Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mitchell Rowett, Scott Morrison, Johan Commelin, Mario Carneiro, | |
Michael Howes | |
-/ | |
import group_theory.subgroup.basic | |
import deprecated.submonoid | |
/-! | |
# Unbundled subgroups (deprecated) | |
This file is deprecated, and is no longer imported by anything in mathlib other than other | |
deprecated files, and test files. You should not need to import it. | |
This file defines unbundled multiplicative and additive subgroups. Instead of using this file, | |
please use `subgroup G` and `add_subgroup A`, defined in `group_theory.subgroup.basic`. | |
## Main definitions | |
`is_add_subgroup (S : set A)` : the predicate that `S` is the underlying subset of an additive | |
subgroup of `A`. The bundled variant `add_subgroup A` should be used in preference to this. | |
`is_subgroup (S : set G)` : the predicate that `S` is the underlying subset of a subgroup | |
of `G`. The bundled variant `subgroup G` should be used in preference to this. | |
## Tags | |
subgroup, subgroups, is_subgroup | |
-/ | |
open set function | |
variables {G : Type*} {H : Type*} {A : Type*} {a a₁ a₂ b c: G} | |
section group | |
variables [group G] [add_group A] | |
/-- `s` is an additive subgroup: a set containing 0 and closed under addition and negation. -/ | |
structure is_add_subgroup (s : set A) extends is_add_submonoid s : Prop := | |
(neg_mem {a} : a ∈ s → -a ∈ s) | |
/-- `s` is a subgroup: a set containing 1 and closed under multiplication and inverse. -/ | |
@[to_additive] | |
structure is_subgroup (s : set G) extends is_submonoid s : Prop := | |
(inv_mem {a} : a ∈ s → a⁻¹ ∈ s) | |
@[to_additive] | |
lemma is_subgroup.div_mem {s : set G} (hs : is_subgroup s) {x y : G} (hx : x ∈ s) (hy : y ∈ s) : | |
x / y ∈ s := | |
by simpa only [div_eq_mul_inv] using hs.mul_mem hx (hs.inv_mem hy) | |
lemma additive.is_add_subgroup | |
{s : set G} (hs : is_subgroup s) : @is_add_subgroup (additive G) _ s := | |
@is_add_subgroup.mk (additive G) _ _ (additive.is_add_submonoid hs.to_is_submonoid) | |
hs.inv_mem | |
theorem additive.is_add_subgroup_iff | |
{s : set G} : @is_add_subgroup (additive G) _ s ↔ is_subgroup s := | |
⟨by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_subgroup.mk G _ _ ⟨h₁, @h₂⟩ @h₃, | |
λ h, by exactI additive.is_add_subgroup h⟩ | |
lemma multiplicative.is_subgroup | |
{s : set A} (hs : is_add_subgroup s) : @is_subgroup (multiplicative A) _ s := | |
@is_subgroup.mk (multiplicative A) _ _ (multiplicative.is_submonoid hs.to_is_add_submonoid) | |
hs.neg_mem | |
theorem multiplicative.is_subgroup_iff | |
{s : set A} : @is_subgroup (multiplicative A) _ s ↔ is_add_subgroup s := | |
⟨by rintro ⟨⟨h₁, h₂⟩, h₃⟩; exact @is_add_subgroup.mk A _ _ ⟨h₁, @h₂⟩ @h₃, | |
λ h, by exactI multiplicative.is_subgroup h⟩ | |
@[to_additive of_add_neg] | |
theorem is_subgroup.of_div (s : set G) | |
(one_mem : (1:G) ∈ s) (div_mem : ∀{a b:G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s) : | |
