Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
25.2 kB
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mitchell Rowett, Scott Morrison, Johan Commelin, Mario Carneiro,
Michael Howes
-/
import group_theory.subgroup.basic
import deprecated.submonoid
/-!
# Unbundled subgroups (deprecated)
This file is deprecated, and is no longer imported by anything in mathlib other than other
deprecated files, and test files. You should not need to import it.
This file defines unbundled multiplicative and additive subgroups. Instead of using this file,
please use `subgroup G` and `add_subgroup A`, defined in `group_theory.subgroup.basic`.
## Main definitions
`is_add_subgroup (S : set A)` : the predicate that `S` is the underlying subset of an additive
subgroup of `A`. The bundled variant `add_subgroup A` should be used in preference to this.
`is_subgroup (S : set G)` : the predicate that `S` is the underlying subset of a subgroup
of `G`. The bundled variant `subgroup G` should be used in preference to this.
## Tags
subgroup, subgroups, is_subgroup
-/
open set function
variables {G : Type*} {H : Type*} {A : Type*} {a a₁ a₂ b c: G}
section group
variables [group G] [add_group A]
/-- `s` is an additive subgroup: a set containing 0 and closed under addition and negation. -/
structure is_add_subgroup (s : set A) extends is_add_submonoid s : Prop :=
(neg_mem {a} : a ∈ s → -a ∈ s)
/-- `s` is a subgroup: a set containing 1 and closed under multiplication and inverse. -/
@[to_additive]
structure is_subgroup (s : set G) extends is_submonoid s : Prop :=
(inv_mem {a} : a ∈ s → a⁻¹ ∈ s)
@[to_additive]
lemma is_subgroup.div_mem {s : set G} (hs : is_subgroup s) {x y : G} (hx : x ∈ s) (hy : y ∈ s) :
x / y ∈ s :=
by simpa only [div_eq_mul_inv] using hs.mul_mem hx (hs.inv_mem hy)
lemma additive.is_add_subgroup
{s : set G} (hs : is_subgroup s) : @is_add_subgroup (additive G) _ s :=
@is_add_subgroup.mk (additive G) _ _ (additive.is_add_submonoid hs.to_is_submonoid)
hs.inv_mem
theorem additive.is_add_subgroup_iff
{s : set G} : @is_add_subgroup (additive G) _ s ↔ is_subgroup s :=
by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_subgroup.mk G _ _ ⟨h₁, @h₂⟩ @h₃,
λ h, by exactI additive.is_add_subgroup h⟩
lemma multiplicative.is_subgroup
{s : set A} (hs : is_add_subgroup s) : @is_subgroup (multiplicative A) _ s :=
@is_subgroup.mk (multiplicative A) _ _ (multiplicative.is_submonoid hs.to_is_add_submonoid)
hs.neg_mem
theorem multiplicative.is_subgroup_iff
{s : set A} : @is_subgroup (multiplicative A) _ s ↔ is_add_subgroup s :=
by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_add_subgroup.mk A _ _ ⟨h₁, @h₂⟩ @h₃,
λ h, by exactI multiplicative.is_subgroup h⟩
@[to_additive of_add_neg]
theorem is_subgroup.of_div (s : set G)
(one_mem : (1:G) ∈ s) (div_mem : ∀{a b:G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s) :
is_subgroup s :=
have inv_mem : ∀a, a ∈ s → a⁻¹ ∈ s, from
assume a ha,
have 1 * a⁻¹ ∈ s, from div_mem one_mem ha,
by simpa,
{ inv_mem := inv_mem,
mul_mem := assume a b ha hb,
have a * b⁻¹⁻¹ ∈ s, from div_mem ha (inv_mem b hb),
