Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.3 kB
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import algebra.group.type_tags
import algebra.hom.equiv
import algebra.hom.ring
import algebra.hom.units
/-!
# Unbundled monoid and group homomorphisms
This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.
This file defines predicates for unbundled monoid and group homomorphisms. Instead of using
this file, please use `monoid_hom`, defined in `algebra.hom.group`, with notation `→*`, for
morphisms between monoids or groups. For example use `φ : G →* H` to represent a group
homomorphism between multiplicative groups, and `ψ : A →+ B` to represent a group homomorphism
between additive groups.
## Main Definitions
`is_monoid_hom` (deprecated), `is_group_hom` (deprecated)
## Tags
is_group_hom, is_monoid_hom
-/
universes u v
variables {α : Type u} {β : Type v}
/-- Predicate for maps which preserve an addition. -/
structure is_add_hom {α β : Type*} [has_add α] [has_add β] (f : α → β) : Prop :=
(map_add [] : ∀ x y, f (x + y) = f x + f y)
/-- Predicate for maps which preserve a multiplication. -/
@[to_additive]
structure is_mul_hom {α β : Type*} [has_mul α] [has_mul β] (f : α → β) : Prop :=
(map_mul [] : ∀ x y, f (x * y) = f x * f y)
namespace is_mul_hom
variables [has_mul α] [has_mul β] {γ : Type*} [has_mul γ]
/-- The identity map preserves multiplication. -/
@[to_additive "The identity map preserves addition"]
lemma id : is_mul_hom (id : α → α) := {map_mul := λ _ _, rfl}
/-- The composition of maps which preserve multiplication, also preserves multiplication. -/
@[to_additive "The composition of addition preserving maps also preserves addition"]
lemma comp {f : α → β} {g : β → γ} (hf : is_mul_hom f) (hg : is_mul_hom g) : is_mul_hom (g ∘ f) :=
{ map_mul := λ x y, by simp only [function.comp, hf.map_mul, hg.map_mul] }
/-- A product of maps which preserve multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "A sum of maps which preserves addition, preserves addition when the target
is commutative."]
lemma mul {α β} [semigroup α] [comm_semigroup β]
{f g : α → β} (hf : is_mul_hom f) (hg : is_mul_hom g) :
is_mul_hom (λ a, f a * g a) :=
{ map_mul := λ a b, by simp only [hf.map_mul, hg.map_mul, mul_comm, mul_assoc, mul_left_comm] }
/-- The inverse of a map which preserves multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "The negation of a map which preserves addition, preserves addition when
the target is commutative."]
lemma inv {α β} [has_mul α] [comm_group β] {f : α → β} (hf : is_mul_hom f) :
is_mul_hom (λ a, (f a)⁻¹) :=
{ map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ }
end is_mul_hom
/-- Predicate for add_monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/
structure is_add_monoid_hom [add_zero_class α] [add_zero_class β] (f : α → β)
extends is_add_hom f : Prop :=
(map_zero [] : f 0 = 0)
/-- Predicate for monoid homomorphisms (deprecated -- use the bundled `monoid_hom` version). -/
@[to_additive]
structure is_monoid_hom [mul_one_class α] [mul_one_class β] (f : α → β)
extends is_mul_hom f : Prop :=
(map_one [] : f 1 = 1)
namespace monoid_hom
variables {M : Type*} {N : Type*} [mM : mul_one_class M] [mN : mul_one_class N]
include mM mN
/-- Interpret a map `f : M → N` as a homomorphism `M →* N`. -/
@[to_additive "Interpret a map `f : M → N` as a homomorphism `M →+ N`."]
def of {f : M → N} (h : is_monoid_hom f) : M →* N :=
{ to_fun := f,
map_one' := h.2,
map_mul' := h.1.1 }
variables {mM mN}
@[simp, to_additive]
lemma coe_of {f : M → N} (hf : is_monoid_hom f) : ⇑ (monoid_hom.of hf) = f :=
rfl
@[to_additive]
lemma is_monoid_hom_coe (f : M →* N) : is_monoid_hom (f : M → N) :=
{ map_mul := f.map_mul,
map_one := f.map_one }
end monoid_hom
namespace mul_equiv
variables {M : Type*} {N : Type*} [mul_one_class M] [mul_one_class N]
/-- A multiplicative isomorphism preserves multiplication (deprecated). -/
@[to_additive "An additive isomorphism preserves addition (deprecated)."]
