Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2015 Jeremy Avigad. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jeremy Avigad, Robert Y. Lewis | |
-/ | |
import algebra.order.ring | |
import algebra.group_power.ring | |
/-! | |
# Lemmas about the interaction of power operations with order | |
Note that some lemmas are in `algebra/group_power/lemmas.lean` as they import files which | |
depend on this file. | |
-/ | |
variables {A G M R : Type*} | |
section preorder | |
variables [monoid M] [preorder M] [covariant_class M M (*) (β€)] | |
@[to_additive nsmul_le_nsmul_of_le_right, mono] | |
lemma pow_le_pow_of_le_left' [covariant_class M M (function.swap (*)) (β€)] | |
{a b : M} (hab : a β€ b) : β i : β, a ^ i β€ b ^ i | |
| 0 := by simp | |
| (k+1) := by { rw [pow_succ, pow_succ], | |
exact mul_le_mul' hab (pow_le_pow_of_le_left' k) } | |
attribute [mono] nsmul_le_nsmul_of_le_right | |
@[to_additive nsmul_nonneg] | |
theorem one_le_pow_of_one_le' {a : M} (H : 1 β€ a) : β n : β, 1 β€ a ^ n | |
| 0 := by simp | |
| (k + 1) := by { rw pow_succ, exact one_le_mul H (one_le_pow_of_one_le' k) } | |
@[to_additive nsmul_nonpos] | |
lemma pow_le_one' {a : M} (H : a β€ 1) (n : β) : a ^ n β€ 1 := @one_le_pow_of_one_le' Mα΅α΅ _ _ _ _ H n | |
@[to_additive nsmul_le_nsmul] | |
theorem pow_le_pow' {a : M} {n m : β} (ha : 1 β€ a) (h : n β€ m) : a ^ n β€ a ^ m := | |
let β¨k, hkβ© := nat.le.dest h in | |
calc a ^ n β€ a ^ n * a ^ k : le_mul_of_one_le_right' (one_le_pow_of_one_le' ha _) | |
... = a ^ m : by rw [β hk, pow_add] | |
@[to_additive nsmul_le_nsmul_of_nonpos] | |
theorem pow_le_pow_of_le_one' {a : M} {n m : β} (ha : a β€ 1) (h : n β€ m) : a ^ m β€ a ^ n := | |
@pow_le_pow' Mα΅α΅ _ _ _ _ _ _ ha h | |
@[to_additive nsmul_pos] | |
theorem one_lt_pow' {a : M} (ha : 1 < a) {k : β} (hk : k β 0) : 1 < a ^ k := | |
begin | |
rcases nat.exists_eq_succ_of_ne_zero hk with β¨l, rflβ©, | |
clear hk, | |
induction l with l IH, | |
{ simpa using ha }, | |
{ rw pow_succ, | |
exact one_lt_mul'' ha IH } | |
end | |
@[to_additive nsmul_neg] | |
lemma pow_lt_one' {a : M} (ha : a < 1) {k : β} (hk : k β 0) : a ^ k < 1 := | |
@one_lt_pow' Mα΅α΅ _ _ _ _ ha k hk | |
@[to_additive nsmul_lt_nsmul] | |
theorem pow_lt_pow' [covariant_class M M (*) (<)] {a : M} {n m : β} (ha : 1 < a) (h : n < m) : | |
a ^ n < a ^ m := | |
begin | |
rcases nat.le.dest h with β¨k, rflβ©, clear h, | |
rw [pow_add, pow_succ', mul_assoc, β pow_succ], | |
exact lt_mul_of_one_lt_right' _ (one_lt_pow' ha k.succ_ne_zero) | |
end | |