by simpa,
one_mem := one_mem }
theorem is_add_subgroup.of_sub (s : set A)
(zero_mem : (0:A) ∈ s) (sub_mem : ∀{a b:A}, a ∈ s → b ∈ s → a - b ∈ s) :
is_add_subgroup s :=
is_add_subgroup.of_add_neg s zero_mem
(λ x y hx hy, by simpa only [sub_eq_add_neg] using sub_mem hx hy)
@[to_additive]
lemma is_subgroup.inter {s₁ s₂ : set G} (hs₁ : is_subgroup s₁) (hs₂ : is_subgroup s₂) :
is_subgroup (s₁ ∩ s₂) :=
{ inv_mem := λ x hx, ⟨hs₁.inv_mem hx.1, hs₂.inv_mem hx.2⟩,
..is_submonoid.inter hs₁.to_is_submonoid hs₂.to_is_submonoid}
@[to_additive]
lemma is_subgroup.Inter {ι : Sort*} {s : ι → set G} (hs : ∀ y : ι, is_subgroup (s y)) :
is_subgroup (set.Inter s) :=
{ inv_mem := λ x h, set.mem_Inter.2 $ λ y, is_subgroup.inv_mem (hs _) (set.mem_Inter.1 h y),
..is_submonoid.Inter (λ y, (hs y).to_is_submonoid) }
@[to_additive]
lemma is_subgroup_Union_of_directed {ι : Type*} [hι : nonempty ι]
{s : ι → set G} (hs : ∀ i, is_subgroup (s i))
(directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) :
is_subgroup (⋃i, s i) :=
{ inv_mem := λ a ha,
let ⟨i, hi⟩ := set.mem_Union.1 ha in
set.mem_Union.2 ⟨i, (hs i).inv_mem hi⟩,
to_is_submonoid := is_submonoid_Union_of_directed (λ i, (hs i).to_is_submonoid) directed }
end group
namespace is_subgroup
open is_submonoid
variables [group G] {s : set G} (hs : is_subgroup s)
include hs
@[to_additive]
lemma inv_mem_iff : a⁻¹ ∈ s ↔ a ∈ s :=
⟨λ h, by simpa using hs.inv_mem h, inv_mem hs⟩
@[to_additive]
lemma mul_mem_cancel_right (h : a ∈ s) : b * a ∈ s ↔ b ∈ s :=
⟨λ hba, by simpa using hs.mul_mem hba (hs.inv_mem h), λ hb, hs.mul_mem hb h⟩
@[to_additive]
lemma mul_mem_cancel_left (h : a ∈ s) : a * b ∈ s ↔ b ∈ s :=
⟨λ hab, by simpa using hs.mul_mem (hs.inv_mem h) hab, hs.mul_mem h⟩
end is_subgroup
/-- `is_normal_add_subgroup (s : set A)` expresses the fact that `s` is a normal additive subgroup
of the additive group `A`. Important: the preferred way to say this in Lean is via bundled
subgroups `S : add_subgroup A` and `hs : S.normal`, and not via this structure. -/
structure is_normal_add_subgroup [add_group A] (s : set A) extends is_add_subgroup s : Prop :=
(normal : ∀ n ∈ s, ∀ g : A, g + n + -g ∈ s)
/-- `is_normal_subgroup (s : set G)` expresses the fact that `s` is a normal subgroup
of the group `G`. Important: the preferred way to say this in Lean is via bundled
subgroups `S : subgroup G` and not via this structure. -/
@[to_additive]
structure is_normal_subgroup [group G] (s : set G) extends is_subgroup s : Prop :=
(normal : ∀ n ∈ s, ∀ g : G, g * n * g⁻¹ ∈ s)
@[to_additive]
lemma is_normal_subgroup_of_comm_group [comm_group G] {s : set G} (hs : is_subgroup s) :
is_normal_subgroup s :=
{ normal := λ n hn g, by rwa [mul_right_comm, mul_right_inv, one_mul],
..hs }
lemma additive.is_normal_add_subgroup [group G]
{s : set G} (hs : is_normal_subgroup s) : @is_normal_add_subgroup (additive G) _ s :=
@is_normal_add_subgroup.mk (additive G) _ _
(additive.is_add_subgroup hs.to_is_subgroup)
(is_normal_subgroup.normal hs)
theorem additive.is_normal_add_subgroup_iff [group G]
