apply set.finite_range _, exact finite.of_fintype ↥(s' ε f), } | |
/-- Any element in the range of `s1` is clopen. -/ | |
lemma is_clopen_x {x : set X} (hx : x ∈ (fin ε f).to_finset) : is_clopen x := | |
begin | |
simp only [set.mem_range, set_coe.exists, set.finite.mem_to_finset, finset.mem_coe] at hx, | |
rcases hx with ⟨⟨⟨v, hv⟩, hw⟩, hU⟩, | |
convert (set_clopen_sub_clopen_set ε f) hv, | |
rw ←hU, | |
delta s1, | |
simp, | |
end | |
/-- If there is a finite set of sets from `S` whose preimage forms a cover for `X`, | |
then there is a finset of `sets X` containing clopen sets, with the image of each set being | |
contained in an element of `S`. We use `s'` to get a finite disjoint clopen cover of `X`; | |
note : it is not a partition -/ | |
noncomputable def finset_clopen : finset (set X) := | |
classical.some (is_clopen.clopen_Union_disjoint | |
(set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx))) | |
/-- Elements of `finset_clopen` are clopen. -/ | |
lemma finset_clopen_is_clopen {x : set X} (hx : x ∈ finset_clopen ε f) : is_clopen x := | |
(classical.some_spec (is_clopen.clopen_Union_disjoint (set.finite.to_finset (fin ε f)) | |
(λ x hx, (is_clopen_x ε f hx)))).1 x hx | |
/-- The image of every element of `finset_clopen` is contained in some element of `S`. -/ | |
lemma exists_sub_S {x : set X} (hx : x ∈ finset_clopen ε f) : | |
∃ U ∈ ((S ε) : set(set A)), (set.image f x : set A) ⊆ U := | |
begin | |
rcases (classical.some_spec (is_clopen.clopen_Union_disjoint | |
(set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.2.1 x hx with ⟨z, hz, wz⟩, | |
simp only [set.mem_range, set_coe.exists, set.finite.mem_to_finset, finset.mem_coe] at hz, | |
-- `z'` is a lift of `x` in `V` | |
rcases hz with ⟨⟨⟨z', h1⟩, h2⟩, h3⟩, | |
rcases exists_B_of_mem_clopen ε f h1 with ⟨U, BU, xU⟩, | |
simp only [exists_prop, exists_exists_eq_and, set.mem_set_of_eq] at BU, | |
cases BU with U' h4, | |
refine ⟨U', h4.1, _⟩, transitivity (set.image f z), | |
{ apply set.image_subset _ wz, }, | |
{ simp only [set.image_subset_iff], rw [←h4.2, ←h3], | |
delta s1, | |
simp only [xU, subtype.coe_mk], }, | |
end | |
/-- Showing that `finset_clopen` is a disjoint cover of `X`. -/ | |
lemma finset_clopen_prop (a : X) : ∃! (b ∈ finset_clopen ε f), a ∈ b := | |
begin | |
-- proving that every element `a : X` is contained in a unique element `j` of `s` | |
obtain ⟨j, hj, aj⟩ : ∃ j ∈ finset_clopen ε f, a ∈ j, | |
{ -- `s'` covers `X` | |
have ha := classical.some_spec (is_compact.elim_finite_subcover | |
(@compact_univ X _ _) _ (mem_set_clopen_is_open ε f) (cover ε f)) (set.mem_univ a), | |
have hs := (classical.some_spec (is_clopen.clopen_Union_disjoint | |
(set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.1, | |
delta s1 at hs, | |
suffices : a ∈ ⋃₀ (finset_clopen ε f : set(set X)), | |
{ simp only [set.mem_sUnion, finset.mem_coe, exists_prop] at this, | |
cases this with j hj, refine ⟨j, hj.1, hj.2⟩, }, | |
{ rw finset_clopen, | |
rw ←hs, | |
simp only [set.mem_Union, set.finite.coe_to_finset, subtype.val_eq_coe, set.sUnion_range], | |
simp only [exists_prop, set.mem_Union, set_coe.exists, exists_and_distrib_right, | |
subtype.coe_mk] at ha, | |
-- have the element `U` of `V`, now translate it to `s` | |
rcases ha with ⟨U, ⟨hU, s'U⟩, aU⟩, | |
delta s', | |
refine ⟨⟨⟨U, hU⟩, s'U⟩, aU⟩, }, }, | |
refine ⟨j, _, λ y hy, _⟩, | |