@[to_additive nsmul_strict_mono_right] | |
lemma pow_strict_mono_left [covariant_class M M (*) (<)] {a : M} (ha : 1 < a) : | |
strict_mono ((^) a : β β M) := | |
Ξ» m n, pow_lt_pow' ha | |
end preorder | |
section linear_order | |
variables [monoid M] [linear_order M] [covariant_class M M (*) (β€)] | |
@[to_additive nsmul_nonneg_iff] | |
lemma one_le_pow_iff {x : M} {n : β} (hn : n β 0) : 1 β€ x ^ n β 1 β€ x := | |
β¨le_imp_le_of_lt_imp_lt $ Ξ» h, pow_lt_one' h hn, Ξ» h, one_le_pow_of_one_le' h nβ© | |
@[to_additive] | |
lemma pow_le_one_iff {x : M} {n : β} (hn : n β 0) : x ^ n β€ 1 β x β€ 1 := | |
@one_le_pow_iff Mα΅α΅ _ _ _ _ _ hn | |
@[to_additive nsmul_pos_iff] | |
lemma one_lt_pow_iff {x : M} {n : β} (hn : n β 0) : 1 < x ^ n β 1 < x := | |
lt_iff_lt_of_le_iff_le (pow_le_one_iff hn) | |
@[to_additive] | |
lemma pow_lt_one_iff {x : M} {n : β} (hn : n β 0) : x ^ n < 1 β x < 1 := | |
lt_iff_lt_of_le_iff_le (one_le_pow_iff hn) | |
@[to_additive] | |
lemma pow_eq_one_iff {x : M} {n : β} (hn : n β 0) : x ^ n = 1 β x = 1 := | |
by simp only [le_antisymm_iff, pow_le_one_iff hn, one_le_pow_iff hn] | |
variables [covariant_class M M (*) (<)] {a : M} {m n : β} | |
@[to_additive nsmul_le_nsmul_iff] | |
lemma pow_le_pow_iff' (ha : 1 < a) : a ^ m β€ a ^ n β m β€ n := (pow_strict_mono_left ha).le_iff_le | |
@[to_additive nsmul_lt_nsmul_iff] | |
lemma pow_lt_pow_iff' (ha : 1 < a) : a ^ m < a ^ n β m < n := (pow_strict_mono_left ha).lt_iff_lt | |
end linear_order | |
section div_inv_monoid | |
variables [div_inv_monoid G] [preorder G] [covariant_class G G (*) (β€)] | |
@[to_additive zsmul_nonneg] | |
theorem one_le_zpow {x : G} (H : 1 β€ x) {n : β€} (hn : 0 β€ n) : | |
1 β€ x ^ n := | |
begin | |
lift n to β using hn, | |
rw zpow_coe_nat, | |
apply one_le_pow_of_one_le' H, | |
end | |
end div_inv_monoid | |
namespace canonically_ordered_comm_semiring | |
variables [canonically_ordered_comm_semiring R] | |
theorem pow_pos {a : R} (H : 0 < a) (n : β) : 0 < a ^ n := | |
pos_iff_ne_zero.2 $ pow_ne_zero _ H.ne' | |
end canonically_ordered_comm_semiring | |
section ordered_semiring | |
variables [ordered_semiring R] {a x y : R} {n m : β} | |
lemma zero_pow_le_one : β n : β, (0 : R) ^ n β€ 1 | |
| 0 := (pow_zero _).le | |
| (n + 1) := by { rw [zero_pow n.succ_pos], exact zero_le_one } | |
theorem pow_add_pow_le (hx : 0 β€ x) (hy : 0 β€ y) (hn : n β 0) : x ^ n + y ^ n β€ (x + y) ^ n := | |
begin | |
rcases nat.exists_eq_succ_of_ne_zero hn with β¨k, rflβ©, | |
induction k with k ih, { simp only [pow_one] }, | |
