Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import for_mathlib.is_locally_constant | |
import locally_constant.analysis | |
/-! | |
# Extending a locally constant map to larger profinite sets | |
In this file, we prove that, given a topological embedding `e : X → Y` from a non-empty | |
compact topological space to a profinite set (ie. compact Hausdorff totally disconnected space), | |
every locally constant map `f` from `X` to any type `Z` "extends" to a locally constant map | |
from `Y` to `Z`, ie. there exists `g : Y → Z` locally constant such that `f = g ∘ e`. | |
e | |
X ↪-→ Y | |
| / | |
f | / h | |
↓ ↙ | |
Z | |
Notes: | |
* this wouldn't work if `X` and `Z` were empty and `Y` weren't. The minimal assumption | |
would be assuming `Z` isn't empty, I'll refactor this soon. | |
* Everything is stated assuming only `X` is compact but the existence of `f` ensures `X` is | |
profinite, we're just saving type-class search (and nothing in the construction or proofs | |
directly use `X` is profinite). | |
The main definition is `embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z` | |
It assumes `X` is compact (and non-empty) and assumes `Y` is profinite but doesn't | |
assume `f` is locally constant, it is simply defined as a constant map if `f` isn't. | |
The announced properties of this extension are `embedding.extend_extends` and | |
`embedding.is_locally_constant_extend`. | |
-/ | |
variables {X : Type*} [topological_space X] | |
noncomputable theory | |
open set | |
variables [compact_space X] | |
{Y : Type*} [topological_space Y] [t2_space Y] [compact_space Y] [totally_disconnected_space Y] | |
lemma embedding.preimage_clopen {f : X → Y} (hf : embedding f) {U : set X} (hU : is_clopen U) : | |
∃ V : set Y, is_clopen V ∧ U = f ⁻¹' V := | |
begin | |
cases hU with hU hU', | |
have hfU : is_compact (f '' U), | |
from hU'.is_compact.image hf.continuous, | |
obtain ⟨W, W_op, hfW⟩ : ∃ W : set Y, is_open W ∧ f ⁻¹' W = U, | |
{ rw hf.to_inducing.induced at hU, | |
exact is_open_induced_iff.mp hU }, | |
obtain ⟨ι, Z : ι → set Y, hWZ : W = ⋃ i, Z i, hZ : ∀ i, is_clopen $ Z i⟩ := | |
is_topological_basis_clopen.open_eq_Union W_op, | |
have : f '' U ⊆ ⋃ i, Z i, | |
{ rw [image_subset_iff, ← hWZ, hfW] }, | |
obtain ⟨I, hI⟩ : ∃ I : finset ι, f '' U ⊆ ⋃ i ∈ I, Z i, | |
from hfU.elim_finite_subcover _ (λ i, (hZ i).1) this, | |
refine ⟨⋃ i ∈ I, Z i, _, _⟩, | |
{ apply is_clopen_bUnion, apply finset.finite_to_set, | |
tauto }, | |
{ apply subset.antisymm, | |
exact image_subset_iff.mp hI, | |
have : (⋃ i ∈ I, Z i) ⊆ ⋃ i, Z i, | |
from Union₂_subset_Union _ _, | |
rw [← hfW, hWZ], | |
mono }, | |
end | |
lemma embedding.ex_discrete_quotient [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : | |
∃ (S' : discrete_quotient Y) (g : S ≃ S'), S'.proj ∘ f = g ∘ S.proj := | |
begin | |
classical, | |
inhabit X, | |
haveI : fintype S := discrete_quotient.fintype S, | |
have : ∀ s : S, ∃ V : set Y, is_clopen V ∧ S.proj ⁻¹' {s} = f ⁻¹' V, | |
from λ s, hf.preimage_clopen (S.fiber_clopen {s}), | |
choose V hV using this, | |
rw forall_and_distrib at hV, | |
cases hV with V_cl hV, | |
let s₀ := S.proj default, | |
let W : S → set Y := λ s, (V s) \ (⋃ s' (h : s' ≠ s), V s'), | |
have W_dis : ∀ {s s'}, s ≠ s' → disjoint (W s) (W s'), | |
