Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen | |
-/ | |
import algebra.group.units | |
import algebra.ring.basic | |
/-! | |
# Invertible elements | |
This file defines a typeclass `invertible a` for elements `a` with a two-sided | |
multiplicative inverse. | |
The intent of the typeclass is to provide a way to write e.g. `⅟2` in a ring | |
like `ℤ[1/2]` where some inverses exist but there is no general `⁻¹` operator; | |
or to specify that a field has characteristic `≠ 2`. | |
It is the `Type`-valued analogue to the `Prop`-valued `is_unit`. | |
For constructions of the invertible element given a characteristic, see | |
`algebra/char_p/invertible` and other lemmas in that file. | |
## Notation | |
* `⅟a` is `invertible.inv_of a`, the inverse of `a` | |
## Implementation notes | |
The `invertible` class lives in `Type`, not `Prop`, to make computation easier. | |
If multiplication is associative, `invertible` is a subsingleton anyway. | |
The `simp` normal form tries to normalize `⅟a` to `a ⁻¹`. Otherwise, it pushes | |
`⅟` inside the expression as much as possible. | |
Since `invertible a` is not a `Prop` (but it is a `subsingleton`), we have to be careful about | |
coherence issues: we should avoid having multiple non-defeq instances for `invertible a` in the | |
same context. This file plays it safe and uses `def` rather than `instance` for most definitions, | |
users can choose which instances to use at the point of use. | |
For example, here's how you can use an `invertible 1` instance: | |
```lean | |
variables {α : Type*} [monoid α] | |
def something_that_needs_inverses (x : α) [invertible x] := sorry | |
section | |
local attribute [instance] invertible_one | |
def something_one := something_that_needs_inverses 1 | |
end | |
``` | |
## Tags | |
invertible, inverse element, inv_of, a half, one half, a third, one third, ½, ⅓ | |
-/ | |
universes u | |
variables {α : Type u} | |
/-- `invertible a` gives a two-sided multiplicative inverse of `a`. -/ | |
class invertible [has_mul α] [has_one α] (a : α) : Type u := | |
(inv_of : α) (inv_of_mul_self : inv_of * a = 1) (mul_inv_of_self : a * inv_of = 1) | |
-- This notation has the same precedence as `has_inv.inv`. | |
notation `⅟`:1034 := invertible.inv_of | |
@[simp] | |
lemma inv_of_mul_self [has_mul α] [has_one α] (a : α) [invertible a] : ⅟a * a = 1 := | |
invertible.inv_of_mul_self | |
@[simp] | |
lemma mul_inv_of_self [has_mul α] [has_one α] (a : α) [invertible a] : a * ⅟a = 1 := | |
invertible.mul_inv_of_self | |
@[simp] | |
lemma inv_of_mul_self_assoc [monoid α] (a b : α) [invertible a] : ⅟a * (a * b) = b := | |
by rw [←mul_assoc, inv_of_mul_self, one_mul] | |
@[simp] | |
lemma mul_inv_of_self_assoc [monoid α] (a b : α) [invertible a] : a * (⅟a * b) = b := | |
by rw [←mul_assoc, mul_inv_of_self, one_mul] | |
@[simp] | |
lemma mul_inv_of_mul_self_cancel [monoid α] (a b : α) [invertible b] : a * ⅟b * b = a := | |
by simp [mul_assoc] | |
@[simp] | |
lemma mul_mul_inv_of_self_cancel [monoid α] (a b : α) [invertible b] : a * b * ⅟b = a := | |
by simp [mul_assoc] | |
lemma inv_of_eq_right_inv [monoid α] {a b : α} [invertible a] (hac : a * b = 1) : ⅟a = b := | |
left_inv_eq_right_inv (inv_of_mul_self _) hac | |
lemma inv_of_eq_left_inv [monoid α] {a b : α} [invertible a] (hac : b * a = 1) : ⅟a = b := | |
(left_inv_eq_right_inv hac (mul_inv_of_self _)).symm | |
lemma invertible_unique {α : Type u} [monoid α] (a b : α) [invertible a] [invertible b] | |
(h : a = b) : | |
⅟a = ⅟b := | |