theorem is_mul_hom (h : M ≃* N) : is_mul_hom h := ⟨h.map_mul⟩
/-- A multiplicative bijection between two monoids is a monoid hom
(deprecated -- use `mul_equiv.to_monoid_hom`). -/
@[to_additive "An additive bijection between two additive monoids is an additive
monoid hom (deprecated). "]
lemma is_monoid_hom (h : M ≃* N) : is_monoid_hom h :=
{ map_mul := h.map_mul,
map_one := h.map_one }
end mul_equiv
namespace is_monoid_hom
variables [mul_one_class α] [mul_one_class β] {f : α → β} (hf : is_monoid_hom f)
/-- A monoid homomorphism preserves multiplication. -/
@[to_additive "An additive monoid homomorphism preserves addition."]
lemma map_mul (x y) : f (x * y) = f x * f y :=
hf.map_mul x y
/-- The inverse of a map which preserves multiplication,
preserves multiplication when the target is commutative. -/
@[to_additive "The negation of a map which preserves addition, preserves addition
when the target is commutative."]
lemma inv {α β} [mul_one_class α] [comm_group β] {f : α → β} (hf : is_monoid_hom f) :
is_monoid_hom (λ a, (f a)⁻¹) :=
{ map_one := hf.map_one.symm ▸ inv_one,
map_mul := λ a b, (hf.map_mul a b).symm ▸ mul_inv _ _ }
end is_monoid_hom
/-- A map to a group preserving multiplication is a monoid homomorphism. -/
@[to_additive "A map to an additive group preserving addition is an additive monoid
homomorphism."]
theorem is_mul_hom.to_is_monoid_hom [mul_one_class α] [group β] {f : α → β} (hf : is_mul_hom f) :
is_monoid_hom f :=
{ map_one := mul_right_eq_self.1 $ by rw [← hf.map_mul, one_mul],
map_mul := hf.map_mul }
namespace is_monoid_hom
variables [mul_one_class α] [mul_one_class β] {f : α → β}
/-- The identity map is a monoid homomorphism. -/
@[to_additive "The identity map is an additive monoid homomorphism."]
lemma id : is_monoid_hom (@id α) := { map_one := rfl, map_mul := λ _ _, rfl }
/-- The composite of two monoid homomorphisms is a monoid homomorphism. -/
@[to_additive "The composite of two additive monoid homomorphisms is an additive monoid
homomorphism."]
lemma comp (hf : is_monoid_hom f) {γ} [mul_one_class γ] {g : β → γ} (hg : is_monoid_hom g) :
is_monoid_hom (g ∘ f) :=
{ map_one := show g _ = 1, by rw [hf.map_one, hg.map_one],
..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom }
end is_monoid_hom
namespace is_add_monoid_hom
/-- Left multiplication in a ring is an additive monoid morphism. -/
lemma is_add_monoid_hom_mul_left {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) :
is_add_monoid_hom (λ y : γ, x * y) :=
{ map_zero := mul_zero x, map_add := λ y z, mul_add x y z }
/-- Right multiplication in a ring is an additive monoid morphism. -/
lemma is_add_monoid_hom_mul_right {γ : Type*} [non_unital_non_assoc_semiring γ] (x : γ) :
is_add_monoid_hom (λ y : γ, y * x) :=
{ map_zero := zero_mul x, map_add := λ y z, add_mul y z x }
end is_add_monoid_hom
/-- Predicate for additive group homomorphism (deprecated -- use bundled `monoid_hom`). -/
structure is_add_group_hom [add_group α] [add_group β] (f : α → β) extends is_add_hom f : Prop
/-- Predicate for group homomorphisms (deprecated -- use bundled `monoid_hom`). -/
@[to_additive]
structure is_group_hom [group α] [group β] (f : α → β) extends is_mul_hom f : Prop
@[to_additive]
lemma monoid_hom.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (f : G →* H) :
is_group_hom (f : G → H) :=
{ map_mul := f.map_mul }
@[to_additive]
lemma mul_equiv.is_group_hom {G H : Type*} {_ : group G} {_ : group H} (h : G ≃* H) :
is_group_hom h := { map_mul := h.map_mul }
/-- Construct `is_group_hom` from its only hypothesis. -/
@[to_additive "Construct `is_add_group_hom` from its only hypothesis."]
