Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import algebra.group.type_tags | |
import algebra.hom.equiv | |
import algebra.hom.ring | |
import algebra.hom.units | |
/-! | |
# Unbundled monoid and group homomorphisms | |
This file is deprecated, and is no longer imported by anything in mathlib other than other | |
deprecated files, and test files. You should not need to import it. | |
This file defines predicates for unbundled monoid and group homomorphisms. Instead of using | |
this file, please use `monoid_hom`, defined in `algebra.hom.group`, with notation `→*`, for | |
morphisms between monoids or groups. For example use `φ : G →* H` to represent a group | |
homomorphism between multiplicative groups, and `ψ : A →+ B` to represent a group homomorphism | |
between additive groups. | |
## Main Definitions | |
`is_monoid_hom` (deprecated), `is_group_hom` (deprecated) | |
## Tags | |
is_group_hom, is_monoid_hom | |
-/ | |
universes u v | |
variables {α : Type u} {β : Type v} | |
/-- Predicate for maps which preserve an addition. -/ | |
structure is_add_hom {α β : Type*} [has_add α] [has_add β] (f : α → β) : Prop := | |
(map_add [] : ∀ x y, f (x + y) = f x + f y) | |
/-- Predicate for maps which preserve a multiplication. -/ | |
@[to_additive] | |
structure is_mul_hom {α β : Type*} [has_mul α] [has_mul β] (f : α → β) : Prop := | |
(map_mul [] : ∀ x y, f (x * y) = f x * f y) | |
namespace is_mul_hom | |
variables [has_mul α] [has_mul β] {γ : Type*} [has_mul γ] | |
/-- The identity map preserves multiplication. -/ | |
@[to_additive "The identity map preserves addition"] | |
lemma id : is_mul_hom (id : α → α) := {map_mul := λ _ _, rfl} | |
/-- The composition of maps which preserve multiplication, also preserves multiplication. -/ | |
@[to_additive "The composition of addition preserving maps also preserves addition"] | |
lemma comp {f : α → β} {g : β → γ} (hf : is_mul_hom f) (hg : is_mul_hom g) : is_mul_hom (g ∘ f) := | |
{ map_mul := λ x y, by simp only [function.comp, hf.map_mul, hg.map_mul] } | |
/-- A product of maps which preserve multiplication, | |
preserves multiplication when the target is commutative. -/ | |
@[to_additive "A sum of maps which preserves addition, preserves addition when the target | |
is commutative."] | |
lemma mul {α β} [semigroup α] [comm_semigroup β] | |
{f g : α → β} (hf : is_mul_hom f) (hg : is_mul_hom g) : | |
is_mul_hom (λ a, f a * g a) := | |
{ map_mul := λ a b, by simp only [hf.map_mul, hg.map_mul, mul_comm, mul_assoc, mul_left_comm] } | |
/-- The inverse of a map which preserves multiplication, | |
preserves multiplication when the target is commutative. -/ | |
@[to_additive "The negation of a map which preserves addition, preserves addition when | |
the target is commutative."] | |
lemma inv {α β} [has_mul α] [comm_group β] {f : α → β} (hf : is_mul_hom f) : | |
is_mul_hom (λ a, (f a)⁻¹) := | |
{ map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ } | |
end is_mul_hom | |
/-- Predicate for add_monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/ | |
structure is_add_monoid_hom [add_zero_class α] [add_zero_class β] (f : α → β) | |
extends is_add_hom f : Prop := | |
(map_zero [] : f 0 = 0) | |
/-- Predicate for monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/ | |
@[to_additive] | |
structure is_monoid_hom [mul_one_class α] [mul_one_class β] (f : α → β) | |
extends is_mul_hom f : Prop := | |
(map_one [] : f 1 = 1) | |
namespace monoid_hom | |
variables {M : Type*} {N : Type*} [mM : mul_one_class M] [mN : mul_one_class N] | |
include mM mN | |
/-- Interpret a map `f : M → N` as a homomorphism `M →* N`. -/ | |
@[to_additive "Interpret a map `f : M → N` as a homomorphism `M →+ N`."] | |