by { apply inv_of_eq_right_inv, rw [h, mul_inv_of_self], } | |
instance [monoid α] (a : α) : subsingleton (invertible a) := | |
⟨ λ ⟨b, hba, hab⟩ ⟨c, hca, hac⟩, by { congr, exact left_inv_eq_right_inv hba hac } ⟩ | |
/-- If `r` is invertible and `s = r`, then `s` is invertible. -/ | |
def invertible.copy [monoid α] {r : α} (hr : invertible r) (s : α) (hs : s = r) : invertible s := | |
{ inv_of := ⅟r, | |
inv_of_mul_self := by rw [hs, inv_of_mul_self], | |
mul_inv_of_self := by rw [hs, mul_inv_of_self] } | |
/-- An `invertible` element is a unit. -/ | |
@[simps] | |
def unit_of_invertible [monoid α] (a : α) [invertible a] : αˣ := | |
{ val := a, | |
inv := ⅟a, | |
val_inv := by simp, | |
inv_val := by simp, } | |
lemma is_unit_of_invertible [monoid α] (a : α) [invertible a] : is_unit a := | |
⟨unit_of_invertible a, rfl⟩ | |
/-- Units are invertible in their associated monoid. -/ | |
def units.invertible [monoid α] (u : αˣ) : invertible (u : α) := | |
{ inv_of := ↑(u⁻¹), inv_of_mul_self := u.inv_mul, mul_inv_of_self := u.mul_inv } | |
@[simp] lemma inv_of_units [monoid α] (u : αˣ) [invertible (u : α)] : ⅟(u : α) = ↑(u⁻¹) := | |
inv_of_eq_right_inv u.mul_inv | |
lemma is_unit.nonempty_invertible [monoid α] {a : α} (h : is_unit a) : nonempty (invertible a) := | |
let ⟨x, hx⟩ := h in ⟨x.invertible.copy _ hx.symm⟩ | |
/-- Convert `is_unit` to `invertible` using `classical.choice`. | |
Prefer `casesI h.nonempty_invertible` over `letI := h.invertible` if you want to avoid choice. -/ | |
noncomputable def is_unit.invertible [monoid α] {a : α} (h : is_unit a) : invertible a := | |
classical.choice h.nonempty_invertible | |
@[simp] lemma nonempty_invertible_iff_is_unit [monoid α] (a : α) : | |
nonempty (invertible a) ↔ is_unit a := | |
⟨nonempty.rec $ @is_unit_of_invertible _ _ _, is_unit.nonempty_invertible⟩ | |
/-- Each element of a group is invertible. -/ | |
def invertible_of_group [group α] (a : α) : invertible a := | |
⟨a⁻¹, inv_mul_self a, mul_inv_self a⟩ | |
@[simp] lemma inv_of_eq_group_inv [group α] (a : α) [invertible a] : ⅟a = a⁻¹ := | |
inv_of_eq_right_inv (mul_inv_self a) | |
/-- `1` is the inverse of itself -/ | |
def invertible_one [monoid α] : invertible (1 : α) := | |
⟨1, mul_one _, one_mul _⟩ | |
@[simp] lemma inv_of_one [monoid α] [invertible (1 : α)] : ⅟(1 : α) = 1 := | |
inv_of_eq_right_inv (mul_one _) | |
/-- `-⅟a` is the inverse of `-a` -/ | |
def invertible_neg [has_mul α] [has_one α] [has_distrib_neg α] (a : α) [invertible a] : | |
invertible (-a) := ⟨-⅟a, by simp, by simp ⟩ | |
@[simp] lemma inv_of_neg [monoid α] [has_distrib_neg α] (a : α) [invertible a] [invertible (-a)] : | |
⅟(-a) = -⅟a := | |
inv_of_eq_right_inv (by simp) | |
@[simp] lemma one_sub_inv_of_two [ring α] [invertible (2:α)] : 1 - (⅟2:α) = ⅟2 := | |
(is_unit_of_invertible (2:α)).mul_right_inj.1 $ | |
by rw [mul_sub, mul_inv_of_self, mul_one, bit0, add_sub_cancel] | |
@[simp] lemma inv_of_two_add_inv_of_two [non_assoc_semiring α] [invertible (2 : α)] : | |
(⅟2 : α) + (⅟2 : α) = 1 := | |
by rw [←two_mul, mul_inv_of_self] | |
/-- `a` is the inverse of `⅟a`. -/ | |
instance invertible_inv_of [has_one α] [has_mul α] {a : α} [invertible a] : invertible (⅟a) := | |
⟨ a, mul_inv_of_self a, inv_of_mul_self a ⟩ | |
@[simp] lemma inv_of_inv_of [monoid α] (a : α) [invertible a] [invertible (⅟a)] : ⅟(⅟a) = a := | |
inv_of_eq_right_inv (inv_of_mul_self _) | |
@[simp] lemma inv_of_inj [monoid α] {a b : α} [invertible a] [invertible b] : | |
⅟ a = ⅟ b ↔ a = b := | |