lemma is_group_hom.mk' [group α] [group β] {f : α → β} (hf : ∀ x y, f (x * y) = f x * f y) :
is_group_hom f :=
{ map_mul := hf }
namespace is_group_hom
variables [group α] [group β] {f : α → β} (hf : is_group_hom f)
open is_mul_hom (map_mul)
lemma map_mul : ∀ (x y), f (x * y) = f x * f y := hf.to_is_mul_hom.map_mul
/-- A group homomorphism is a monoid homomorphism. -/
@[to_additive "An additive group homomorphism is an additive monoid homomorphism."]
lemma to_is_monoid_hom : is_monoid_hom f :=
hf.to_is_mul_hom.to_is_monoid_hom
/-- A group homomorphism sends 1 to 1. -/
@[to_additive "An additive group homomorphism sends 0 to 0."]
lemma map_one : f 1 = 1 := hf.to_is_monoid_hom.map_one
/-- A group homomorphism sends inverses to inverses. -/
@[to_additive "An additive group homomorphism sends negations to negations."]
theorem map_inv (hf : is_group_hom f) (a : α) : f a⁻¹ = (f a)⁻¹ :=
eq_inv_of_mul_eq_one_left $ by rw [← hf.map_mul, inv_mul_self, hf.map_one]
@[to_additive] lemma map_div (hf : is_group_hom f) (a b : α) : f (a / b) = f a / f b :=
by simp_rw [div_eq_mul_inv, hf.map_mul, hf.map_inv]
/-- The identity is a group homomorphism. -/
@[to_additive "The identity is an additive group homomorphism."]
lemma id : is_group_hom (@id α) := { map_mul := λ _ _, rfl}
/-- The composition of two group homomorphisms is a group homomorphism. -/
@[to_additive "The composition of two additive group homomorphisms is an additive
group homomorphism."]
lemma comp (hf : is_group_hom f) {γ} [group γ] {g : β → γ} (hg : is_group_hom g) :
is_group_hom (g ∘ f) :=
{ ..is_mul_hom.comp hf.to_is_mul_hom hg.to_is_mul_hom }
/-- A group homomorphism is injective iff its kernel is trivial. -/
@[to_additive "An additive group homomorphism is injective if its kernel is trivial."]
lemma injective_iff {f : α → β} (hf : is_group_hom f) :
function.injective f ↔ (∀ a, f a = 1 → a = 1) :=
⟨λ h _, by rw ← hf.map_one; exact @h _ _,
λ h x y hxy, eq_of_div_eq_one $ h _ $ by rwa [hf.map_div, div_eq_one]⟩
/-- The product of group homomorphisms is a group homomorphism if the target is commutative. -/
@[to_additive "The sum of two additive group homomorphisms is an additive group homomorphism
if the target is commutative."]
lemma mul {α β} [group α] [comm_group β]
{f g : α → β} (hf : is_group_hom f) (hg : is_group_hom g) :
is_group_hom (λa, f a * g a) :=
{ map_mul := (hf.to_is_mul_hom.mul hg.to_is_mul_hom).map_mul }
/-- The inverse of a group homomorphism is a group homomorphism if the target is commutative. -/
@[to_additive "The negation of an additive group homomorphism is an additive group homomorphism
if the target is commutative."]
lemma inv {α β} [group α] [comm_group β] {f : α → β} (hf : is_group_hom f) :
is_group_hom (λa, (f a)⁻¹) :=
{ map_mul := hf.to_is_mul_hom.inv.map_mul }
end is_group_hom
namespace ring_hom
/-!