is_subgroup s := | |
have inv_mem : ∀a, a ∈ s → a⁻¹ ∈ s, from | |
assume a ha, | |
have 1 * a⁻¹ ∈ s, from div_mem one_mem ha, | |
by simpa, | |
{ inv_mem := inv_mem, | |
mul_mem := assume a b ha hb, | |
have a * b⁻¹⁻¹ ∈ s, from div_mem ha (inv_mem b hb), | |
by simpa, | |
one_mem := one_mem } | |
theorem is_add_subgroup.of_sub (s : set A) | |
(zero_mem : (0:A) ∈ s) (sub_mem : ∀{a b:A}, a ∈ s → b ∈ s → a - b ∈ s) : | |
is_add_subgroup s := | |
is_add_subgroup.of_add_neg s zero_mem | |
(λ x y hx hy, by simpa only [sub_eq_add_neg] using sub_mem hx hy) | |
@[to_additive] | |
lemma is_subgroup.inter {s₁ s₂ : set G} (hs₁ : is_subgroup s₁) (hs₂ : is_subgroup s₂) : | |
is_subgroup (s₁ ∩ s₂) := | |
{ inv_mem := λ x hx, ⟨hs₁.inv_mem hx.1, hs₂.inv_mem hx.2⟩, | |
..is_submonoid.inter hs₁.to_is_submonoid hs₂.to_is_submonoid} | |
@[to_additive] | |
lemma is_subgroup.Inter {ι : Sort*} {s : ι → set G} (hs : ∀ y : ι, is_subgroup (s y)) : | |
is_subgroup (set.Inter s) := | |
{ inv_mem := λ x h, set.mem_Inter.2 $ λ y, is_subgroup.inv_mem (hs _) (set.mem_Inter.1 h y), | |
..is_submonoid.Inter (λ y, (hs y).to_is_submonoid) } | |
@[to_additive] | |
lemma is_subgroup_Union_of_directed {ι : Type*} [hι : nonempty ι] | |
{s : ι → set G} (hs : ∀ i, is_subgroup (s i)) | |
(directed : ∀ i j, ∃ k, s i ⊆ s k ∧ s j ⊆ s k) : | |
is_subgroup (⋃i, s i) := | |
{ inv_mem := λ a ha, | |
let ⟨i, hi⟩ := set.mem_Union.1 ha in | |
set.mem_Union.2 ⟨i, (hs i).inv_mem hi⟩, | |
to_is_submonoid := is_submonoid_Union_of_directed (λ i, (hs i).to_is_submonoid) directed } | |
end group | |
namespace is_subgroup | |
open is_submonoid | |
variables [group G] {s : set G} (hs : is_subgroup s) | |
include hs | |
@[to_additive] | |
lemma inv_mem_iff : a⁻¹ ∈ s ↔ a ∈ s := | |
⟨λ h, by simpa using hs.inv_mem h, inv_mem hs⟩ | |
@[to_additive] | |
lemma mul_mem_cancel_right (h : a ∈ s) : b * a ∈ s ↔ b ∈ s := | |
⟨λ hba, by simpa using hs.mul_mem hba (hs.inv_mem h), λ hb, hs.mul_mem hb h⟩ | |
@[to_additive] | |
lemma mul_mem_cancel_left (h : a ∈ s) : a * b ∈ s ↔ b ∈ s := | |
⟨λ hab, by simpa using hs.mul_mem (hs.inv_mem h) hab, hs.mul_mem h⟩ | |
end is_subgroup | |
/-- `is_normal_add_subgroup (s : set A)` expresses the fact that `s` is a normal additive subgroup | |
of the additive group `A`. Important: the preferred way to say this in Lean is via bundled | |
subgroups `S : add_subgroup A` and `hs : S.normal`, and not via this structure. -/ | |
structure is_normal_add_subgroup [add_group A] (s : set A) extends is_add_subgroup s : Prop := | |
(normal : ∀ n ∈ s, ∀ g : A, g + n + -g ∈ s) | |
/-- `is_normal_subgroup (s : set G)` expresses the fact that `s` is a normal subgroup | |
of the group `G`. Important: the preferred way to say this in Lean is via bundled | |
subgroups `S : subgroup G` and not via this structure. -/ | |
@[to_additive] | |
structure is_normal_subgroup [group G] (s : set G) extends is_subgroup s : Prop := | |