⟨invertible_unique _ _, invertible_unique _ _⟩ | |
/-- `⅟b * ⅟a` is the inverse of `a * b` -/ | |
def invertible_mul [monoid α] (a b : α) [invertible a] [invertible b] : invertible (a * b) := | |
⟨ ⅟b * ⅟a, by simp [←mul_assoc], by simp [←mul_assoc] ⟩ | |
@[simp] lemma inv_of_mul [monoid α] (a b : α) [invertible a] [invertible b] [invertible (a * b)] : | |
⅟(a * b) = ⅟b * ⅟a := | |
inv_of_eq_right_inv (by simp [←mul_assoc]) | |
theorem commute.inv_of_right [monoid α] {a b : α} [invertible b] (h : commute a b) : | |
commute a (⅟b) := | |
calc a * (⅟b) = (⅟b) * (b * a * (⅟b)) : by simp [mul_assoc] | |
... = (⅟b) * (a * b * ((⅟b))) : by rw h.eq | |
... = (⅟b) * a : by simp [mul_assoc] | |
theorem commute.inv_of_left [monoid α] {a b : α} [invertible b] (h : commute b a) : | |
commute (⅟b) a := | |
calc (⅟b) * a = (⅟b) * (a * b * (⅟b)) : by simp [mul_assoc] | |
... = (⅟b) * (b * a * (⅟b)) : by rw h.eq | |
... = a * (⅟b) : by simp [mul_assoc] | |
lemma commute_inv_of {M : Type*} [has_one M] [has_mul M] (m : M) [invertible m] : | |
commute m (⅟m) := | |
calc m * ⅟m = 1 : mul_inv_of_self m | |
... = ⅟ m * m : (inv_of_mul_self m).symm | |
lemma nonzero_of_invertible [mul_zero_one_class α] (a : α) [nontrivial α] [invertible a] : a ≠ 0 := | |
λ ha, zero_ne_one $ calc 0 = ⅟a * a : by simp [ha] | |
... = 1 : inv_of_mul_self a | |
section monoid_with_zero | |
variable [monoid_with_zero α] | |
/-- A variant of `ring.inverse_unit`. -/ | |
@[simp] lemma ring.inverse_invertible (x : α) [invertible x] : ring.inverse x = ⅟x := | |
ring.inverse_unit (unit_of_invertible _) | |
end monoid_with_zero | |
section group_with_zero | |
variable [group_with_zero α] | |
/-- `a⁻¹` is an inverse of `a` if `a ≠ 0` -/ | |
def invertible_of_nonzero {a : α} (h : a ≠ 0) : invertible a := | |
⟨ a⁻¹, inv_mul_cancel h, mul_inv_cancel h ⟩ | |
@[simp] lemma inv_of_eq_inv (a : α) [invertible a] : ⅟a = a⁻¹ := | |
inv_of_eq_right_inv (mul_inv_cancel (nonzero_of_invertible a)) | |
@[simp] lemma inv_mul_cancel_of_invertible (a : α) [invertible a] : a⁻¹ * a = 1 := | |
inv_mul_cancel (nonzero_of_invertible a) | |
@[simp] lemma mul_inv_cancel_of_invertible (a : α) [invertible a] : a * a⁻¹ = 1 := | |
mul_inv_cancel (nonzero_of_invertible a) | |
@[simp] lemma div_mul_cancel_of_invertible (a b : α) [invertible b] : a / b * b = a := | |
div_mul_cancel a (nonzero_of_invertible b) | |
@[simp] lemma mul_div_cancel_of_invertible (a b : α) [invertible b] : a * b / b = a := | |
mul_div_cancel a (nonzero_of_invertible b) | |
@[simp] lemma div_self_of_invertible (a : α) [invertible a] : a / a = 1 := | |
div_self (nonzero_of_invertible a) | |
/-- `b / a` is the inverse of `a / b` -/ | |
def invertible_div (a b : α) [invertible a] [invertible b] : invertible (a / b) := | |
⟨b / a, by simp [←mul_div_assoc], by simp [←mul_div_assoc]⟩ | |
@[simp] lemma inv_of_div (a b : α) [invertible a] [invertible b] [invertible (a / b)] : | |
⅟(a / b) = b / a := | |
inv_of_eq_right_inv (by simp [←mul_div_assoc]) | |
/-- `a` is the inverse of `a⁻¹` -/ | |
def invertible_inv {a : α} [invertible a] : invertible (a⁻¹) := | |
⟨ a, by simp, by simp ⟩ | |
end group_with_zero | |
/-- Monoid homs preserve invertibility. -/ | |
def invertible.map {R : Type*} {S : Type*} {F : Type*} [mul_one_class R] [mul_one_class S] | |
[monoid_hom_class F R S] (f : F) (r : R) [invertible r] : | |
invertible (f r) := | |
{ inv_of := f (⅟r), | |
inv_of_mul_self := by rw [←map_mul, inv_of_mul_self, map_one], | |
mul_inv_of_self := by rw [←map_mul, mul_inv_of_self, map_one] } | |