{s : set G} : @is_normal_add_subgroup (additive G) _ s ↔ is_normal_subgroup s :=
by rintro ⟨h₁, h₂⟩; exact
@is_normal_subgroup.mk G _ _ (additive.is_add_subgroup_iff.1 h₁) @h₂,
λ h, by exactI additive.is_normal_add_subgroup h⟩
lemma multiplicative.is_normal_subgroup [add_group A]
{s : set A} (hs : is_normal_add_subgroup s) : @is_normal_subgroup (multiplicative A) _ s :=
@is_normal_subgroup.mk (multiplicative A) _ _
(multiplicative.is_subgroup hs.to_is_add_subgroup)
(is_normal_add_subgroup.normal hs)
theorem multiplicative.is_normal_subgroup_iff [add_group A]
{s : set A} : @is_normal_subgroup (multiplicative A) _ s ↔ is_normal_add_subgroup s :=
by rintro ⟨h₁, h₂⟩; exact
@is_normal_add_subgroup.mk A _ _ (multiplicative.is_subgroup_iff.1 h₁) @h₂,
λ h, by exactI multiplicative.is_normal_subgroup h⟩
namespace is_subgroup
variable [group G]
-- Normal subgroup properties
@[to_additive]
lemma mem_norm_comm {s : set G} (hs : is_normal_subgroup s) {a b : G} (hab : a * b ∈ s) :
b * a ∈ s :=
have h : a⁻¹ * (a * b) * a⁻¹⁻¹ ∈ s, from hs.normal (a * b) hab a⁻¹,
by simp at h; exact h
@[to_additive]
lemma mem_norm_comm_iff {s : set G} (hs : is_normal_subgroup s) {a b : G} : a * b ∈ s ↔ b * a ∈ s :=
⟨mem_norm_comm hs, mem_norm_comm hs⟩
/-- The trivial subgroup -/
@[to_additive "the trivial additive subgroup"]
def trivial (G : Type*) [group G] : set G := {1}
@[simp, to_additive]
lemma mem_trivial {g : G} : g ∈ trivial G ↔ g = 1 :=
mem_singleton_iff
@[to_additive]
lemma trivial_normal : is_normal_subgroup (trivial G) :=
by refine {..}; simp [trivial] {contextual := tt}
@[to_additive]
lemma eq_trivial_iff {s : set G} (hs : is_subgroup s) :
s = trivial G ↔ (∀ x ∈ s, x = (1 : G)) :=
by simp only [set.ext_iff, is_subgroup.mem_trivial];
exact ⟨λ h x, (h x).1, λ h x, ⟨h x, λ hx, hx.symm ▸ hs.to_is_submonoid.one_mem⟩⟩
@[to_additive]
lemma univ_subgroup : is_normal_subgroup (@univ G) :=
by refine {..}; simp
/-- The underlying set of the center of a group. -/
@[to_additive add_center "The underlying set of the center of an additive group."]
def center (G : Type*) [group G] : set G := {z | ∀ g, g * z = z * g}
@[to_additive mem_add_center]
lemma mem_center {a : G} : a ∈ center G ↔ ∀g, g * a = a * g := iff.rfl
@[to_additive add_center_normal]
lemma center_normal : is_normal_subgroup (center G) :=
{ one_mem := by simp [center],
mul_mem := assume a b ha hb g,
by rw [←mul_assoc, mem_center.2 ha g, mul_assoc, mem_center.2 hb g, ←mul_assoc],
inv_mem := assume a ha g,
calc
g * a⁻¹ = a⁻¹ * (g * a) * a⁻¹ : by simp [ha g]
... = a⁻¹ * g : by rw [←mul_assoc, mul_assoc]; simp,
normal := assume n ha g h,
calc
h * (g * n * g⁻¹) = h * n : by simp [ha g, mul_assoc]
... = g * g⁻¹ * n * h : by rw ha h; simp
... = g * n * g⁻¹ * h : by rw [mul_assoc g, ha g⁻¹, ←mul_assoc] }
/-- The underlying set of the normalizer of a subset `S : set G` of a group `G`. That is,
the elements `g : G` such that `g * S * g⁻¹ = S`. -/
@[to_additive add_normalizer "The underlying set of the normalizer of a subset `S : set A` of an
additive group `A`. That is, the elements `a : A` such that `a + S - a = S`."]