def of {f : M → N} (h : is_monoid_hom f) : M →* N := | |
{ to_fun := f, | |
map_one' := h.2, | |
map_mul' := h.1.1 } | |
variables {mM mN} | |
@[simp, to_additive] | |
lemma coe_of {f : M → N} (hf : is_monoid_hom f) : ⇑ (monoid_hom.of hf) = f := | |
rfl | |
@[to_additive] | |
lemma is_monoid_hom_coe (f : M →* N) : is_monoid_hom (f : M → N) := | |
{ map_mul := f.map_mul, | |
map_one := f.map_one } | |
end monoid_hom | |
namespace mul_equiv | |
variables {M : Type*} {N : Type*} [mul_one_class M] [mul_one_class N] | |
/-- A multiplicative isomorphism preserves multiplication (deprecated). -/ | |
@[to_additive "An additive isomorphism preserves addition (deprecated)."] | |
theorem is_mul_hom (h : M ≃* N) : is_mul_hom h := ⟨h.map_mul⟩ | |
/-- A multiplicative bijection between two monoids is a monoid hom | |
(deprecated -- use `mul_equiv.to_monoid_hom`). -/ | |
@[to_additive "An additive bijection between two additive monoids is an additive | |
monoid hom (deprecated). "] | |
lemma is_monoid_hom (h : M ≃* N) : is_monoid_hom h := | |
{ map_mul := h.map_mul, | |
map_one := h.map_one } | |
end mul_equiv | |
namespace is_monoid_hom | |
variables [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f) | |
/-- A monoid homomorphism preserves multiplication. -/ | |
@[to_additive "An additive monoid homomorphism preserves addition."] | |
lemma map_mul (x y) : f (x * y) = f x * f y := | |
hf.map_mul x y | |
/-- The inverse of a map which preserves multiplication, | |
preserves multiplication when the target is commutative. -/ | |
@[to_additive "The negation of a map which preserves addition, preserves addition | |
when the target is commutative."] | |
lemma inv {α β} [mul_one_class α] [comm_group β] {f : α → β} (hf : is_monoid_hom f) : | |
is_monoid_hom (λ a, (f a)⁻¹) := | |
{ map_one := hf.map_one.symm ▸ inv_one, | |
map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ } | |
end is_monoid_hom | |
/-- A map to a group preserving multiplication is a monoid homomorphism. -/ | |
@[to_additive "A map to an additive group preserving addition is an additive monoid | |
homomorphism."] | |
theorem is_mul_hom.to_is_monoid_hom [mul_one_class α] [group β] {f : α → β} (hf : is_mul_hom f) : | |
is_monoid_hom f := | |
{ map_one := mul_right_eq_self.1 $ by rw [← hf.map_mul, one_mul], | |
map_mul := hf.map_mul } | |
namespace is_monoid_hom | |
variables [mul_one_class α] [mul_one_class β] {f : α → β} | |
/-- The identity map is a monoid homomorphism. -/ | |
@[to_additive "The identity map is an additive monoid homomorphism."] | |
lemma id : is_monoid_hom (@id α) := { map_one := rfl, map_mul := λ _ _, rfl } | |
/-- The composite of two monoid homomorphisms is a monoid homomorphism. -/ | |
@[to_additive "The composite of two additive monoid homomorphisms is an additive monoid | |
homomorphism."] | |
lemma comp (hf : is_monoid_hom f) {γ} [mul_one_class γ] {g : β → γ} (hg : is_monoid_hom g) : | |
is_monoid_hom (g ∘ f) := | |
{ map_one := show g _ = 1, by rw [hf.map_one, hg.map_one], | |
..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom } | |
end is_monoid_hom | |
namespace is_add_monoid_hom | |
/-- Left multiplication in a ring is an additive monoid morphism. -/ | |
lemma is_add_monoid_hom_mul_left {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) : | |
is_add_monoid_hom (λ y : γ, x * y) := | |
{ map_zero := mul_zero x, map_add := λ y z, mul_add x y z } | |
/-- Right multiplication in a ring is an additive monoid morphism. -/ | |
lemma is_add_monoid_hom_mul_right {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) : | |
is_add_monoid_hom (λ y : γ, y * x) := | |
{ map_zero := zero_mul x, map_add := λ y z, add_mul y z x } | |