let n := k.succ, | |
have h1 := add_nonneg (mul_nonneg hx (pow_nonneg hy n)) (mul_nonneg hy (pow_nonneg hx n)), | |
have h2 := add_nonneg hx hy, | |
calc x^n.succ + y^n.succ | |
β€ x*x^n + y*y^n + (x*y^n + y*x^n) : | |
by { rw [pow_succ _ n, pow_succ _ n], exact le_add_of_nonneg_right h1 } | |
... = (x+y) * (x^n + y^n) : | |
by rw [add_mul, mul_add, mul_add, add_comm (y*x^n), β add_assoc, | |
β add_assoc, add_assoc (x*x^n) (x*y^n), add_comm (x*y^n) (y*y^n), β add_assoc] | |
... β€ (x+y)^n.succ : | |
by { rw [pow_succ _ n], exact mul_le_mul_of_nonneg_left (ih (nat.succ_ne_zero k)) h2 } | |
end | |
theorem pow_lt_pow_of_lt_left (Hxy : x < y) (Hxpos : 0 β€ x) (Hnpos : 0 < n) : | |
x ^ n < y ^ n := | |
begin | |
cases lt_or_eq_of_le Hxpos, | |
{ rw β tsub_add_cancel_of_le (nat.succ_le_of_lt Hnpos), | |
induction (n - 1), { simpa only [pow_one] }, | |
rw [pow_add, pow_add, nat.succ_eq_add_one, pow_one, pow_one], | |
apply mul_lt_mul ih (le_of_lt Hxy) h (le_of_lt (pow_pos (lt_trans h Hxy) _)) }, | |
{ rw [βh, zero_pow Hnpos], apply pow_pos (by rwa βh at Hxy : 0 < y),} | |
end | |
lemma pow_lt_one (hβ : 0 β€ a) (hβ : a < 1) {n : β} (hn : n β 0) : a ^ n < 1 := | |
(one_pow n).subst (pow_lt_pow_of_lt_left hβ hβ (nat.pos_of_ne_zero hn)) | |
theorem strict_mono_on_pow (hn : 0 < n) : strict_mono_on (Ξ» x : R, x ^ n) (set.Ici 0) := | |
Ξ» x hx y hy h, pow_lt_pow_of_lt_left h hx hn | |
theorem one_le_pow_of_one_le (H : 1 β€ a) : β (n : β), 1 β€ a ^ n | |
| 0 := by rw [pow_zero] | |
| (n+1) := by { rw pow_succ, simpa only [mul_one] using mul_le_mul H (one_le_pow_of_one_le n) | |
zero_le_one (le_trans zero_le_one H) } | |
lemma pow_mono (h : 1 β€ a) : monotone (Ξ» n : β, a ^ n) := | |
monotone_nat_of_le_succ $ Ξ» n, | |
by { rw pow_succ, exact le_mul_of_one_le_left (pow_nonneg (zero_le_one.trans h) _) h } | |
theorem pow_le_pow (ha : 1 β€ a) (h : n β€ m) : a ^ n β€ a ^ m := | |
pow_mono ha h | |
theorem le_self_pow (ha : 1 β€ a) (h : 1 β€ m) : a β€ a ^ m := | |
eq.trans_le (pow_one a).symm (pow_le_pow ha h) | |
lemma strict_mono_pow (h : 1 < a) : strict_mono (Ξ» n : β, a ^ n) := | |
have 0 < a := zero_le_one.trans_lt h, | |
strict_mono_nat_of_lt_succ $ Ξ» n, by simpa only [one_mul, pow_succ] | |
using mul_lt_mul h (le_refl (a ^ n)) (pow_pos this _) this.le | |
lemma pow_lt_pow (h : 1 < a) (h2 : n < m) : a ^ n < a ^ m := | |
strict_mono_pow h h2 | |
lemma pow_lt_pow_iff (h : 1 < a) : a ^ n < a ^ m β n < m := | |
(strict_mono_pow h).lt_iff_lt | |
