Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon | |
-/ | |
import control.monad.basic | |
import data.int.basic | |
import data.stream.defs | |
import control.uliftable | |
import tactic.norm_num | |
import data.bitvec.basic | |
/-! | |
# Rand Monad and Random Class | |
This module provides tools for formulating computations guided by randomness and for | |
defining objects that can be created randomly. | |
## Main definitions | |
* `rand` monad for computations guided by randomness; | |
* `random` class for objects that can be generated randomly; | |
* `random` to generate one object; | |
* `random_r` to generate one object inside a range; | |
* `random_series` to generate an infinite series of objects; | |
* `random_series_r` to generate an infinite series of objects inside a range; | |
* `io.mk_generator` to create a new random number generator; | |
* `io.run_rand` to run a randomized computation inside the `io` monad; | |
* `tactic.run_rand` to run a randomized computation inside the `tactic` monad | |
## Local notation | |
* `i .. j` : `Icc i j`, the set of values between `i` and `j` inclusively; | |
## Tags | |
random monad io | |
## References | |
* Similar library in Haskell: https://hackage.haskell.org/package/MonadRandom | |
-/ | |
open list io applicative | |
universes u v w | |
/-- A monad to generate random objects using the generator type `g` -/ | |
@[reducible] | |
def rand_g (g : Type) (α : Type u) : Type u := state (ulift.{u} g) α | |
/-- A monad to generate random objects using the generator type `std_gen` -/ | |
@[reducible] | |
def rand := rand_g std_gen | |
instance (g : Type) : uliftable (rand_g.{u} g) (rand_g.{v} g) := | |
@state_t.uliftable' _ _ _ _ _ (equiv.ulift.trans.{u u u u u} equiv.ulift.symm) | |
open ulift (hiding inhabited) | |
/-- Generate one more `ℕ` -/ | |
def rand_g.next {g : Type} [random_gen g] : rand_g g ℕ := | |
⟨ prod.map id up ∘ random_gen.next ∘ down ⟩ | |
local infix ` .. `:41 := set.Icc | |
open stream | |
/-- `bounded_random α` gives us machinery to generate values of type `α` between certain bounds -/ | |
class bounded_random (α : Type u) [preorder α] := | |
(random_r : Π g [random_gen g] (x y : α), | |
(x ≤ y) → rand_g g (x .. y)) | |
/-- `random α` gives us machinery to generate values of type `α` -/ | |
class random (α : Type u) := | |
(random [] : Π (g : Type) [random_gen g], rand_g g α) | |
/-- shift_31_left = 2^31; multiplying by it shifts the binary | |
representation of a number left by 31 bits, dividing by it shifts it | |
right by 31 bits -/ | |
def shift_31_left : ℕ := | |
by apply_normed 2^31 | |
namespace rand | |
open stream | |
variables (α : Type u) | |
variables (g : Type) [random_gen g] | |
/-- create a new random number generator distinct from the one stored in the state -/ | |
def split : rand_g g g := ⟨ prod.map id up ∘ random_gen.split ∘ down ⟩ | |
variables {g} | |
section random | |
variables [random α] | |
export random (random) | |
/-- Generate a random value of type `α`. -/ | |
def random : rand_g g α := | |
random.random α g | |
/-- generate an infinite series of random values of type `α` -/ | |
def random_series : rand_g g (stream α) := | |
do gen ← uliftable.up (split g), | |
pure $ stream.corec_state (random.random α g) gen | |
end random | |
variables {α} | |
/-- Generate a random value between `x` and `y` inclusive. -/ | |