{ -- existence | |
simp only [exists_prop, set.image_subset_iff, set.mem_range, exists_exists_eq_and, | |
exists_unique_iff_exists], | |
refine ⟨hj, aj⟩, }, | |
{ -- uniqueness, coming from the disjointness of the clopen cover, `disj` | |
simp only [exists_prop, exists_unique_iff_exists] at hy, | |
cases hy with h1 h2, | |
have disj := (classical.some_spec (is_clopen.clopen_Union_disjoint | |
(set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.2.2 j y hj h1, | |
by_cases h : j = y, | |
{ rw h.symm, }, | |
{ exfalso, specialize disj h, rw ←set.mem_empty_eq, rw ←disj, | |
apply set.mem_inter aj _, | |
simp only [and_true, implies_true_iff, eq_iff_true_of_subsingleton] at h2, | |
exact h2, }, }, | |
end | |
/-- Takes a nonempty `s` in `finset_clopen` and returns an element of it. -/ | |
noncomputable abbreviation c' := λ (s : set X) (H : s ∈ (finset_clopen ε f) ∧ nonempty s), | |
classical.choice (H.2) | |
/-- Any `x` in `X` must belong to a unique `s` in `finset_clopen`. `c2` takes `x` to the image of | |
any element of `s` under `f`, which is the same `f x`. -/ | |
noncomputable abbreviation c2 (f : C(X, A)) : X → A := | |
λ x, f (c' ε f (classical.some (exists_of_exists_unique (finset_clopen_prop ε f x)) ) | |
begin | |
have := (exists_prop.1 (exists_of_exists_unique (classical.some_spec | |
(exists_of_exists_unique (finset_clopen_prop ε f x))))), | |
split, | |
refine finset.mem_coe.1 (this).1, | |
apply set.nonempty.to_subtype, | |
refine ⟨x, this.2⟩, | |
end). | |
/-- Any element of `finset_clopen` is open. -/ | |
lemma mem_finset_clopen_is_open {U : set X} (hU : U ∈ finset_clopen ε f) : is_open U := | |
by { rw finset_clopen at hU, apply (finset_clopen_is_clopen ε f hU).1, } | |
/-- An equivalent version of `disj`. -/ | |
lemma mem_finset_clopen_unique' {U V : set X} {y : X} | |
(hU : U ∈ finset_clopen ε f) (hUy : y ∈ U) (hVy : y ∈ V) (hV : V ∈ finset_clopen ε f) : V = U := | |
begin | |
by_contra, | |
have := (classical.some_spec (is_clopen.clopen_Union_disjoint | |
(set.finite.to_finset (fin ε f)) (λ x hx, (is_clopen_x ε f hx)))).2.2.2 _ _ hV hU h, | |
revert this, | |
--change (V ∩ U) ≠ ∅, | |
refine set.nonempty.ne_empty ⟨y, set.mem_inter hVy hUy⟩, | |
end | |
/-- Given `x` in `X`, there is a unique element `U` of `finset_clopen` such that `x ∈ U`. For any | |
`y ∈ U`, `y` is contained in any other element `V` of `finset_clopen` containing `x`. -/ | |
lemma mem_finset_clopen_unique {U V : set X} {x y : X} | |
(U_prop : (U ∈ finset_clopen ε f ∧ x ∈ U) ∧ ∀ (y : set X), y ∈ finset_clopen ε f → | |
x ∈ y → y = U) (hy : y ∈ U) (hV : V ∈ finset_clopen ε f) : x ∈ V ↔ y ∈ V := | |
begin | |
obtain ⟨W, hW⟩ := finset_clopen_prop ε f y, | |
simp only [and_imp, exists_prop, exists_unique_iff_exists] at hW, | |
split; intro h, | |
{ rw U_prop.2 V hV h, assumption, }, | |
{ rw hW.2 V hV h, rw ←(hW.2 U U_prop.1.1 hy), apply U_prop.1.2, }, | |
end | |
/-- `c2` is locally constant -/ | |
lemma loc_const : is_locally_constant (c2 ε f) := | |
begin | |
rw is_locally_constant.iff_exists_open, rintros x, | |
obtain ⟨U, hU⟩ := finset_clopen_prop ε f x, | |
simp only [and_imp, exists_prop, exists_unique_iff_exists] at hU, | |
refine ⟨U, mem_finset_clopen_is_open ε f hU.1.1, hU.1.2, λ x' hx', _⟩, | |
delta c2, | |
congr', | |
swap 4, ext y, revert y, rw ←set.ext_iff, congr, -- is there a better way to do this? | |