These instances look redundant, because `deprecated.ring` provides `is_ring_hom` for a `→+*`.
Nevertheless these are harmless, and helpful for stripping out dependencies on `deprecated.ring`.
-/
variables {R : Type*} {S : Type*}
section
variables [non_assoc_semiring R] [non_assoc_semiring S]
lemma to_is_monoid_hom (f : R →+* S) : is_monoid_hom f :=
{ map_one := f.map_one,
map_mul := f.map_mul }
lemma to_is_add_monoid_hom (f : R →+* S) : is_add_monoid_hom f :=
{ map_zero := f.map_zero,
map_add := f.map_add }
end
section
variables [ring R] [ring S]
lemma to_is_add_group_hom (f : R →+* S) : is_add_group_hom f :=
{ map_add := f.map_add }
end
end ring_hom
/-- Inversion is a group homomorphism if the group is commutative. -/
@[to_additive neg.is_add_group_hom
"Negation is an `add_group` homomorphism if the `add_group` is commutative."]
lemma inv.is_group_hom [comm_group α] : is_group_hom (has_inv.inv : α → α) :=
{ map_mul := mul_inv }
/-- The difference of two additive group homomorphisms is an additive group
homomorphism if the target is commutative. -/
lemma is_add_group_hom.sub {α β} [add_group α] [add_comm_group β]
{f g : α → β} (hf : is_add_group_hom f) (hg : is_add_group_hom g) :
is_add_group_hom (λa, f a - g a) :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg
namespace units
variables {M : Type*} {N : Type*} [monoid M] [monoid N]
/-- The group homomorphism on units induced by a multiplicative morphism. -/
@[reducible] def map' {f : M → N} (hf : is_monoid_hom f) : Mˣ →* Nˣ :=
map (monoid_hom.of hf)
@[simp] lemma coe_map' {f : M → N} (hf : is_monoid_hom f) (x : Mˣ) :
↑((map' hf : Mˣ → Nˣ) x) = f x :=
rfl
lemma coe_is_monoid_hom : is_monoid_hom (coe : Mˣ → M) := (coe_hom M).is_monoid_hom_coe
end units
namespace is_unit
variables {M : Type*} {N : Type*} [monoid M] [monoid N] {x : M}
lemma map' {f : M → N} (hf :is_monoid_hom f) {x : M} (h : is_unit x) :
is_unit (f x) :=
h.map (monoid_hom.of hf)
end is_unit
lemma additive.is_add_hom [has_mul α] [has_mul β] {f : α → β} (hf : is_mul_hom f) :
@is_add_hom (additive α) (additive β) _ _ f :=
{ map_add := is_mul_hom.map_mul hf }
lemma multiplicative.is_mul_hom [has_add α] [has_add β] {f : α → β} (hf : is_add_hom f) :
@is_mul_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_mul := is_add_hom.map_add hf }
-- defeq abuse
lemma additive.is_add_monoid_hom [mul_one_class α] [mul_one_class β] {f : α → β}
(hf : is_monoid_hom f) : @is_add_monoid_hom (additive α) (additive β) _ _ f :=
{ map_zero := hf.map_one,
..additive.is_add_hom hf.to_is_mul_hom }
lemma multiplicative.is_monoid_hom
[add_zero_class α] [add_zero_class β] {f : α → β} (hf : is_add_monoid_hom f) :
@is_monoid_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_one := is_add_monoid_hom.map_zero hf,
..multiplicative.is_mul_hom hf.to_is_add_hom }
lemma additive.is_add_group_hom [group α] [group β] {f : α → β} (hf : is_group_hom f) :
@is_add_group_hom (additive α) (additive β) _ _ f :=
{ map_add := hf.to_is_mul_hom.map_mul }
lemma multiplicative.is_group_hom [add_group α] [add_group β] {f : α → β}
(hf : is_add_group_hom f) : @is_group_hom (multiplicative α) (multiplicative β) _ _ f :=
{ map_mul := hf.to_is_add_hom.map_add }