Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Jeremy Avigad. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jeremy Avigad, Mario Carneiro, Simon Hudon | |
-/ | |
import data.fin.fin2 | |
import data.typevec | |
import logic.function.basic | |
import tactic.basic | |
/-! | |
Functors between the category of tuples of types, and the category Type | |
Features: | |
`mvfunctor n` : the type class of multivariate functors | |
`f <$$> x` : notation for map | |
-/ | |
universes u v w | |
open_locale mvfunctor | |
/-- multivariate functors, i.e. functor between the category of type vectors | |
and the category of Type -/ | |
class mvfunctor {n : ℕ} (F : typevec n → Type*) := | |
(map : Π {α β : typevec n}, (α ⟹ β) → (F α → F β)) | |
localized "infixr ` <$$> `:100 := mvfunctor.map" in mvfunctor | |
variables {n : ℕ} | |
namespace mvfunctor | |
variables {α β γ : typevec.{u} n} {F : typevec.{u} n → Type v} [mvfunctor F] | |
/-- predicate lifting over multivariate functors -/ | |
def liftp {α : typevec n} (p : Π i, α i → Prop) (x : F α) : Prop := | |
∃ u : F (λ i, subtype (p i)), (λ i, @subtype.val _ (p i)) <$$> u = x | |
/-- relational lifting over multivariate functors -/ | |
def liftr {α : typevec n} (r : Π {i}, α i → α i → Prop) (x y : F α) : Prop := | |
∃ u : F (λ i, {p : α i × α i // r p.fst p.snd}), | |
(λ i (t : {p : α i × α i // r p.fst p.snd}), t.val.fst) <$$> u = x ∧ | |
(λ i (t : {p : α i × α i // r p.fst p.snd}), t.val.snd) <$$> u = y | |
/-- given `x : F α` and a projection `i` of type vector `α`, `supp x i` is the set | |
of `α.i` contained in `x` -/ | |
def supp {α : typevec n} (x : F α) (i : fin2 n) : set (α i) := | |
{ y : α i | ∀ ⦃p⦄, liftp p x → p i y } | |
theorem of_mem_supp {α : typevec n} {x : F α} {p : Π ⦃i⦄, α i → Prop} (h : liftp p x) (i : fin2 n): | |
∀ y ∈ supp x i, p y := | |
λ y hy, hy h | |
end mvfunctor | |
/-- laws for `mvfunctor` -/ | |
class is_lawful_mvfunctor {n : ℕ} (F : typevec n → Type*) [mvfunctor F] : Prop := | |
(id_map : ∀ {α : typevec n} (x : F α), typevec.id <$$> x = x) | |
(comp_map : ∀ {α β γ : typevec n} (g : α ⟹ β) (h : β ⟹ γ) (x : F α), | |
(h ⊚ g) <$$> x = h <$$> g <$$> x) | |
open nat typevec | |
namespace mvfunctor | |
export is_lawful_mvfunctor (comp_map) | |
open is_lawful_mvfunctor | |
variables {α β γ : typevec.{u} n} | |
variables {F : typevec.{u} n → Type v} [mvfunctor F] | |
variables (p : α ⟹ repeat n Prop) (r : α ⊗ α ⟹ repeat n Prop) | |
/-- adapt `mvfunctor.liftp` to accept predicates as arrows -/ | |
def liftp' : F α → Prop := | |
mvfunctor.liftp $ λ i x, of_repeat $ p i x | |
/-- adapt `mvfunctor.liftp` to accept relations as arrows -/ | |
def liftr' : F α → F α → Prop := | |
mvfunctor.liftr $ λ i x y, of_repeat $ r i $ typevec.prod.mk _ x y | |
variables [is_lawful_mvfunctor F] | |
@[simp] | |
lemma id_map (x : F α) : | |
typevec.id <$$> x = x := | |
id_map x | |
@[simp] | |
lemma id_map' (x : F α) : | |
(λ i a, a) <$$> x = x := | |
id_map x | |
lemma map_map (g : α ⟹ β) (h : β ⟹ γ) (x : F α) : | |
h <$$> g <$$> x = (h ⊚ g) <$$> x := | |
eq.symm $ comp_map _ _ _ | |
section liftp' | |
variables (F) | |
lemma exists_iff_exists_of_mono {p : F α → Prop} {q : F β → Prop} (f : α ⟹ β) (g : β ⟹ α) | |
(h₀ : f ⊚ g = id) | |
(h₁ : ∀ u : F α, p u ↔ q (f <$$> u)) : | |
(∃ u : F α, p u) ↔ (∃ u : F β, q u) := | |
begin | |
split; rintro ⟨u,h₂⟩; [ use f <$$> u, use g <$$> u ], | |