lemma pow_le_pow_iff (h : 1 < a) : a ^ n β€ a ^ m β n β€ m := | |
(strict_mono_pow h).le_iff_le | |
lemma strict_anti_pow (hβ : 0 < a) (hβ : a < 1) : strict_anti (Ξ» n : β, a ^ n) := | |
strict_anti_nat_of_succ_lt $ Ξ» n, | |
by simpa only [pow_succ, one_mul] using mul_lt_mul hβ le_rfl (pow_pos hβ n) zero_le_one | |
lemma pow_lt_pow_iff_of_lt_one (hβ : 0 < a) (hβ : a < 1) : a ^ m < a ^ n β n < m := | |
(strict_anti_pow hβ hβ).lt_iff_lt | |
lemma pow_lt_pow_of_lt_one (h : 0 < a) (ha : a < 1) {i j : β} (hij : i < j) : a ^ j < a ^ i := | |
(pow_lt_pow_iff_of_lt_one h ha).2 hij | |
@[mono] lemma pow_le_pow_of_le_left {a b : R} (ha : 0 β€ a) (hab : a β€ b) : β i : β, a^i β€ b^i | |
| 0 := by simp | |
| (k+1) := by { rw [pow_succ, pow_succ], | |
exact mul_le_mul hab (pow_le_pow_of_le_left _) (pow_nonneg ha _) (le_trans ha hab) } | |
lemma one_lt_pow (ha : 1 < a) {n : β} (hn : n β 0) : 1 < a ^ n := | |
pow_zero a βΈ pow_lt_pow ha (pos_iff_ne_zero.2 hn) | |
lemma pow_le_one : β (n : β) (hβ : 0 β€ a) (hβ : a β€ 1), a ^ n β€ 1 | |
| 0 hβ hβ := (pow_zero a).le | |
| (n + 1) hβ hβ := (pow_succ' a n).le.trans (mul_le_one (pow_le_one n hβ hβ) hβ hβ) | |
lemma sq_pos_of_pos (ha : 0 < a) : 0 < a ^ 2 := by { rw sq, exact mul_pos ha ha } | |
end ordered_semiring | |
section ordered_ring | |
variables [ordered_ring R] {a : R} | |
lemma sq_pos_of_neg (ha : a < 0) : 0 < a ^ 2 := by { rw sq, exact mul_pos_of_neg_of_neg ha ha } | |
lemma pow_bit0_pos_of_neg (ha : a < 0) (n : β) : 0 < a ^ bit0 n := | |
begin | |
rw pow_bit0', | |
exact pow_pos (mul_pos_of_neg_of_neg ha ha) _, | |
end | |
lemma pow_bit1_neg (ha : a < 0) (n : β) : a ^ bit1 n < 0 := | |
begin | |
rw [bit1, pow_succ], | |
exact mul_neg_of_neg_of_pos ha (pow_bit0_pos_of_neg ha n), | |
end | |
end ordered_ring | |
section linear_ordered_semiring | |
variables [linear_ordered_semiring R] {a b : R} | |
lemma pow_le_one_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : a ^ n β€ 1 β a β€ 1 := | |
begin | |
refine β¨_, pow_le_one n haβ©, | |
rw [βnot_lt, βnot_lt], | |
exact mt (Ξ» h, one_lt_pow h hn), | |
end | |
lemma one_le_pow_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : 1 β€ a ^ n β 1 β€ a := | |
begin | |
refine β¨_, Ξ» h, one_le_pow_of_one_le h nβ©, | |
rw [βnot_lt, βnot_lt], | |
exact mt (Ξ» h, pow_lt_one ha h hn), | |
end | |
lemma one_lt_pow_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : 1 < a ^ n β 1 < a := | |
lt_iff_lt_of_le_iff_le (pow_le_one_iff_of_nonneg ha hn) | |
lemma pow_lt_one_iff_of_nonneg {a : R} (ha : 0 β€ a) {n : β} (hn : n β 0) : a ^ n < 1 β a < 1 := | |