def random_r [preorder α] [bounded_random α] (x y : α) (h : x ≤ y) : rand_g g (x .. y) := | |
bounded_random.random_r g x y h | |
/-- generate an infinite series of random values of type `α` between `x` and `y` inclusive. -/ | |
def random_series_r [preorder α] [bounded_random α] (x y : α) (h : x ≤ y) : | |
rand_g g (stream (x .. y)) := | |
do gen ← uliftable.up (split g), | |
pure $ corec_state (bounded_random.random_r g x y h) gen | |
end rand | |
namespace io | |
private def accum_char (w : ℕ) (c : char) : ℕ := | |
c.to_nat + 256 * w | |
/-- create and a seed a random number generator -/ | |
def mk_generator : io std_gen := do | |
seed ← io.rand 0 shift_31_left, | |
return $ mk_std_gen seed | |
variables {α : Type} | |
/-- Run `cmd` using a randomly seeded random number generator -/ | |
def run_rand (cmd : _root_.rand α) : io α := | |
do g ← io.mk_generator, | |
return $ (cmd.run ⟨g⟩).1 | |
/-- Run `cmd` using the provided seed. -/ | |
def run_rand_with (seed : ℕ) (cmd : _root_.rand α) : io α := | |
return $ (cmd.run ⟨mk_std_gen seed⟩).1 | |
section random | |
variables [random α] | |
/-- randomly generate a value of type α -/ | |
def random : io α := | |
io.run_rand (rand.random α) | |
/-- randomly generate an infinite series of value of type α -/ | |
def random_series : io (stream α) := | |
io.run_rand (rand.random_series α) | |
end random | |
section bounded_random | |
variables [preorder α] [bounded_random α] | |
/-- randomly generate a value of type α between `x` and `y` -/ | |
def random_r (x y : α) (p : x ≤ y) : io (x .. y) := | |
io.run_rand (bounded_random.random_r _ x y p) | |
/-- randomly generate an infinite series of value of type α between `x` and `y` -/ | |
def random_series_r (x y : α) (h : x ≤ y) : io (stream $ x .. y) := | |
io.run_rand (rand.random_series_r x y h) | |
end bounded_random | |
end io | |
namespace tactic | |
/-- create a seeded random number generator in the `tactic` monad -/ | |
meta def mk_generator : tactic std_gen := do | |
tactic.unsafe_run_io @io.mk_generator | |
/-- run `cmd` using the a randomly seeded random number generator | |
in the tactic monad -/ | |
meta def run_rand {α : Type u} (cmd : rand α) : tactic α := do | |
⟨g⟩ ← tactic.up mk_generator, | |
return (cmd.run ⟨g⟩).1 | |
variables {α : Type u} | |
section bounded_random | |
variables [preorder α] [bounded_random α] | |
/-- Generate a random value between `x` and `y` inclusive. -/ | |
meta def random_r (x y : α) (h : x ≤ y) : tactic (x .. y) := | |
run_rand (rand.random_r x y h) | |
/-- Generate an infinite series of random values of type `α` between `x` and `y` inclusive. -/ | |
meta def random_series_r (x y : α) (h : x ≤ y) : tactic (stream $ x .. y) := | |
run_rand (rand.random_series_r x y h) | |
end bounded_random | |
section random | |
variables [random α] | |
/-- randomly generate a value of type α -/ | |
meta def random : tactic α := | |
run_rand (rand.random α) | |
/-- randomly generate an infinite series of value of type α -/ | |
meta def random_series : tactic (stream α) := | |
run_rand (rand.random_series α) | |
end random | |
end tactic | |
open nat (succ one_add mod_eq_of_lt zero_lt_succ add_one succ_le_succ) | |
variables {g : Type} [random_gen g] | |
open nat | |
namespace fin | |
variables {n : ℕ} [fact (0 < n)] | |
/-- generate a `fin` randomly -/ | |