{ apply (h₁ u).mp h₂ }, | |
{ apply (h₁ _).mpr _, | |
simp only [mvfunctor.map_map,h₀,is_lawful_mvfunctor.id_map,h₂] }, | |
end | |
variables {F} | |
lemma liftp_def (x : F α) : liftp' p x ↔ ∃ u : F (subtype_ p), subtype_val p <$$> u = x := | |
exists_iff_exists_of_mono F _ _ (to_subtype_of_subtype p) (by simp [mvfunctor.map_map]) | |
lemma liftr_def (x y : F α) : | |
liftr' r x y ↔ | |
∃ u : F (subtype_ r), (typevec.prod.fst ⊚ subtype_val r) <$$> u = x ∧ | |
(typevec.prod.snd ⊚ subtype_val r) <$$> u = y := | |
exists_iff_exists_of_mono _ _ _ (to_subtype'_of_subtype' r) | |
(by simp only [map_map, comp_assoc, subtype_val_to_subtype']; simp [comp]) | |
end liftp' | |
end mvfunctor | |
open nat | |
namespace mvfunctor | |
open typevec | |
section liftp_last_pred_iff | |
variables {F : typevec.{u} (n+1) → Type*} [mvfunctor F] [is_lawful_mvfunctor F] | |
{α : typevec.{u} n} | |
variables (p : α ⟹ repeat n Prop) | |
(r : α ⊗ α ⟹ repeat n Prop) | |
open mvfunctor | |
variables {β : Type u} | |
variables (pp : β → Prop) | |
private def f : Π (n α), (λ (i : fin2 (n + 1)), {p_1 // of_repeat (pred_last' α pp i p_1)}) ⟹ | |
λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i // pred_last α pp p_1} | |
| _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [pred_last]; erw const_iff_true) x.property ⟩ | |
| _ α fin2.fz x := ⟨ x.val, x.property ⟩ | |
private def g : Π (n α), (λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i // pred_last α pp p_1}) ⟹ | |
(λ (i : fin2 (n + 1)), {p_1 // of_repeat (pred_last' α pp i p_1)}) | |
| _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [pred_last]; erw const_iff_true) x.property ⟩ | |
| _ α fin2.fz x := ⟨ x.val, x.property ⟩ | |
lemma liftp_last_pred_iff {β} (p : β → Prop) (x : F (α ::: β)) : | |
liftp' (pred_last' _ p) x ↔ liftp (pred_last _ p) x := | |
begin | |
dsimp only [liftp,liftp'], | |
apply exists_iff_exists_of_mono F (f _ n α) (g _ n α), | |
{ clear x _inst_2 _inst_1 F, ext i ⟨x,_⟩, cases i; refl }, | |
{ intros, rw [mvfunctor.map_map,(⊚)], | |
congr'; ext i ⟨x,_⟩; cases i; refl } | |
end | |
open function | |
variables (rr : β → β → Prop) | |
private def f : | |
Π (n α), | |
(λ (i : fin2 (n + 1)), | |
{p_1 : _ × _ // of_repeat (rel_last' α rr i (typevec.prod.mk _ p_1.fst p_1.snd))}) ⟹ | |
λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i × _ // rel_last α rr (p_1.fst) (p_1.snd)} | |
| _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [rel_last]; erw repeat_eq_iff_eq) x.property ⟩ | |
| _ α fin2.fz x := ⟨ x.val, x.property ⟩ | |
private def g : | |
Π (n α), (λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i × _ // rel_last α rr (p_1.fst) (p_1.snd)}) ⟹ | |
(λ (i : fin2 (n + 1)), | |
{p_1 : _ × _ // of_repeat (rel_last' α rr i (typevec.prod.mk _ p_1.1 p_1.2))}) | |
| _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [rel_last]; erw repeat_eq_iff_eq) x.property ⟩ | |
| _ α fin2.fz x := ⟨ x.val, x.property ⟩ | |
lemma liftr_last_rel_iff (x y : F (α ::: β)) : | |
liftr' (rel_last' _ rr) x y ↔ liftr (rel_last _ rr) x y := | |
begin | |
dsimp only [liftr,liftr'], | |
apply exists_iff_exists_of_mono F (f rr _ _) (g rr _ _), | |
{ clear x y _inst_2 _inst_1 F, ext i ⟨x,_⟩ : 2, cases i; refl, }, | |
{ intros, rw [mvfunctor.map_map,mvfunctor.map_map,(⊚),(⊚)], | |
congr'; ext i ⟨x,_⟩; cases i; refl } | |
end | |
end liftp_last_pred_iff | |
end mvfunctor | |