Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /liquid /prop_92 /extension_profinite.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
9.97 kB
import for_mathlib.is_locally_constant
import locally_constant.analysis
/-!
# Extending a locally constant map to larger profinite sets
In this file, we prove that, given a topological embedding `e : X → Y` from a non-empty
compact topological space to a profinite set (ie. compact Hausdorff totally disconnected space),
every locally constant map `f` from `X` to any type `Z` "extends" to a locally constant map
from `Y` to `Z`, ie. there exists `g : Y → Z` locally constant such that `f = g ∘ e`.
e
X ↪-→ Y
| /
f | / h
↓ ↙
Z
Notes:
* this wouldn't work if `X` and `Z` were empty and `Y` weren't. The minimal assumption
would be assuming `Z` isn't empty, I'll refactor this soon.
* Everything is stated assuming only `X` is compact but the existence of `f` ensures `X` is
profinite, we're just saving type-class search (and nothing in the construction or proofs
directly use `X` is profinite).
The main definition is `embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z`
It assumes `X` is compact (and non-empty) and assumes `Y` is profinite but doesn't
assume `f` is locally constant, it is simply defined as a constant map if `f` isn't.
The announced properties of this extension are `embedding.extend_extends` and
`embedding.is_locally_constant_extend`.
-/
variables {X : Type*} [topological_space X]
noncomputable theory
open set
variables [compact_space X]
{Y : Type*} [topological_space Y] [t2_space Y] [compact_space Y] [totally_disconnected_space Y]
lemma embedding.preimage_clopen {f : X → Y} (hf : embedding f) {U : set X} (hU : is_clopen U) :
V : set Y, is_clopen V ∧ U = f ⁻¹' V :=
begin
cases hU with hU hU',
have hfU : is_compact (f '' U),
from hU'.is_compact.image hf.continuous,
obtain ⟨W, W_op, hfW⟩ : ∃ W : set Y, is_open W ∧ f ⁻¹' W = U,
{ rw hf.to_inducing.induced at hU,
exact is_open_induced_iff.mp hU },
obtain ⟨ι, Z : ι → set Y, hWZ : W = ⋃ i, Z i, hZ : ∀ i, is_clopen $ Z i⟩ :=
is_topological_basis_clopen.open_eq_Union W_op,
have : f '' U ⊆ ⋃ i, Z i,
{ rw [image_subset_iff, ← hWZ, hfW] },
obtain ⟨I, hI⟩ : ∃ I : finset ι, f '' U ⊆ ⋃ i ∈ I, Z i,
from hfU.elim_finite_subcover _ (λ i, (hZ i).1) this,
refine ⟨⋃ i ∈ I, Z i, _, _⟩,
{ apply is_clopen_bUnion, apply finset.finite_to_set,
tauto },
{ apply subset.antisymm,
exact image_subset_iff.mp hI,
have : (⋃ i ∈ I, Z i) ⊆ ⋃ i, Z i,
from Union₂_subset_Union _ _,
rw [← hfW, hWZ],
mono },
end
lemma embedding.ex_discrete_quotient [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
∃ (S' : discrete_quotient Y) (g : S ≃ S'), S'.proj ∘ f = g ∘ S.proj :=
begin
classical,
inhabit X,
haveI : fintype S := discrete_quotient.fintype S,
have : ∀ s : S, ∃ V : set Y, is_clopen V ∧ S.proj ⁻¹' {s} = f ⁻¹' V,
from λ s, hf.preimage_clopen (S.fiber_clopen {s}),
choose V hV using this,
rw forall_and_distrib at hV,
cases hV with V_cl hV,
let s₀ := S.proj default,
let W : S → set Y := λ s, (V s) \ (⋃ s' (h : s' ≠ s), V s'),
have W_dis : ∀ {s s'}, s ≠ s' → disjoint (W s) (W s'),
{ rintros s s' hss x ⟨⟨hxs_in, hxs_out⟩, ⟨hxs'_in, hxs'_out⟩⟩,
apply hxs'_out,
rw mem_Union₂,
exact ⟨s, hss, hxs_in⟩ },
have hfW : ∀ x, f x ∈ W (S.proj x),
{ intro x,
split,
{ change x ∈ f ⁻¹' (V $ S.proj x),
rw ← hV (S.proj x),
exact mem_singleton _ },
{ intro h,
rcases mem_Union₂.mp h with ⟨s', hss', hfx : x ∈ f ⁻¹' (V s')⟩,
rw ← hV s' at hfx,
exact hss' hfx.symm } },
have W_nonempty : ∀ s, (W s).nonempty,
{ intro s,
obtain ⟨x, hx : S.proj x = s⟩ := S.proj_surjective s,
use f x,
rw ← hx,
apply hfW,
},
let R : S → set Y := λ s, if s = s₀ then W s₀ ∪ (⋃ s, W s)ᶜ else W s,
have W_cl : ∀ s, is_clopen (W s),
{ intro s,
apply (V_cl s).diff,
apply is_clopen_Union,
intro s',
by_cases h : s' = s,
simp [h, is_clopen_empty],
simp [h, V_cl s'] },
have R_cl : ∀ s, is_clopen (R s),
{ intro s,
dsimp [R],
split_ifs,
{ apply (W_cl s₀).union,
apply is_clopen.compl,
exact is_clopen_Union W_cl },
{ exact W_cl _ }, },
let R_part : indexed_partition R,
{ apply indexed_partition.mk',
{ rintros s s' hss x ⟨hxs, hxs'⟩,
dsimp [R] at hxs hxs',
split_ifs at hxs hxs' with hs hs',
{ exact (hss (hs.symm ▸ hs' : s = s')).elim },
{ cases hxs' with hx hx,
{ exact W_dis hs' ⟨hxs, hx⟩ },
{ apply hx,
rw mem_Union,
exact ⟨s, hxs⟩ } },
{ cases hxs with hx hx,
{ exact W_dis hs ⟨hxs', hx⟩ },
{ apply hx,
rw mem_Union,
exact ⟨s', hxs'⟩ } },