protected def random : rand_g g (fin n) := | |
⟨ λ ⟨g⟩, prod.map of_nat' up $ rand_nat g 0 n ⟩ | |
end fin | |
open nat | |
instance nat_bounded_random : bounded_random ℕ := | |
{ random_r := λ g inst x y hxy, | |
do z ← @fin.random g inst (succ $ y - x) _, | |
pure ⟨z.val + x, nat.le_add_left _ _, | |
by rw ← le_tsub_iff_right hxy; apply le_of_succ_le_succ z.is_lt⟩ } | |
/-- This `bounded_random` interval generates integers between `x` and | |
`y` by first generating a natural number between `0` and `y - x` and | |
shifting the result appropriately. -/ | |
instance int_bounded_random : bounded_random ℤ := | |
{ random_r := λ g inst x y hxy, | |
do ⟨z,h₀,h₁⟩ ← @bounded_random.random_r ℕ _ _ g inst 0 (int.nat_abs $ y - x) dec_trivial, | |
pure ⟨z + x, | |
int.le_add_of_nonneg_left (int.coe_nat_nonneg _), | |
int.add_le_of_le_sub_right $ le_trans | |
(int.coe_nat_le_coe_nat_of_le h₁) | |
(le_of_eq $ int.of_nat_nat_abs_eq_of_nonneg (int.sub_nonneg_of_le hxy)) ⟩ } | |
instance fin_random (n : ℕ) [fact (0 < n)] : random (fin n) := | |
{ random := λ g inst, @fin.random g inst _ _ } | |
instance fin_bounded_random (n : ℕ) : bounded_random (fin n) := | |
{ random_r := λ g inst (x y : fin n) p, | |
do ⟨r, h, h'⟩ ← @rand.random_r ℕ g inst _ _ x.val y.val p, | |
pure ⟨⟨r,lt_of_le_of_lt h' y.is_lt⟩, h, h'⟩ } | |
/-- A shortcut for creating a `random (fin n)` instance from | |
a proof that `0 < n` rather than on matching on `fin (succ n)` -/ | |
def random_fin_of_pos : ∀ {n : ℕ} (h : 0 < n), random (fin n) | |
| (succ n) _ := fin_random _ | |
| 0 h := false.elim (nat.not_lt_zero _ h) | |
lemma bool_of_nat_mem_Icc_of_mem_Icc_to_nat (x y : bool) (n : ℕ) : | |
n ∈ (x.to_nat .. y.to_nat) → bool.of_nat n ∈ (x .. y) := | |
begin | |
simp only [and_imp, set.mem_Icc], intros h₀ h₁, | |
split; | |
[ have h₂ := bool.of_nat_le_of_nat h₀, have h₂ := bool.of_nat_le_of_nat h₁ ]; | |
rw bool.of_nat_to_nat at h₂; exact h₂, | |
end | |
instance : random bool := | |
{ random := λ g inst, | |
(bool.of_nat ∘ subtype.val) <$> @bounded_random.random_r ℕ _ _ g inst 0 1 (nat.zero_le _) } | |
instance : bounded_random bool := | |
{ random_r := λ g _inst x y p, | |
subtype.map bool.of_nat (bool_of_nat_mem_Icc_of_mem_Icc_to_nat x y) <$> | |
@bounded_random.random_r ℕ _ _ g _inst x.to_nat y.to_nat (bool.to_nat_le_to_nat p) } | |
open_locale fin_fact | |
/-- generate a random bit vector of length `n` -/ | |
def bitvec.random (n : ℕ) : rand_g g (bitvec n) := | |
bitvec.of_fin <$> rand.random (fin $ 2^n) | |
/-- generate a random bit vector of length `n` -/ | |
def bitvec.random_r {n : ℕ} (x y : bitvec n) (h : x ≤ y) : rand_g g (x .. y) := | |
have h' : ∀ (a : fin (2 ^ n)), a ∈ (x.to_fin .. y.to_fin) → bitvec.of_fin a ∈ (x .. y), | |
begin | |
simp only [and_imp, set.mem_Icc], intros z h₀ h₁, | |
replace h₀ := bitvec.of_fin_le_of_fin_of_le h₀, | |
replace h₁ := bitvec.of_fin_le_of_fin_of_le h₁, | |
rw bitvec.of_fin_to_fin at h₀ h₁, split; assumption, | |
end, | |
subtype.map bitvec.of_fin h' <$> rand.random_r x.to_fin y.to_fin (bitvec.to_fin_le_to_fin_of_le h) | |
open nat | |
instance random_bitvec (n : ℕ) : random (bitvec n) := | |
{ random := λ _ inst, @bitvec.random _ inst n } | |
instance bounded_random_bitvec (n : ℕ) : bounded_random (bitvec n) := | |
{ random_r := λ _ inst x y p, @bitvec.random_r _ inst _ _ _ p } | |