Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau | |
-/ | |
import algebra.group_ring_action | |
import algebra.hom.group_action | |
import data.polynomial.algebra_map | |
import data.polynomial.monic | |
import group_theory.group_action.quotient | |
/-! | |
# Group action on rings applied to polynomials | |
This file contains instances and definitions relating `mul_semiring_action` to `polynomial`. | |
-/ | |
variables (M : Type*) [monoid M] | |
open_locale polynomial | |
namespace polynomial | |
variables (R : Type*) [semiring R] | |
variables {M} | |
lemma smul_eq_map [mul_semiring_action M R] (m : M) : | |
((•) m) = map (mul_semiring_action.to_ring_hom M R m) := | |
begin | |
suffices : | |
distrib_mul_action.to_add_monoid_hom R[X] m = | |
(map_ring_hom (mul_semiring_action.to_ring_hom M R m)).to_add_monoid_hom, | |
{ ext1 r, exact add_monoid_hom.congr_fun this r, }, | |
ext n r : 2, | |
change m • monomial n r = map (mul_semiring_action.to_ring_hom M R m) (monomial n r), | |
simpa only [polynomial.map_monomial, polynomial.smul_monomial], | |
end | |
variables (M) | |
noncomputable instance [mul_semiring_action M R] : mul_semiring_action M R[X] := | |
{ smul := (•), | |
smul_one := λ m, | |
(smul_eq_map R m).symm ▸ polynomial.map_one (mul_semiring_action.to_ring_hom M R m), | |
smul_mul := λ m p q, | |
(smul_eq_map R m).symm ▸ polynomial.map_mul (mul_semiring_action.to_ring_hom M R m), | |
..polynomial.distrib_mul_action } | |
variables {M R} | |
variables [mul_semiring_action M R] | |
@[simp] lemma smul_X (m : M) : (m • X : R[X]) = X := | |
(smul_eq_map R m).symm ▸ map_X _ | |
variables (S : Type*) [comm_semiring S] [mul_semiring_action M S] | |
theorem smul_eval_smul (m : M) (f : S[X]) (x : S) : | |
(m • f).eval (m • x) = m • f.eval x := | |
polynomial.induction_on f | |
(λ r, by rw [smul_C, eval_C, eval_C]) | |
(λ f g ihf ihg, by rw [smul_add, eval_add, ihf, ihg, eval_add, smul_add]) | |
(λ n r ih, by rw [smul_mul', smul_pow', smul_C, smul_X, eval_mul, eval_C, eval_pow, eval_X, | |
eval_mul, eval_C, eval_pow, eval_X, smul_mul', smul_pow']) | |
variables (G : Type*) [group G] | |
theorem eval_smul' [mul_semiring_action G S] (g : G) (f : S[X]) (x : S) : | |
f.eval (g • x) = g • (g⁻¹ • f).eval x := | |
by rw [← smul_eval_smul, smul_inv_smul] | |
theorem smul_eval [mul_semiring_action G S] (g : G) (f : S[X]) (x : S) : | |
(g • f).eval x = g • f.eval (g⁻¹ • x) := | |
by rw [← smul_eval_smul, smul_inv_smul] | |
end polynomial | |
section comm_ring | |
variables (G : Type*) [group G] [fintype G] | |
variables (R : Type*) [comm_ring R] [mul_semiring_action G R] | |
open mul_action | |
open_locale classical | |
/-- the product of `(X - g • x)` over distinct `g • x`. -/ | |
noncomputable def prod_X_sub_smul (x : R) : R[X] := | |
(finset.univ : finset (G ⧸ mul_action.stabilizer G x)).prod $ | |
λ g, polynomial.X - polynomial.C (of_quotient_stabilizer G x g) | |
theorem prod_X_sub_smul.monic (x : R) : (prod_X_sub_smul G R x).monic := | |
polynomial.monic_prod_of_monic _ _ $ λ g _, polynomial.monic_X_sub_C _ | |
theorem prod_X_sub_smul.eval (x : R) : (prod_X_sub_smul G R x).eval x = 0 := | |
(monoid_hom.map_prod | |
((polynomial.aeval x).to_ring_hom.to_monoid_hom : R[X] →* R) _ _).trans $ | |
finset.prod_eq_zero (finset.mem_univ $ quotient_group.mk 1) $ | |
by simp | |
theorem prod_X_sub_smul.smul (x : R) (g : G) : | |
g • prod_X_sub_smul G R x = prod_X_sub_smul G R x := | |
finset.smul_prod.trans $ fintype.prod_bijective _ (mul_action.bijective g) _ _ | |
(λ g', by rw [of_quotient_stabilizer_smul, smul_sub, polynomial.smul_X, polynomial.smul_C]) | |
theorem prod_X_sub_smul.coeff (x : R) (g : G) (n : ℕ) : | |
g • (prod_X_sub_smul G R x).coeff n = | |
(prod_X_sub_smul G R x).coeff n := | |
by rw [← polynomial.coeff_smul, prod_X_sub_smul.smul] | |
end comm_ring | |
namespace mul_semiring_action_hom | |
variables {M} | |
variables {P : Type*} [comm_semiring P] [mul_semiring_action M P] | |
variables {Q : Type*} [comm_semiring Q] [mul_semiring_action M Q] | |
open polynomial | |
/-- An equivariant map induces an equivariant map on polynomials. -/ | |
protected noncomputable def polynomial (g : P →+*[M] Q) : P[X] →+*[M] Q[X] := | |
{ to_fun := map g, | |
map_smul' := λ m p, polynomial.induction_on p | |
(λ b, by rw [smul_C, map_C, coe_fn_coe, g.map_smul, map_C, coe_fn_coe, smul_C]) | |
(λ p q ihp ihq, by rw [smul_add, polynomial.map_add, ihp, ihq, polynomial.map_add, smul_add]) | |
(λ n b ih, by rw [smul_mul', smul_C, smul_pow', smul_X, polynomial.map_mul, map_C, | |
polynomial.map_pow, map_X, coe_fn_coe, g.map_smul, polynomial.map_mul, map_C, | |
polynomial.map_pow, map_X, smul_mul', smul_C, smul_pow', smul_X, coe_fn_coe]), | |
map_zero' := polynomial.map_zero g, | |
map_add' := λ p q, polynomial.map_add g, | |
map_one' := polynomial.map_one g, | |
map_mul' := λ p q, polynomial.map_mul g } | |
@[simp] theorem coe_polynomial (g : P →+*[M] Q) : | |
(g.polynomial : P[X] → Q[X]) = map g := | |
rfl | |
end mul_semiring_action_hom | |