def normalizer (s : set G) : set G :=
{g : G | ∀ n, n ∈ s ↔ g * n * g⁻¹ ∈ s}
@[to_additive]
lemma normalizer_is_subgroup (s : set G) : is_subgroup (normalizer s) :=
{ one_mem := by simp [normalizer],
mul_mem := λ a b (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s)
(hb : ∀ n, n ∈ s ↔ b * n * b⁻¹ ∈ s) n,
by rw [mul_inv_rev, ← mul_assoc, mul_assoc a, mul_assoc a, ← ha, ← hb],
inv_mem := λ a (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s) n,
by rw [ha (a⁻¹ * n * a⁻¹⁻¹)];
simp [mul_assoc] }
@[to_additive subset_add_normalizer]
lemma subset_normalizer {s : set G} (hs : is_subgroup s) : s ⊆ normalizer s :=
λ g hg n, by rw [is_subgroup.mul_mem_cancel_right hs ((is_subgroup.inv_mem_iff hs).2 hg),
is_subgroup.mul_mem_cancel_left hs hg]
end is_subgroup
-- Homomorphism subgroups
namespace is_group_hom
open is_submonoid is_subgroup
/-- `ker f : set G` is the underlying subset of the kernel of a map `G → H`. -/
@[to_additive "`ker f : set A` is the underlying subset of the kernel of a map `A → B`"]
def ker [group H] (f : G → H) : set G := preimage f (trivial H)
@[to_additive]
lemma mem_ker [group H] (f : G → H) {x : G} : x ∈ ker f ↔ f x = 1 :=
mem_trivial
variables [group G] [group H]
@[to_additive]
lemma one_ker_inv {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a * b⁻¹) = 1) : f a = f b :=
begin
rw [hf.map_mul, hf.map_inv] at h,
rw [←inv_inv (f b), eq_inv_of_mul_eq_one_left h]
end
@[to_additive]
lemma one_ker_inv' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a⁻¹ * b) = 1) : f a = f b :=
begin
rw [hf.map_mul, hf.map_inv] at h,
apply inv_injective,
rw eq_inv_of_mul_eq_one_left h
end
@[to_additive]
lemma inv_ker_one {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a * b⁻¹) = 1 :=
have f a * (f b)⁻¹ = 1, by rw [h, mul_right_inv],
by rwa [←hf.map_inv, ←hf.map_mul] at this
@[to_additive]
lemma inv_ker_one' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a⁻¹ * b) = 1 :=
have (f a)⁻¹ * f b = 1, by rw [h, mul_left_inv],
by rwa [←hf.map_inv, ←hf.map_mul] at this
@[to_additive]
lemma one_iff_ker_inv {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a * b⁻¹) = 1 :=
⟨hf.inv_ker_one, hf.one_ker_inv⟩
@[to_additive]
lemma one_iff_ker_inv' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a⁻¹ * b) = 1 :=
⟨hf.inv_ker_one', hf.one_ker_inv'⟩
@[to_additive]
lemma inv_iff_ker {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a * b⁻¹ ∈ ker f :=
by rw [mem_ker]; exact one_iff_ker_inv hf _ _
@[to_additive]
lemma inv_iff_ker' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a⁻¹ * b ∈ ker f :=
by rw [mem_ker]; exact one_iff_ker_inv' hf _ _
@[to_additive]
lemma image_subgroup {f : G → H} (hf : is_group_hom f) {s : set G} (hs : is_subgroup s) :
is_subgroup (f '' s) :=
{ mul_mem := assume a₁ a₂ ⟨b₁, hb₁, eq₁⟩ ⟨b₂, hb₂, eq₂⟩,
⟨b₁ * b₂, hs.mul_mem hb₁ hb₂, by simp [eq₁, eq₂, hf.map_mul]⟩,
one_mem := ⟨1, hs.to_is_submonoid.one_mem, hf.map_one⟩,
inv_mem := assume a ⟨b, hb, eq⟩, ⟨b⁻¹, hs.inv_mem hb, by { rw hf.map_inv, simp * }⟩ }
@[to_additive]
lemma range_subgroup {f : G → H} (hf : is_group_hom f) : is_subgroup (set.range f) :=