(normal : ∀ n ∈ s, ∀ g : G, g * n * g⁻¹ ∈ s) | |
@[to_additive] | |
lemma is_normal_subgroup_of_comm_group [comm_group G] {s : set G} (hs : is_subgroup s) : | |
is_normal_subgroup s := | |
{ normal := λ n hn g, by rwa [mul_right_comm, mul_right_inv, one_mul], | |
..hs } | |
lemma additive.is_normal_add_subgroup [group G] | |
{s : set G} (hs : is_normal_subgroup s) : @is_normal_add_subgroup (additive G) _ s := | |
@is_normal_add_subgroup.mk (additive G) _ _ | |
(additive.is_add_subgroup hs.to_is_subgroup) | |
(is_normal_subgroup.normal hs) | |
theorem additive.is_normal_add_subgroup_iff [group G] | |
{s : set G} : @is_normal_add_subgroup (additive G) _ s ↔ is_normal_subgroup s := | |
⟨by rintro ⟨h₁, h₂⟩; exact | |
@is_normal_subgroup.mk G _ _ (additive.is_add_subgroup_iff.1 h₁) @h₂, | |
λ h, by exactI additive.is_normal_add_subgroup h⟩ | |
lemma multiplicative.is_normal_subgroup [add_group A] | |
{s : set A} (hs : is_normal_add_subgroup s) : @is_normal_subgroup (multiplicative A) _ s := | |
@is_normal_subgroup.mk (multiplicative A) _ _ | |
(multiplicative.is_subgroup hs.to_is_add_subgroup) | |
(is_normal_add_subgroup.normal hs) | |
theorem multiplicative.is_normal_subgroup_iff [add_group A] | |
{s : set A} : @is_normal_subgroup (multiplicative A) _ s ↔ is_normal_add_subgroup s := | |
⟨by rintro ⟨h₁, h₂⟩; exact | |
@is_normal_add_subgroup.mk A _ _ (multiplicative.is_subgroup_iff.1 h₁) @h₂, | |
λ h, by exactI multiplicative.is_normal_subgroup h⟩ | |
namespace is_subgroup | |
variable [group G] | |
-- Normal subgroup properties | |
@[to_additive] | |
lemma mem_norm_comm {s : set G} (hs : is_normal_subgroup s) {a b : G} (hab : a * b ∈ s) : | |
b * a ∈ s := | |
have h : a⁻¹ * (a * b) * a⁻¹⁻¹ ∈ s, from hs.normal (a * b) hab a⁻¹, | |
by simp at h; exact h | |
@[to_additive] | |
lemma mem_norm_comm_iff {s : set G} (hs : is_normal_subgroup s) {a b : G} : a * b ∈ s ↔ b * a ∈ s := | |
⟨mem_norm_comm hs, mem_norm_comm hs⟩ | |
/-- The trivial subgroup -/ | |
@[to_additive "the trivial additive subgroup"] | |
def trivial (G : Type*) [group G] : set G := {1} | |
@[simp, to_additive] | |
lemma mem_trivial {g : G} : g ∈ trivial G ↔ g = 1 := | |
mem_singleton_iff | |
@[to_additive] | |
lemma trivial_normal : is_normal_subgroup (trivial G) := | |
by refine {..}; simp [trivial] {contextual := tt} | |
@[to_additive] | |
lemma eq_trivial_iff {s : set G} (hs : is_subgroup s) : | |
s = trivial G ↔ (∀ x ∈ s, x = (1 : G)) := | |
by simp only [set.ext_iff, is_subgroup.mem_trivial]; | |
exact ⟨λ h x, (h x).1, λ h x, ⟨h x, λ hx, hx.symm ▸ hs.to_is_submonoid.one_mem⟩⟩ | |
@[to_additive] | |
lemma univ_subgroup : is_normal_subgroup (@univ G) := | |
by refine {..}; simp | |
/-- The underlying set of the center of a group. -/ | |
@[to_additive add_center "The underlying set of the center of an additive group."] | |
def center (G : Type*) [group G] : set G := {z | ∀ g, g * z = z * g} | |
@[to_additive mem_add_center] | |