{ rintros s s' hss x ⟨⟨hxs_in, hxs_out⟩, ⟨hxs'_in, hxs'_out⟩⟩, | |
apply hxs'_out, | |
rw mem_Union₂, | |
exact ⟨s, hss, hxs_in⟩ }, | |
have hfW : ∀ x, f x ∈ W (S.proj x), | |
{ intro x, | |
split, | |
{ change x ∈ f ⁻¹' (V $ S.proj x), | |
rw ← hV (S.proj x), | |
exact mem_singleton _ }, | |
{ intro h, | |
rcases mem_Union₂.mp h with ⟨s', hss', hfx : x ∈ f ⁻¹' (V s')⟩, | |
rw ← hV s' at hfx, | |
exact hss' hfx.symm } }, | |
have W_nonempty : ∀ s, (W s).nonempty, | |
{ intro s, | |
obtain ⟨x, hx : S.proj x = s⟩ := S.proj_surjective s, | |
use f x, | |
rw ← hx, | |
apply hfW, | |
}, | |
let R : S → set Y := λ s, if s = s₀ then W s₀ ∪ (⋃ s, W s)ᶜ else W s, | |
have W_cl : ∀ s, is_clopen (W s), | |
{ intro s, | |
apply (V_cl s).diff, | |
apply is_clopen_Union, | |
intro s', | |
by_cases h : s' = s, | |
simp [h, is_clopen_empty], | |
simp [h, V_cl s'] }, | |
have R_cl : ∀ s, is_clopen (R s), | |
{ intro s, | |
dsimp [R], | |
split_ifs, | |
{ apply (W_cl s₀).union, | |
apply is_clopen.compl, | |
exact is_clopen_Union W_cl }, | |
{ exact W_cl _ }, }, | |
let R_part : indexed_partition R, | |
{ apply indexed_partition.mk', | |
{ rintros s s' hss x ⟨hxs, hxs'⟩, | |
dsimp [R] at hxs hxs', | |
split_ifs at hxs hxs' with hs hs', | |
{ exact (hss (hs.symm ▸ hs' : s = s')).elim }, | |
{ cases hxs' with hx hx, | |
{ exact W_dis hs' ⟨hxs, hx⟩ }, | |
{ apply hx, | |
rw mem_Union, | |
exact ⟨s, hxs⟩ } }, | |
{ cases hxs with hx hx, | |
{ exact W_dis hs ⟨hxs', hx⟩ }, | |
{ apply hx, | |
rw mem_Union, | |
exact ⟨s', hxs'⟩ } }, | |
{ exact W_dis hss ⟨hxs, hxs'⟩ } }, | |
{ intro s, | |
dsimp [R], | |
split_ifs, | |
{ use (W_nonempty s₀).some, | |
left, | |
exact (W_nonempty s₀).some_mem }, | |
{ apply W_nonempty } }, | |
{ intro y, | |
by_cases hy : ∃ s, y ∈ W s, | |
{ cases hy with s hys, | |
use s, | |
dsimp [R], | |
split_ifs, | |
{ left, | |
rwa h at hys }, | |
{ exact hys } }, | |
{ use s₀, | |
simp only [R, if_pos rfl], | |
right, | |
rwa [mem_compl_iff, mem_Union] } } }, | |
let S' := R_part.discrete_quotient R_cl, | |
let g := R_part.discrete_quotient_equiv R_cl, | |
have hR : ∀ x, f x ∈ R (S.proj x), | |
{ intros x, | |
by_cases hx : S.proj x = s₀, | |
{ simp only [hx, R, if_pos rfl], | |
left, | |
rw ← hx, | |
apply hfW }, | |
{ simp only [R, if_neg hx], | |
apply hfW }, }, | |
use [S', g], | |
ext x, | |
change f x ∈ S'.proj ⁻¹' {g (S.proj x)}, | |
rw R_part.discrete_quotient_fiber R_cl, | |
simpa using hR x, | |
end | |
def embedding.discrete_quotient_map [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : | |
discrete_quotient Y := (hf.ex_discrete_quotient S).some | |
def embedding.discrete_quotient_equiv [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : | |
S ≃ hf.discrete_quotient_map S := | |
(hf.ex_discrete_quotient S).some_spec.some | |
lemma embedding.discrete_quotient_spec [nonempty X] {f : X → Y} (hf : embedding f) (S : discrete_quotient X) : | |
(hf.discrete_quotient_map S).proj ∘ f = (hf.discrete_quotient_equiv S) ∘ S.proj := | |
(hf.ex_discrete_quotient S).some_spec.some_spec | |
variables {Z : Type*} [inhabited Z] | |
open_locale classical | |
def embedding.extend {e : X → Y} (he : embedding e) (f : X → Z) : Y → Z := | |
if h : is_locally_constant f ∧ nonempty X then | |
by { | |