@set.image_univ _ _ f ▸ hf.image_subgroup univ_subgroup.to_is_subgroup
local attribute [simp] one_mem inv_mem mul_mem is_normal_subgroup.normal
@[to_additive]
lemma preimage {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_subgroup s) :
is_subgroup (f ⁻¹' s) :=
by { refine {..};
simp [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv,
inv_mem_class.inv_mem]
{contextual := tt} }
@[to_additive]
lemma preimage_normal {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_normal_subgroup s) :
is_normal_subgroup (f ⁻¹' s) :=
{ one_mem := by simp [hf.map_one, hs.to_is_subgroup.one_mem],
mul_mem := by simp [hf.map_mul, hs.to_is_subgroup.mul_mem] {contextual := tt},
inv_mem := by simp [hf.map_inv, hs.to_is_subgroup.inv_mem] {contextual := tt},
normal := by simp [hs.normal, hf.map_mul, hf.map_inv] {contextual := tt}}
@[to_additive]
lemma is_normal_subgroup_ker {f : G → H} (hf : is_group_hom f) : is_normal_subgroup (ker f) :=
hf.preimage_normal (trivial_normal)
@[to_additive]
lemma injective_of_trivial_ker {f : G → H} (hf : is_group_hom f) (h : ker f = trivial G) :
function.injective f :=
begin
intros a₁ a₂ hfa,
simp [ext_iff, ker, is_subgroup.trivial] at h,
have ha : a₁ * a₂⁻¹ = 1, by rw ←h; exact hf.inv_ker_one hfa,
rw [eq_inv_of_mul_eq_one_left ha, inv_inv a₂]
end
@[to_additive]
lemma trivial_ker_of_injective {f : G → H} (hf : is_group_hom f) (h : function.injective f) :
ker f = trivial G :=
set.ext $ assume x, iff.intro
(assume hx,
suffices f x = f 1, by simpa using h this,
by simp [hf.map_one]; rwa [mem_ker] at hx)
(by simp [mem_ker, hf.map_one] {contextual := tt})
@[to_additive]
lemma injective_iff_trivial_ker {f : G → H} (hf : is_group_hom f) :
function.injective f ↔ ker f = trivial G :=
⟨hf.trivial_ker_of_injective, hf.injective_of_trivial_ker⟩
@[to_additive]
lemma trivial_ker_iff_eq_one {f : G → H} (hf : is_group_hom f) :
ker f = trivial G ↔ ∀ x, f x = 1 → x = 1 :=
by rw set.ext_iff; simp [ker]; exact
⟨λ h x hx, (h x).1 hx, λ h x, ⟨h x, λ hx, by rw [hx, hf.map_one]⟩⟩
end is_group_hom
namespace add_group
variables [add_group A]
/-- If `A` is an additive group and `s : set A`, then `in_closure s : set A` is the underlying
subset of the subgroup generated by `s`. -/
inductive in_closure (s : set A) : A → Prop
| basic {a : A} : a ∈ s → in_closure a
| zero : in_closure 0
| neg {a : A} : in_closure a → in_closure (-a)
| add {a b : A} : in_closure a → in_closure b → in_closure (a + b)
end add_group
namespace group
open is_submonoid is_subgroup
variables [group G] {s : set G}
/-- If `G` is a group and `s : set G`, then `in_closure s : set G` is the underlying
subset of the subgroup generated by `s`. -/
@[to_additive]
inductive in_closure (s : set G) : G → Prop
| basic {a : G} : a ∈ s → in_closure a
| one : in_closure 1
| inv {a : G} : in_closure a → in_closure a⁻¹
| mul {a b : G} : in_closure a → in_closure b → in_closure (a * b)
/-- `group.closure s` is the subgroup generated by `s`, i.e. the smallest subgroup containg `s`. -/
@[to_additive "`add_group.closure s` is the additive subgroup generated by `s`, i.e., the
smallest additive subgroup containing `s`."]