lt_iff_lt_of_le_iff_le (one_le_pow_iff_of_nonneg ha hn) | |
lemma sq_le_one_iff {a : R} (ha : 0 β€ a) : a^2 β€ 1 β a β€ 1 := | |
pow_le_one_iff_of_nonneg ha (nat.succ_ne_zero _) | |
lemma sq_lt_one_iff {a : R} (ha : 0 β€ a) : a^2 < 1 β a < 1 := | |
pow_lt_one_iff_of_nonneg ha (nat.succ_ne_zero _) | |
lemma one_le_sq_iff {a : R} (ha : 0 β€ a) : 1 β€ a^2 β 1 β€ a := | |
one_le_pow_iff_of_nonneg ha (nat.succ_ne_zero _) | |
lemma one_lt_sq_iff {a : R} (ha : 0 β€ a) : 1 < a^2 β 1 < a := | |
one_lt_pow_iff_of_nonneg ha (nat.succ_ne_zero _) | |
@[simp] theorem pow_left_inj {x y : R} {n : β} (Hxpos : 0 β€ x) (Hypos : 0 β€ y) (Hnpos : 0 < n) : | |
x ^ n = y ^ n β x = y := | |
(@strict_mono_on_pow R _ _ Hnpos).inj_on.eq_iff Hxpos Hypos | |
lemma lt_of_pow_lt_pow {a b : R} (n : β) (hb : 0 β€ b) (h : a ^ n < b ^ n) : a < b := | |
lt_of_not_ge $ Ξ» hn, not_lt_of_ge (pow_le_pow_of_le_left hb hn _) h | |
lemma le_of_pow_le_pow {a b : R} (n : β) (hb : 0 β€ b) (hn : 0 < n) (h : a ^ n β€ b ^ n) : a β€ b := | |
le_of_not_lt $ Ξ» h1, not_le_of_lt (pow_lt_pow_of_lt_left h1 hb hn) h | |
@[simp] lemma sq_eq_sq {a b : R} (ha : 0 β€ a) (hb : 0 β€ b) : a ^ 2 = b ^ 2 β a = b := | |
pow_left_inj ha hb dec_trivial | |
lemma lt_of_mul_self_lt_mul_self (hb : 0 β€ b) : a * a < b * b β a < b := | |
by { simp_rw βsq, exact lt_of_pow_lt_pow _ hb } | |
end linear_ordered_semiring | |
section linear_ordered_ring | |
variable [linear_ordered_ring R] | |
lemma pow_abs (a : R) (n : β) : |a| ^ n = |a ^ n| := | |
((abs_hom.to_monoid_hom : R β* R).map_pow a n).symm | |
lemma abs_neg_one_pow (n : β) : |(-1 : R) ^ n| = 1 := | |
by rw [βpow_abs, abs_neg, abs_one, one_pow] | |
theorem pow_bit0_nonneg (a : R) (n : β) : 0 β€ a ^ bit0 n := | |
by { rw pow_bit0, exact mul_self_nonneg _ } | |
theorem sq_nonneg (a : R) : 0 β€ a ^ 2 := | |
pow_bit0_nonneg a 1 | |
alias sq_nonneg β pow_two_nonneg | |
theorem pow_bit0_pos {a : R} (h : a β 0) (n : β) : 0 < a ^ bit0 n := | |
(pow_bit0_nonneg a n).lt_of_ne (pow_ne_zero _ h).symm | |
theorem sq_pos_of_ne_zero (a : R) (h : a β 0) : 0 < a ^ 2 := | |
pow_bit0_pos h 1 | |
alias sq_pos_of_ne_zero β pow_two_pos_of_ne_zero | |
theorem pow_bit0_pos_iff (a : R) {n : β} (hn : n β 0) : 0 < a ^ bit0 n β a β 0 := | |
begin | |
refine β¨Ξ» h, _, Ξ» h, pow_bit0_pos h nβ©, | |
rintro rfl, | |
rw zero_pow (nat.zero_lt_bit0 hn) at h, | |
exact lt_irrefl _ h, | |
end | |
theorem sq_pos_iff (a : R) : 0 < a ^ 2 β a β 0 := | |
pow_bit0_pos_iff a one_ne_zero | |
variables {x y : R} | |