any_goals | |
{ ext y, simp only [exists_prop, and.congr_right_iff, exists_unique_iff_exists], | |
intro hy, symmetry, apply mem_finset_clopen_unique ε f hU hx' hy, }, | |
end | |
/-- Given an `f ∈ C(X, A)` and an `ε > 0`, one can find a locally constant function `b` which is in | |
an ε-ball with center `f`, `b` is precisely `c2`. -/ | |
theorem loc_const_dense' : ∃ (b : C(X, A)) | |
(H : b ∈ set.range (@locally_constant.to_continuous_map X A _ _)), | |
dist f b < ε := ⟨@locally_constant.to_continuous_map X A _ _ ⟨c2 ε f, loc_const ε f⟩, ⟨⟨c2 ε f, loc_const ε f⟩, rfl⟩, | |
gt_of_gt_of_ge (half_lt_self (fact.out _)) | |
begin | |
-- showing that the distance between `f` and `c2` is less than or equal to `ε/2` | |
rw [dist_eq_norm, continuous_map.norm_eq_supr_norm], | |
-- empty type is special case | |
cases is_empty_or_nonempty X with hempty hnonempty, | |
{ change _ ≥ dite _ _ _, | |
split_ifs with h, | |
{ rcases h with ⟨⟨_, x, _⟩, _⟩, | |
exact (@is_empty.false _ hempty x).elim }, | |
exact le_of_lt (half_pos (fact.out _)) }, | |
-- writing the distance in terms of the sup norm | |
refine cSup_le _ (λ m hm, _), | |
{ rw set.range_nonempty_iff_nonempty, assumption, }, -- this is where `nonempty X` is needed | |
{ cases hm with y hy, | |
simp only [continuous_map.coe_sub, locally_constant.coe_mk, | |
locally_constant.to_continuous_map_linear_map_apply, pi.sub_apply, | |
locally_constant.coe_continuous_map] at hy, | |
rw ←hy, | |
-- reduced to proving ∥f(y) - c2(y)∥ ≤ ε/2 | |
obtain ⟨w, wT, hw⟩ := finset_clopen_prop ε f y, | |
-- `w` is the unique element of `finset_clopen` to which `y` belongs | |
simp only [exists_prop, exists_unique_iff_exists] at wT, | |
simp only [and_imp, exists_prop, exists_unique_iff_exists] at hw, | |
have : c2 ε f y = f (c' ε f w ⟨wT.1, ⟨⟨y, wT.2⟩⟩⟩), | |
-- showing that `w` is the same as the `classical.some _` used in `c2` | |
{ delta c2, congr', | |
any_goals | |
{ have := classical.some_spec (exists_of_exists_unique (finset_clopen_prop ε f y)), | |
simp only [exists_prop, exists_unique_iff_exists] at *, | |
apply hw _ (this.1) (this.2), }, }, | |
dsimp, | |
rw this, | |
obtain ⟨U, hU, wU⟩ := exists_sub_S ε f wT.1, | |
-- `U` is a set of `A` which is an element of `S` and contains `f(w)` | |
cases hU with z hz, | |
-- `U` is the `ε/4`-ball centered at `z` | |
have mem_U : f (c' ε f w ⟨wT.1, ⟨⟨y, wT.2⟩⟩⟩) ∈ U := | |
wU ⟨(c' ε f w ⟨wT.1, ⟨⟨y, wT.2⟩⟩⟩), subtype.coe_prop _, rfl⟩, | |
have tS : f y ∈ U := wU ⟨y, wT.2, rfl⟩, | |
rw [hz.symm, mem_ball_iff_norm] at *, | |
conv_lhs { rw sub_eq_sub_add_sub _ _ z, }, | |
-- unfolding everything in terms of `z`, and then using `mem_U` and `tS` | |
have : ε/2 = ε/4 + ε/4, { rw div_add_div_same, linarith, }, | |
rw this, apply norm_add_le_of_le (le_of_lt _) (le_of_lt tS), | |
rw ←norm_neg _, simp only [mem_U, neg_sub], }, | |
end ⟩ | |
variable (X) | |
/-- The locally constant functions from `X` to `A` (viewed as a subset of C(X, A)) are dense | |
in C(X, A). -/ | |
theorem loc_const_dense : dense (set.range (@locally_constant.to_continuous_map X A _ _)) := | |
λ f, begin | |
rw metric.mem_closure_iff, | |
rintros ε hε, | |
haveI : fact (0 < ε) := fact.mk hε, | |
-- we have all the ingredients from `loc_const_dense'`, only need `exists_finset_univ_sub_prop` | |
apply loc_const_dense' ε f, | |
end | |
end locally_constant.density | |