def closure (s : set G) : set G := {a | in_closure s a }
@[to_additive]
lemma mem_closure {a : G} : a ∈ s → a ∈ closure s := in_closure.basic
@[to_additive]
lemma closure.is_subgroup (s : set G) : is_subgroup (closure s) :=
{ one_mem := in_closure.one,
mul_mem := assume a b, in_closure.mul,
inv_mem := assume a, in_closure.inv }
@[to_additive]
theorem subset_closure {s : set G} : s ⊆ closure s := λ a, mem_closure
@[to_additive]
theorem closure_subset {s t : set G} (ht : is_subgroup t) (h : s ⊆ t) : closure s ⊆ t :=
assume a ha, by induction ha; simp [h _, *, ht.one_mem, ht.mul_mem, is_subgroup.inv_mem_iff]
@[to_additive]
lemma closure_subset_iff {s t : set G} (ht : is_subgroup t) : closure s ⊆ t ↔ s ⊆ t :=
⟨assume h b ha, h (mem_closure ha), assume h b ha, closure_subset ht h ha⟩
@[to_additive]
theorem closure_mono {s t : set G} (h : s ⊆ t) : closure s ⊆ closure t :=
closure_subset (closure.is_subgroup _) $ set.subset.trans h subset_closure
@[simp, to_additive]
lemma closure_subgroup {s : set G} (hs : is_subgroup s) : closure s = s :=
set.subset.antisymm (closure_subset hs $ set.subset.refl s) subset_closure
@[to_additive]
theorem exists_list_of_mem_closure {s : set G} {a : G} (h : a ∈ closure s) :
(∃l:list G, (∀x∈l, x ∈ s ∨ x⁻¹ ∈ s) ∧ l.prod = a) :=
in_closure.rec_on h
(λ x hxs, ⟨[x], list.forall_mem_singleton.2 $ or.inl hxs, one_mul _⟩)
⟨[], list.forall_mem_nil _, rfl⟩
(λ x _ ⟨L, HL1, HL2⟩, ⟨L.reverse.map has_inv.inv,
λ x hx, let ⟨y, hy1, hy2⟩ := list.exists_of_mem_map hx in
hy2 ▸ or.imp id (by rw [inv_inv]; exact id) (HL1 _ $ list.mem_reverse.1 hy1).symm,
HL2 ▸ list.rec_on L inv_one.symm (λ hd tl ih,
by rw [list.reverse_cons, list.map_append, list.prod_append, ih, list.map_singleton,
list.prod_cons, list.prod_nil, mul_one, list.prod_cons, mul_inv_rev])⟩)
(λ x y hx hy ⟨L1, HL1, HL2⟩ ⟨L2, HL3, HL4⟩, ⟨L1 ++ L2, list.forall_mem_append.2 ⟨HL1, HL3⟩,
by rw [list.prod_append, HL2, HL4]⟩)
@[to_additive]
lemma image_closure [group H] {f : G → H} (hf : is_group_hom f) (s : set G) :
f '' closure s = closure (f '' s) :=
le_antisymm
begin
rintros _ ⟨x, hx, rfl⟩,
apply in_closure.rec_on hx; intros,
{ solve_by_elim [subset_closure, set.mem_image_of_mem] },
{ rw [hf.to_is_monoid_hom.map_one],
apply is_submonoid.one_mem (closure.is_subgroup _).to_is_submonoid, },
{ rw [hf.map_inv],
apply is_subgroup.inv_mem (closure.is_subgroup _), assumption },
{ rw [hf.to_is_monoid_hom.map_mul],
solve_by_elim [is_submonoid.mul_mem (closure.is_subgroup _).to_is_submonoid] }
end
(closure_subset (hf.image_subgroup $ closure.is_subgroup _) $ set.image_subset _ subset_closure)
@[to_additive]
theorem mclosure_subset {s : set G} : monoid.closure s ⊆ closure s :=
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ subset_closure