end is_add_monoid_hom | |
/-- Predicate for additive group homomorphism (deprecated -- use bundled `monoid_hom`). -/ | |
structure is_add_group_hom [add_group α] [add_group β] (f : α → β) extends is_add_hom f : Prop | |
/-- Predicate for group homomorphisms (deprecated -- use bundled `monoid_hom`). -/ | |
@[to_additive] | |
structure is_group_hom [group α] [group β] (f : α → β) extends is_mul_hom f : Prop | |
@[to_additive] | |
lemma monoid_hom.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (f : G →* H) : | |
is_group_hom (f : G → H) := | |
{ map_mul := f.map_mul } | |
@[to_additive] | |
lemma mul_equiv.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (h : G ≃* H) : | |
is_group_hom h := { map_mul := h.map_mul } | |
/-- Construct `is_group_hom` from its only hypothesis. -/ | |
@[to_additive "Construct `is_add_group_hom` from its only hypothesis."] | |
lemma is_group_hom.mk' [group α] [group β] {f : α → β} (hf : ∀ x y, f (x * y) = f x * f y) : | |
is_group_hom f := | |
{ map_mul := hf } | |
namespace is_group_hom | |
variables [group α] [group β] {f : α → β} (hf : is_group_hom f) | |
open is_mul_hom (map_mul) | |
lemma map_mul : ∀ (x y), f (x * y) = f x * f y := hf.to_is_mul_hom.map_mul | |
/-- A group homomorphism is a monoid homomorphism. -/ | |
@[to_additive "An additive group homomorphism is an additive monoid homomorphism."] | |
lemma to_is_monoid_hom : is_monoid_hom f := | |
hf.to_is_mul_hom.to_is_monoid_hom | |
/-- A group homomorphism sends 1 to 1. -/ | |
@[to_additive "An additive group homomorphism sends 0 to 0."] | |
lemma map_one : f 1 = 1 := hf.to_is_monoid_hom.map_one | |
/-- A group homomorphism sends inverses to inverses. -/ | |
@[to_additive "An additive group homomorphism sends negations to negations."] | |
theorem map_inv (hf : is_group_hom f) (a : α) : f a⁻¹ = (f a)⁻¹ := | |
eq_inv_of_mul_eq_one_left $ by rw [← hf.map_mul, inv_mul_self, hf.map_one] | |
@[to_additive] lemma map_div (hf : is_group_hom f) (a b : α) : f (a / b) = f a / f b := | |
by simp_rw [div_eq_mul_inv, hf.map_mul, hf.map_inv] | |
/-- The identity is a group homomorphism. -/ | |
@[to_additive "The identity is an additive group homomorphism."] | |
lemma id : is_group_hom (@id α) := { map_mul := λ _ _, rfl} | |
/-- The composition of two group homomorphisms is a group homomorphism. -/ | |
@[to_additive "The composition of two additive group homomorphisms is an additive | |
group homomorphism."] | |
lemma comp (hf : is_group_hom f) {γ} [group γ] {g : β → γ} (hg : is_group_hom g) : | |
is_group_hom (g ∘ f) := | |
{ ..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom } | |
/-- A group homomorphism is injective iff its kernel is trivial. -/ | |
@[to_additive "An additive group homomorphism is injective if its kernel is trivial."] | |
lemma injective_iff {f : α → β} (hf : is_group_hom f) : | |
function.injective f ↔ (∀ a, f a = 1 → a = 1) := | |
⟨λ h _, by rw ← hf.map_one; exact @h _ _, | |
λ h x y hxy, eq_of_div_eq_one $ h _ $ by rwa [hf.map_div, div_eq_one]⟩ | |
/-- The product of group homomorphisms is a group homomorphism if the target is commutative. -/ | |
@[to_additive "The sum of two additive group homomorphisms is an additive group homomorphism | |
if the target is commutative."] | |
lemma mul {α β} [group α] [comm_group β] | |
{f g : α → β} (hf : is_group_hom f) (hg : is_group_hom g) : | |
is_group_hom (λa, f a * g a) := | |
{ map_mul := (hf.to_is_mul_hom.mul hg.to_is_mul_hom).map_mul } | |
/-- The inverse of a group homomorphism is a group homomorphism if the target is commutative. -/ | |
@[to_additive "The negation of an additive group homomorphism is an additive group homomorphism | |
