Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon | |
-/ | |
import control.monad.basic | |
import control.monad.cont | |
import control.monad.writer | |
import logic.equiv.basic | |
import tactic.interactive | |
/-! | |
# Universe lifting for type families | |
Some functors such as `option` and `list` are universe polymorphic. Unlike | |
type polymorphism where `option α` is a function application and reasoning and | |
generalizations that apply to functions can be used, `option.{u}` and `option.{v}` | |
are not one function applied to two universe names but one polymorphic definition | |
instantiated twice. This means that whatever works on `option.{u}` is hard | |
to transport over to `option.{v}`. `uliftable` is an attempt at improving the situation. | |
`uliftable option.{u} option.{v}` gives us a generic and composable way to use | |
`option.{u}` in a context that requires `option.{v}`. It is often used in tandem with | |
`ulift` but the two are purposefully decoupled. | |
## Main definitions | |
* `uliftable` class | |
## Tags | |
universe polymorphism functor | |
-/ | |
universes u₀ u₁ v₀ v₁ v₂ w w₀ w₁ | |
variables {s : Type u₀} {s' : Type u₁} {r r' w w' : Type*} | |
/-- Given a universe polymorphic type family `M.{u} : Type u₁ → Type | |
u₂`, this class convert between instantiations, from | |
`M.{u} : Type u₁ → Type u₂` to `M.{v} : Type v₁ → Type v₂` and back -/ | |
class uliftable (f : Type u₀ → Type u₁) (g : Type v₀ → Type v₁) := | |
(congr [] {α β} : α ≃ β → f α ≃ g β) | |
namespace uliftable | |
/-- The most common practical use `uliftable` (together with `up`), this function takes | |
`x : M.{u} α` and lifts it to M.{max u v} (ulift.{v} α) -/ | |
@[reducible] | |
def up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] | |
{α} : f α → g (ulift α) := | |
(uliftable.congr f g equiv.ulift.symm).to_fun | |
/-- The most common practical use of `uliftable` (together with `up`), this function takes | |
`x : M.{max u v} (ulift.{v} α)` and lowers it to `M.{u} α` -/ | |
@[reducible] | |
def down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] | |
{α} : g (ulift α) → f α := | |
(uliftable.congr f g equiv.ulift.symm).inv_fun | |
/-- convenient shortcut to avoid manipulating `ulift` -/ | |
def adapt_up (F : Type v₀ → Type v₁) (G : Type (max v₀ u₀) → Type u₁) | |
[uliftable F G] [monad G] {α β} | |
(x : F α) (f : α → G β) : G β := | |
up x >>= f ∘ ulift.down | |
/-- convenient shortcut to avoid manipulating `ulift` -/ | |
def adapt_down {F : Type (max u₀ v₀) → Type u₁} {G : Type v₀ → Type v₁} | |
[L : uliftable G F] [monad F] {α β} | |
(x : F α) (f : α → G β) : G β := | |
@down.{v₀ v₁ (max u₀ v₀)} G F L β $ x >>= @up.{v₀ v₁ (max u₀ v₀)} G F L β ∘ f | |
/-- map function that moves up universes -/ | |
def up_map {F : Type u₀ → Type u₁} {G : Type.{max u₀ v₀} → Type v₁} [inst : uliftable F G] | |
[functor G] {α β} (f : α → β) (x : F α) : G β := | |
functor.map (f ∘ ulift.down) (up x) | |
/-- map function that moves down universes -/ | |
def down_map {F : Type.{max u₀ v₀} → Type u₁} {G : Type u₀ → Type v₁} [inst : uliftable G F] | |
[functor F] {α β} (f : α → β) (x : F α) : G β := | |
down (functor.map (ulift.up ∘ f) x : F (ulift β)) | |
@[simp] | |
lemma up_down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] | |
{α} (x : g (ulift α)) : up (down x : f α) = x := | |
(uliftable.congr f g equiv.ulift.symm).right_inv _ | |
@[simp] | |
lemma down_up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] | |
{α} (x : f α) : down (up x : g _) = x := | |
(uliftable.congr f g equiv.ulift.symm).left_inv _ | |
end uliftable | |
open ulift | |
instance : uliftable id id := | |
{ congr := λ α β F, F } | |
/-- for specific state types, this function helps to create a uliftable instance -/ | |
def state_t.uliftable' {m : Type u₀ → Type v₀} {m' : Type u₁ → Type v₁} | |
[uliftable m m'] | |
(F : s ≃ s') : | |
uliftable (state_t s m) (state_t s' m') := | |
{ congr := | |
λ α β G, state_t.equiv $ equiv.Pi_congr F $ | |
λ _, uliftable.congr _ _ $ equiv.prod_congr G F } | |
instance {m m'} [uliftable m m'] : | |
uliftable (state_t s m) (state_t (ulift s) m') := | |
state_t.uliftable' equiv.ulift.symm | |
/-- for specific reader monads, this function helps to create a uliftable instance -/ | |
def reader_t.uliftable' {m m'} [uliftable m m'] | |
(F : s ≃ s') : | |
uliftable (reader_t s m) (reader_t s' m') := | |
{ congr := | |
λ α β G, reader_t.equiv $ equiv.Pi_congr F $ | |
λ _, uliftable.congr _ _ G } | |
instance {m m'} [uliftable m m'] : uliftable (reader_t s m) (reader_t (ulift s) m') := | |
reader_t.uliftable' equiv.ulift.symm | |
/-- for specific continuation passing monads, this function helps to create a uliftable instance -/ | |
def cont_t.uliftable' {m m'} [uliftable m m'] | |
(F : r ≃ r') : | |
uliftable (cont_t r m) (cont_t r' m') := | |
{ congr := | |
λ α β, cont_t.equiv (uliftable.congr _ _ F) } | |
instance {s m m'} [uliftable m m'] : uliftable (cont_t s m) (cont_t (ulift s) m') := | |
cont_t.uliftable' equiv.ulift.symm | |
/-- for specific writer monads, this function helps to create a uliftable instance -/ | |
def writer_t.uliftable' {m m'} [uliftable m m'] | |
(F : w ≃ w') : | |
uliftable (writer_t w m) (writer_t w' m') := | |
{ congr := | |
λ α β G, writer_t.equiv $ uliftable.congr _ _ $ equiv.prod_congr G F } | |
instance {m m'} [uliftable m m'] : uliftable (writer_t s m) (writer_t (ulift s) m') := | |
writer_t.uliftable' equiv.ulift.symm | |