@[to_additive]
theorem mclosure_inv_subset {s : set G} : monoid.closure (has_inv.inv ⁻¹' s) ⊆ closure s :=
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ λ x hx,
inv_inv x ▸ ((closure.is_subgroup _).inv_mem $ subset_closure hx)
@[to_additive]
theorem closure_eq_mclosure {s : set G} : closure s = monoid.closure (s ∪ has_inv.inv ⁻¹' s) :=
set.subset.antisymm
(@closure_subset _ _ _ (monoid.closure (s ∪ has_inv.inv ⁻¹' s))
{ one_mem := (monoid.closure.is_submonoid _).one_mem,
mul_mem := (monoid.closure.is_submonoid _).mul_mem,
inv_mem := λ x hx, monoid.in_closure.rec_on hx
(λ x hx, or.cases_on hx (λ hx, monoid.subset_closure $ or.inr $
show x⁻¹⁻¹ ∈ s, from (inv_inv x).symm ▸ hx)
(λ hx, monoid.subset_closure $ or.inl hx))
((@inv_one G _).symm ▸ is_submonoid.one_mem (monoid.closure.is_submonoid _))
(λ x y hx hy ihx ihy,
(mul_inv_rev x y).symm ▸ is_submonoid.mul_mem (monoid.closure.is_submonoid _) ihy ihx) }
(set.subset.trans (set.subset_union_left _ _) monoid.subset_closure))
(monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ set.union_subset subset_closure $
λ x hx, inv_inv x ▸ (is_subgroup.inv_mem (closure.is_subgroup _) $ subset_closure hx))
@[to_additive]
theorem mem_closure_union_iff {G : Type*} [comm_group G] {s t : set G} {x : G} :
x ∈ closure (s ∪ t) ↔ ∃ y ∈ closure s, ∃ z ∈ closure t, y * z = x :=
begin
simp only [closure_eq_mclosure, monoid.mem_closure_union_iff, exists_prop, preimage_union], split,
{ rintro ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, rfl⟩,
refine ⟨_, ⟨_, hys, _, hzs, rfl⟩, _, ⟨_, hyt, _, hzt, rfl⟩, _⟩,
rw [mul_assoc, mul_assoc, mul_left_comm zs] },
{ rintro ⟨_, ⟨ys, hys, zs, hzs, rfl⟩, _, ⟨yt, hyt, zt, hzt, rfl⟩, rfl⟩,
refine ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, _⟩,
rw [mul_assoc, mul_assoc, mul_left_comm yt] }
end
end group
namespace is_subgroup
variable [group G]
@[to_additive]
lemma trivial_eq_closure : trivial G = group.closure ∅ :=
subset.antisymm
(by simp [set.subset_def, (group.closure.is_subgroup _).one_mem])
(group.closure_subset (trivial_normal).to_is_subgroup $ by simp)
end is_subgroup
/-The normal closure of a set s is the subgroup closure of all the conjugates of
elements of s. It is the smallest normal subgroup containing s. -/
namespace group
variables {s : set G} [group G]
lemma conjugates_of_subset {t : set G} (ht : is_normal_subgroup t) {a : G} (h : a ∈ t) :
conjugates_of a ⊆ t :=
λ x hc,
begin
obtain ⟨c, w⟩ := is_conj_iff.1 hc,
have H := is_normal_subgroup.normal ht a h c,
rwa ←w,
end
theorem conjugates_of_set_subset' {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) :
conjugates_of_set s ⊆ t :=
set.Union₂_subset (λ x H, conjugates_of_subset ht (h H))