haveI := h.2, | |
let ff : locally_constant X Z := ⟨f,h.1⟩, | |
let T := he.discrete_quotient_map ff.discrete_quotient, | |
let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient, | |
exact ff.lift ∘ ee.symm ∘ T.proj } | |
else λ y, default | |
/- lemma embedding.extend_eq {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) : | |
he.extend f = (hf.discrete_quotient_map) ∘ (he.discrete_quotient_equiv hf.discrete_quotient).symm ∘ (he.discrete_quotient_map hf.discrete_quotient).proj | |
:= dif_pos hf -/ | |
lemma embedding.extend_extends {e : X → Y} (he : embedding e) {f : X → Z} (hf : is_locally_constant f) : | |
∀ x, he.extend f (e x) = f x := | |
begin | |
intro x, | |
haveI : nonempty X := ⟨x⟩, | |
let ff : locally_constant X Z := ⟨f,hf⟩, | |
let S := ff.discrete_quotient, | |
let S' := he.discrete_quotient_map S, | |
let barf : S → Z := ff.lift, | |
let g : S ≃ S' := he.discrete_quotient_equiv S, | |
unfold embedding.extend, | |
have h : is_locally_constant f ∧ nonempty X := ⟨hf, ⟨x⟩⟩, | |
rw [dif_pos h], | |
change (barf ∘ g.symm ∘ (S'.proj ∘ e)) x = f x, | |
suffices : (barf ∘ S.proj) x = f x, by simpa [he.discrete_quotient_spec], | |
simpa, | |
end | |
lemma embedding.is_locally_constant_extend {e : X → Y} (he : embedding e) {f : X → Z} : | |
is_locally_constant (he.extend f) := | |
begin | |
unfold embedding.extend, | |
split_ifs, | |
{ apply is_locally_constant.comp, | |
apply is_locally_constant.comp, | |
exact discrete_quotient.proj_is_locally_constant _ }, | |
{ apply is_locally_constant.const }, | |
end | |
lemma embedding.range_extend {e : X → Y} (he : embedding e) | |
[nonempty X] {Z : Type*} [inhabited Z] {f : X → Z} (hf : is_locally_constant f) : | |
range (he.extend f) = range f := | |
begin | |
ext z, | |
split, | |
{ rintro ⟨y, rfl⟩, | |
let ff : locally_constant _ _ := ⟨f,hf⟩, | |
let T := he.discrete_quotient_map ff.discrete_quotient, | |
let ee : ff.discrete_quotient ≃ T := he.discrete_quotient_equiv ff.discrete_quotient, | |
dsimp only [embedding.extend], | |
rw dif_pos, | |
swap, { exact ⟨hf, ‹_›⟩ }, | |
change ff.lift (ee.symm (T.proj y)) ∈ _, | |
rcases ff.discrete_quotient.proj_surjective (ee.symm (T.proj y)) with ⟨w,hz⟩, | |
use w, | |
rw ← hz, | |
refl }, | |
{ rintro ⟨x, rfl⟩, | |
exact ⟨e x, he.extend_extends hf _⟩ } | |
end | |
def embedding.locally_constant_extend {e : X → Y} (he : embedding e) (f : locally_constant X Z) : | |
locally_constant Y Z := | |
⟨he.extend f, he.is_locally_constant_extend⟩ | |
@[simp] | |
lemma embedding.locally_constant_extend_extends {e : X → Y} (he : embedding e) | |
(f : locally_constant X Z) (x : X) : he.locally_constant_extend f (e x) = f x := | |
he.extend_extends f.2 x | |
lemma embedding.comap_locally_constant_extend {e : X → Y} (he : embedding e) | |
(f : locally_constant X Z) : (he.locally_constant_extend f).comap e = f := | |
begin | |
ext x, | |
rw locally_constant.coe_comap _ _ he.continuous, | |
exact he.locally_constant_extend_extends f x | |
end | |
lemma embedding.range_locally_constant_extend {e : X → Y} (he : embedding e) | |
[nonempty X] {Z : Type*} [inhabited Z] (f : locally_constant X Z) : | |
range (he.locally_constant_extend f) = range f := | |
he.range_extend f.2 | |
-- version avec comap_hom pour Z normed group ? | |