Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.58 kB
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import control.monad.basic
import control.monad.cont
import control.monad.writer
import logic.equiv.basic
import tactic.interactive
/-!
# Universe lifting for type families
Some functors such as `option` and `list` are universe polymorphic. Unlike
type polymorphism where `option α` is a function application and reasoning and
generalizations that apply to functions can be used, `option.{u}` and `option.{v}`
are not one function applied to two universe names but one polymorphic definition
instantiated twice. This means that whatever works on `option.{u}` is hard
to transport over to `option.{v}`. `uliftable` is an attempt at improving the situation.
`uliftable option.{u} option.{v}` gives us a generic and composable way to use
`option.{u}` in a context that requires `option.{v}`. It is often used in tandem with
`ulift` but the two are purposefully decoupled.
## Main definitions
* `uliftable` class
## Tags
universe polymorphism functor
-/
universes u₀ u₁ v₀ v₁ v₂ w w₀ w₁
variables {s : Type u₀} {s' : Type u₁} {r r' w w' : Type*}
/-- Given a universe polymorphic type family `M.{u} : Type u₁ → Type
u₂`, this class convert between instantiations, from
`M.{u} : Type u₁ → Type u₂` to `M.{v} : Type v₁ → Type v₂` and back -/
class uliftable (f : Type u₀ → Type u₁) (g : Type v₀ → Type v₁) :=
(congr [] {α β} : α ≃ β → f α ≃ g β)
namespace uliftable
/-- The most common practical use `uliftable` (together with `up`), this function takes
`x : M.{u} α` and lifts it to M.{max u v} (ulift.{v} α) -/
@[reducible]
def up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g]
{α} : f α → g (ulift α) :=
(uliftable.congr f g equiv.ulift.symm).to_fun
/-- The most common practical use of `uliftable` (together with `up`), this function takes
`x : M.{max u v} (ulift.{v} α)` and lowers it to `M.{u} α` -/
@[reducible]
def down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g]
{α} : g (ulift α) → f α :=
(uliftable.congr f g equiv.ulift.symm).inv_fun
/-- convenient shortcut to avoid manipulating `ulift` -/
def adapt_up (F : Type v₀ → Type v₁) (G : Type (max v₀ u₀) → Type u₁)
[uliftable F G] [monad G] {α β}
(x : F α) (f : α → G β) : G β :=
up x >>= f ∘ ulift.down
/-- convenient shortcut to avoid manipulating `ulift` -/
def adapt_down {F : Type (max u₀ v₀) → Type u₁} {G : Type v₀ → Type v₁}
[L : uliftable G F] [monad F] {α β}
(x : F α) (f : α → G β) : G β :=
@down.{v₀ v₁ (max u₀ v₀)} G F L β $ x >>= @up.{v₀ v₁ (max u₀ v₀)} G F L β ∘ f
/-- map function that moves up universes -/
def up_map {F : Type u₀ → Type u₁} {G : Type.{max u₀ v₀} → Type v₁} [inst : uliftable F G]
[functor G] {α β} (f : α → β) (x : F α) : G β :=
functor.map (f ∘ ulift.down) (up x)
/-- map function that moves down universes -/
def down_map {F : Type.{max u₀ v₀} → Type u₁} {G : Type u₀ → Type v₁} [inst : uliftable G F]
[functor F] {α β} (f : α → β) (x : F α) : G β :=
down (functor.map (ulift.up ∘ f) x : F (ulift β))
@[simp]
lemma up_down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g]
{α} (x : g (ulift α)) : up (down x : f α) = x :=
(uliftable.congr f g equiv.ulift.symm).right_inv _
@[simp]
lemma down_up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g]
{α} (x : f α) : down (up x : g _) = x :=
(uliftable.congr f g equiv.ulift.symm).left_inv _
end uliftable
open ulift
instance : uliftable id id :=
{ congr := λ α β F, F }
/-- for specific state types, this function helps to create a uliftable instance -/
def state_t.uliftable' {m : Type u₀ → Type v₀} {m' : Type u₁ → Type v₁}
[uliftable m m']
(F : s ≃ s') :
uliftable (state_t s m) (state_t s' m') :=
{ congr :=
λ α β G, state_t.equiv $ equiv.Pi_congr F $
λ _, uliftable.congr _ _ $ equiv.prod_congr G F }
instance {m m'} [uliftable m m'] :
uliftable (state_t s m) (state_t (ulift s) m') :=
state_t.uliftable' equiv.ulift.symm
/-- for specific reader monads, this function helps to create a uliftable instance -/
def reader_t.uliftable' {m m'} [uliftable m m']
(F : s ≃ s') :
uliftable (reader_t s m) (reader_t s' m') :=
{ congr :=
λ α β G, reader_t.equiv $ equiv.Pi_congr F $
λ _, uliftable.congr _ _ G }
instance {m m'} [uliftable m m'] : uliftable (reader_t s m) (reader_t (ulift s) m') :=
reader_t.uliftable' equiv.ulift.symm
/-- for specific continuation passing monads, this function helps to create a uliftable instance -/
def cont_t.uliftable' {m m'} [uliftable m m']
(F : r ≃ r') :
uliftable (cont_t r m) (cont_t r' m') :=
{ congr :=
λ α β, cont_t.equiv (uliftable.congr _ _ F) }
instance {s m m'} [uliftable m m'] : uliftable (cont_t s m) (cont_t (ulift s) m') :=
cont_t.uliftable' equiv.ulift.symm
/-- for specific writer monads, this function helps to create a uliftable instance -/
def writer_t.uliftable' {m m'} [uliftable m m']
(F : w ≃ w') :
uliftable (writer_t w m) (writer_t w' m') :=
{ congr :=
λ α β G, writer_t.equiv $ uliftable.congr _ _ $ equiv.prod_congr G F }
instance {m m'} [uliftable m m'] : uliftable (writer_t s m) (writer_t (ulift s) m') :=
writer_t.uliftable' equiv.ulift.symm