/-- The normal closure of a set s is the subgroup closure of all the conjugates of
elements of s. It is the smallest normal subgroup containing s. -/
def normal_closure (s : set G) : set G := closure (conjugates_of_set s)
theorem conjugates_of_set_subset_normal_closure : conjugates_of_set s ⊆ normal_closure s :=
subset_closure
theorem subset_normal_closure : s ⊆ normal_closure s :=
set.subset.trans subset_conjugates_of_set conjugates_of_set_subset_normal_closure
/-- The normal closure of a set is a subgroup. -/
lemma normal_closure.is_subgroup (s : set G) : is_subgroup (normal_closure s) :=
closure.is_subgroup (conjugates_of_set s)
/-- The normal closure of s is a normal subgroup. -/
lemma normal_closure.is_normal : is_normal_subgroup (normal_closure s) :=
{ normal := λ n h g,
begin
induction h with x hx x hx ihx x y hx hy ihx ihy,
{exact (conjugates_of_set_subset_normal_closure (conj_mem_conjugates_of_set hx))},
{simpa using (normal_closure.is_subgroup s).one_mem},
{rw ←conj_inv,
exact ((normal_closure.is_subgroup _).inv_mem ihx)},
{rw ←conj_mul,
exact ((normal_closure.is_subgroup _).to_is_submonoid.mul_mem ihx ihy)},
end,
..normal_closure.is_subgroup _ }
/-- The normal closure of s is the smallest normal subgroup containing s. -/
theorem normal_closure_subset {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) :
normal_closure s ⊆ t :=
λ a w,
begin
induction w with x hx x hx ihx x y hx hy ihx ihy,
{exact (conjugates_of_set_subset' ht h $ hx)},
{exact ht.to_is_subgroup.to_is_submonoid.one_mem},
{exact ht.to_is_subgroup.inv_mem ihx},
{exact ht.to_is_subgroup.to_is_submonoid.mul_mem ihx ihy}
end
lemma normal_closure_subset_iff {s t : set G} (ht : is_normal_subgroup t) :
s ⊆ t ↔ normal_closure s ⊆ t :=
⟨normal_closure_subset ht, set.subset.trans (subset_normal_closure)⟩
theorem normal_closure_mono {s t : set G} : s ⊆ t → normal_closure s ⊆ normal_closure t :=
λ h, normal_closure_subset normal_closure.is_normal (set.subset.trans h (subset_normal_closure))
end group
/-- Create a bundled subgroup from a set `s` and `[is_subgroup s]`. -/
@[to_additive "Create a bundled additive subgroup from a set `s` and `[is_add_subgroup s]`."]
def subgroup.of [group G] {s : set G} (h : is_subgroup s) : subgroup G :=
{ carrier := s,
one_mem' := h.1.1,
mul_mem' := h.1.2,
inv_mem' := h.2 }
@[to_additive]
lemma subgroup.is_subgroup [group G] (K : subgroup G) : is_subgroup (K : set G) :=
{ one_mem := K.one_mem',
mul_mem := K.mul_mem',
inv_mem := K.inv_mem' }
-- this will never fire if it's an instance
@[to_additive]
lemma subgroup.of_normal [group G] (s : set G) (h : is_subgroup s) (n : is_normal_subgroup s) :
subgroup.normal (subgroup.of h) :=
{ conj_mem := n.normal, }