if the target is commutative."] | |
lemma inv {α β} [group α] [comm_group β] {f : α → β} (hf : is_group_hom f) : | |
is_group_hom (λa, (f a)⁻¹) := | |
{ map_mul := hf.to_is_mul_hom.inv.map_mul } | |
end is_group_hom | |
namespace ring_hom | |
/-! | |
These instances look redundant, because `deprecated.ring` provides `is_ring_hom` for a `→+*`. | |
Nevertheless these are harmless, and helpful for stripping out dependencies on `deprecated.ring`. | |
-/ | |
variables {R : Type*} {S : Type*} | |
section | |
variables [non_assoc_semiring R] [non_assoc_semiring S] | |
lemma to_is_monoid_hom (f : R →+* S) : is_monoid_hom f := | |
{ map_one := f.map_one, | |
map_mul := f.map_mul } | |
lemma to_is_add_monoid_hom (f : R →+* S) : is_add_monoid_hom f := | |
{ map_zero := f.map_zero, | |
map_add := f.map_add } | |
end | |
section | |
variables [ring R] [ring S] | |
lemma to_is_add_group_hom (f : R →+* S) : is_add_group_hom f := | |
{ map_add := f.map_add } | |
end | |
end ring_hom | |
/-- Inversion is a group homomorphism if the group is commutative. -/ | |
@[to_additive neg.is_add_group_hom | |
"Negation is an `add_group` homomorphism if the `add_group` is commutative."] | |
lemma inv.is_group_hom [comm_group α] : is_group_hom (has_inv.inv : α → α) := | |
{ map_mul := mul_inv } | |
/-- The difference of two additive group homomorphisms is an additive group | |
homomorphism if the target is commutative. -/ | |
lemma is_add_group_hom.sub {α β} [add_group α] [add_comm_group β] | |
{f g : α → β} (hf : is_add_group_hom f) (hg : is_add_group_hom g) : | |
is_add_group_hom (λa, f a - g a) := | |
by simpa only [sub_eq_add_neg] using hf.add hg.neg | |
namespace units | |
variables {M : Type*} {N : Type*} [monoid M] [monoid N] | |
/-- The group homomorphism on units induced by a multiplicative morphism. -/ | |
@[reducible] def map' {f : M → N} (hf : is_monoid_hom f) : Mˣ →* Nˣ := | |
map (monoid_hom.of hf) | |
@[simp] lemma coe_map' {f : M → N} (hf : is_monoid_hom f) (x : Mˣ) : | |
↑((map' hf : Mˣ → Nˣ) x) = f x := | |
rfl | |
lemma coe_is_monoid_hom : is_monoid_hom (coe : Mˣ → M) := (coe_hom M).is_monoid_hom_coe | |
end units | |
namespace is_unit | |
variables {M : Type*} {N : Type*} [monoid M] [monoid N] {x : M} | |
lemma map' {f : M → N} (hf :is_monoid_hom f) {x : M} (h : is_unit x) : | |
is_unit (f x) := | |
h.map (monoid_hom.of hf) | |
end is_unit | |
lemma additive.is_add_hom [has_mul α] [has_mul β] {f : α → β} (hf : is_mul_hom f) : | |
@is_add_hom (additive α) (additive β) _ _ f := | |
{ map_add := is_mul_hom.map_mul hf } | |
lemma multiplicative.is_mul_hom [has_add α] [has_add β] {f : α → β} (hf : is_add_hom f) : | |
@is_mul_hom (multiplicative α) (multiplicative β) _ _ f := | |
{ map_mul := is_add_hom.map_add hf } | |
-- defeq abuse | |
lemma additive.is_add_monoid_hom [mul_one_class α] [mul_one_class β] {f : α → β} | |
(hf : is_monoid_hom f) : @is_add_monoid_hom (additive α) (additive β) _ _ f := | |
{ map_zero := hf.map_one, | |
..additive.is_add_hom hf.to_is_mul_hom } | |
lemma multiplicative.is_monoid_hom | |
[add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) : | |
@is_monoid_hom (multiplicative α) (multiplicative β) _ _ f := | |
{ map_one := is_add_monoid_hom.map_zero hf, | |
..multiplicative.is_mul_hom hf.to_is_add_hom } | |
lemma additive.is_add_group_hom [group α] [group β] {f : α → β} (hf : is_group_hom f) : | |
@is_add_group_hom (additive α) (additive β) _ _ f := | |
{ map_add := hf.to_is_mul_hom.map_mul } | |
lemma multiplicative.is_group_hom [add_group α] [add_group β] {f : α → β} | |
(hf : is_add_group_hom f) : @is_group_hom (multiplicative α) (multiplicative β) _ _ f := | |
{ map_mul := hf.to_is_add_hom.map_add } | |