theorem sq_abs (x : R) : |x| ^ 2 = x ^ 2 := | |
by simpa only [sq] using abs_mul_abs_self x | |
theorem abs_sq (x : R) : |x ^ 2| = x ^ 2 := | |
by simpa only [sq] using abs_mul_self x | |
theorem sq_lt_sq : x ^ 2 < y ^ 2 β |x| < |y| := | |
by simpa only [sq_abs] | |
using (@strict_mono_on_pow R _ _ two_pos).lt_iff_lt (abs_nonneg x) (abs_nonneg y) | |
theorem sq_lt_sq' (h1 : -y < x) (h2 : x < y) : x ^ 2 < y ^ 2 := | |
sq_lt_sq.2 (lt_of_lt_of_le (abs_lt.2 β¨h1, h2β©) (le_abs_self _)) | |
theorem sq_le_sq : x ^ 2 β€ y ^ 2 β |x| β€ |y| := | |
by simpa only [sq_abs] | |
using (@strict_mono_on_pow R _ _ two_pos).le_iff_le (abs_nonneg x) (abs_nonneg y) | |
theorem sq_le_sq' (h1 : -y β€ x) (h2 : x β€ y) : x ^ 2 β€ y ^ 2 := | |
sq_le_sq.2 (le_trans (abs_le.mpr β¨h1, h2β©) (le_abs_self _)) | |
theorem abs_lt_of_sq_lt_sq (h : x^2 < y^2) (hy : 0 β€ y) : |x| < y := | |
by rwa [β abs_of_nonneg hy, β sq_lt_sq] | |
theorem abs_lt_of_sq_lt_sq' (h : x^2 < y^2) (hy : 0 β€ y) : -y < x β§ x < y := | |
abs_lt.mp $ abs_lt_of_sq_lt_sq h hy | |
theorem abs_le_of_sq_le_sq (h : x^2 β€ y^2) (hy : 0 β€ y) : |x| β€ y := | |
by rwa [β abs_of_nonneg hy, β sq_le_sq] | |
theorem abs_le_of_sq_le_sq' (h : x^2 β€ y^2) (hy : 0 β€ y) : -y β€ x β§ x β€ y := | |
abs_le.mp $ abs_le_of_sq_le_sq h hy | |
lemma sq_eq_sq_iff_abs_eq_abs (x y : R) : x^2 = y^2 β |x| = |y| := | |
by simp only [le_antisymm_iff, sq_le_sq] | |
@[simp] lemma sq_le_one_iff_abs_le_one (x : R) : x^2 β€ 1 β |x| β€ 1 := | |
by simpa only [one_pow, abs_one] using @sq_le_sq _ _ x 1 | |
@[simp] lemma sq_lt_one_iff_abs_lt_one (x : R) : x^2 < 1 β |x| < 1 := | |
by simpa only [one_pow, abs_one] using @sq_lt_sq _ _ x 1 | |
@[simp] lemma one_le_sq_iff_one_le_abs (x : R) : 1 β€ x^2 β 1 β€ |x| := | |
by simpa only [one_pow, abs_one] using @sq_le_sq _ _ 1 x | |
@[simp] lemma one_lt_sq_iff_one_lt_abs (x : R) : 1 < x^2 β 1 < |x| := | |
by simpa only [one_pow, abs_one] using @sq_lt_sq _ _ 1 x | |
lemma pow_four_le_pow_two_of_pow_two_le {x y : R} (h : x^2 β€ y) : x^4 β€ y^2 := | |
(pow_mul x 2 2).symm βΈ pow_le_pow_of_le_left (sq_nonneg x) h 2 | |
end linear_ordered_ring | |
section linear_ordered_comm_ring | |
variables [linear_ordered_comm_ring R] | |
/-- Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings. -/ | |
lemma two_mul_le_add_sq (a b : R) : 2 * a * b β€ a ^ 2 + b ^ 2 := | |
sub_nonneg.mp ((sub_add_eq_add_sub _ _ _).subst ((sub_sq a b).subst (sq_nonneg _))) | |
alias two_mul_le_add_sq β two_mul_le_add_pow_two | |
end linear_ordered_comm_ring | |