{ exact W_dis hss ⟨hxs, hxs'⟩ } },
{ intro s,
dsimp [R],
split_ifs,
{ use (W_nonempty s₀).some,
left,
exact (W_nonempty s₀).some_mem },
{ apply W_nonempty } },
{ intro y,
by_cases hy : ∃ s, y ∈ W s,
{ cases hy with s hys,
use s,
dsimp [R],
split_ifs,
{ left,
rwa h at hys },
{ exact hys } },
{ use s₀,
simp only [R, if_pos rfl],
right,
rwa [mem_compl_iff, mem_Union] } } },
let S' := R_part.discrete_quotient R_cl,
let g := R_part.discrete_quotient_equiv R_cl,
have hR : ∀ x, f x ∈ R (S.proj x),
{ intros x,
by_cases hx : S.proj x = s₀,
{ simp only [hx, R, if_pos rfl],
left,
rw ← hx,
apply hfW },
{ simp only [R, if_neg hx],
apply hfW }, },
use [S', g],
ext x,
change f x ∈ S'.proj ⁻¹' {g (S.proj x)},
rw R_part.discrete_quotient_fiber R_cl,
simpa using hR x,
end
def embedding.discrete_quotient_map [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
discrete_quotient Y := (hf.ex_discrete_quotient S).some
def embedding.discrete_quotient_equiv [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
S ≃ hf.discrete_quotient_map S :=
(hf.ex_discrete_quotient S).some_spec.some
lemma embedding.discrete_quotient_spec [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) :
(hf.discrete_quotient_map S).proj ∘ f = (hf.discrete_quotient_equiv S) ∘ S.proj :=
(hf.ex_discrete_quotient S).some_spec.some_spec
variables {Z : Type*} [inhabited Z]
open_locale classical
def embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z :=
if h : is_locally_constant f ∧ nonempty X then
by {
haveI := h.2,
let ff : locally_constant X Z := ⟨f,h.1⟩,
let T := he.discrete_quotient_map ff.discrete_quotient,
let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient,
exact ff.lift ∘ ee.symm ∘ T.proj }
else λ y, default
/- lemma embedding.extend_eq {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) :
he.extend f = (hf.discrete_quotient_map) ∘ (he.discrete_quotient_equiv hf.discrete_quotient).symm ∘ (he.discrete_quotient_map hf.discrete_quotient).proj
:= dif_pos hf -/
lemma embedding.extend_extends {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) :
x, he.extend f (e x) = f x :=
begin
intro x,
haveI : nonempty X := ⟨x⟩,
let ff : locally_constant X Z := ⟨f,hf⟩,
let S := ff.discrete_quotient,
let S' := he.discrete_quotient_map S,
let barf : S → Z := ff.lift,
let g : S ≃ S' := he.discrete_quotient_equiv S,
unfold embedding.extend,
have h : is_locally_constant f ∧ nonempty X := ⟨hf, ⟨x⟩⟩,
rw [dif_pos h],
change (barf ∘ g.symm ∘ (S'.proj ∘ e)) x = f x,
suffices : (barf ∘ S.proj) x = f x, by simpa [he.discrete_quotient_spec],
simpa,
end
lemma embedding.is_locally_constant_extend {e : X → Y} (he : embedding e) {f : X → Z} :
is_locally_constant (he.extend f) :=
begin
unfold embedding.extend,
split_ifs,
{ apply is_locally_constant.comp,
apply is_locally_constant.comp,
exact discrete_quotient.proj_is_locally_constant _ },
{ apply is_locally_constant.const },
end
lemma embedding.range_extend {e : X → Y} (he : embedding e)
[nonempty X] {Z : Type*} [inhabited Z] {f : X → Z} (hf : is_locally_constant f) :
range (he.extend f) = range f :=
begin
ext z,
split,
{ rintro ⟨y, rfl⟩,
let ff : locally_constant _ _ := ⟨f,hf⟩,
let T := he.discrete_quotient_map ff.discrete_quotient,
let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient,
dsimp only [embedding.extend],
rw dif_pos,
swap, { exact ⟨hf, ‹_›⟩ },
change ff.lift (ee.symm (T.proj y)) ∈ _,
rcases ff.discrete_quotient.proj_surjective (ee.symm (T.proj y)) with ⟨w,hz⟩,
use w,
rw ← hz,
refl },
{ rintro ⟨x, rfl⟩,
exact ⟨e x, he.extend_extends hf _⟩ }
end
def embedding.locally_constant_extend {e : X → Y} (he : embedding e) (f : locally_constant X Z) :
locally_constant Y Z :=
⟨he.extend f, he.is_locally_constant_extend⟩
@[simp]
lemma embedding.locally_constant_extend_extends {e : X → Y} (he : embedding e)
(f : locally_constant X Z) (x : X) : he.locally_constant_extend f (e x) = f x :=
he.extend_extends f.2 x
lemma embedding.comap_locally_constant_extend {e : X → Y} (he : embedding e)
(f : locally_constant X Z) : (he.locally_constant_extend f).comap e = f :=
begin
ext x,
rw locally_constant.coe_comap _ _ he.continuous,
exact he.locally_constant_extend_extends f x
end
lemma embedding.range_locally_constant_extend {e : X → Y} (he : embedding e)
[nonempty X] {Z : Type*} [inhabited Z] (f : locally_constant X Z) :
range (he.locally_constant_extend f) = range f :=
he.range_extend f.2
-- version avec comap_hom pour Z normed group ?