lemma mem_center {a : G} : a ∈ center G ↔ ∀g, g * a = a * g := iff.rfl | |
@[to_additive add_center_normal] | |
lemma center_normal : is_normal_subgroup (center G) := | |
{ one_mem := by simp [center], | |
mul_mem := assume a b ha hb g, | |
by rw [←mul_assoc, mem_center.2 ha g, mul_assoc, mem_center.2 hb g, ←mul_assoc], | |
inv_mem := assume a ha g, | |
calc | |
g * a⁻¹ = a⁻¹ * (g * a) * a⁻¹ : by simp [ha g] | |
... = a⁻¹ * g : by rw [←mul_assoc, mul_assoc]; simp, | |
normal := assume n ha g h, | |
calc | |
h * (g * n * g⁻¹) = h * n : by simp [ha g, mul_assoc] | |
... = g * g⁻¹ * n * h : by rw ha h; simp | |
... = g * n * g⁻¹ * h : by rw [mul_assoc g, ha g⁻¹, ←mul_assoc] } | |
/-- The underlying set of the normalizer of a subset `S : set G` of a group `G`. That is, | |
the elements `g : G` such that `g * S * g⁻¹ = S`. -/ | |
@[to_additive add_normalizer "The underlying set of the normalizer of a subset `S : set A` of an | |
additive group `A`. That is, the elements `a : A` such that `a + S - a = S`."] | |
def normalizer (s : set G) : set G := | |
{g : G | ∀ n, n ∈ s ↔ g * n * g⁻¹ ∈ s} | |
@[to_additive] | |
lemma normalizer_is_subgroup (s : set G) : is_subgroup (normalizer s) := | |
{ one_mem := by simp [normalizer], | |
mul_mem := λ a b (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s) | |
(hb : ∀ n, n ∈ s ↔ b * n * b⁻¹ ∈ s) n, | |
by rw [mul_inv_rev, ← mul_assoc, mul_assoc a, mul_assoc a, ← ha, ← hb], | |
inv_mem := λ a (ha : ∀ n, n ∈ s ↔ a * n * a⁻¹ ∈ s) n, | |
by rw [ha (a⁻¹ * n * a⁻¹⁻¹)]; | |
simp [mul_assoc] } | |
@[to_additive subset_add_normalizer] | |
lemma subset_normalizer {s : set G} (hs : is_subgroup s) : s ⊆ normalizer s := | |
λ g hg n, by rw [is_subgroup.mul_mem_cancel_right hs ((is_subgroup.inv_mem_iff hs).2 hg), | |
is_subgroup.mul_mem_cancel_left hs hg] | |
end is_subgroup | |
-- Homomorphism subgroups | |
namespace is_group_hom | |
open is_submonoid is_subgroup | |
/-- `ker f : set G` is the underlying subset of the kernel of a map `G → H`. -/ | |
@[to_additive "`ker f : set A` is the underlying subset of the kernel of a map `A → B`"] | |
def ker [group H] (f : G → H) : set G := preimage f (trivial H) | |
@[to_additive] | |
lemma mem_ker [group H] (f : G → H) {x : G} : x ∈ ker f ↔ f x = 1 := | |
mem_trivial | |
variables [group G] [group H] | |
@[to_additive] | |
lemma one_ker_inv {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a * b⁻¹) = 1) : f a = f b := | |
begin | |
rw [hf.map_mul, hf.map_inv] at h, | |
rw [←inv_inv (f b), eq_inv_of_mul_eq_one_left h] | |
end | |
@[to_additive] | |
lemma one_ker_inv' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f (a⁻¹ * b) = 1) : f a = f b := | |
begin | |
rw [hf.map_mul, hf.map_inv] at h, | |
apply inv_injective, | |
rw eq_inv_of_mul_eq_one_left h | |
end | |
@[to_additive] | |
lemma inv_ker_one {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a * b⁻¹) = 1 := | |
have f a * (f b)⁻¹ = 1, by rw [h, mul_right_inv], | |
by rwa [←hf.map_inv, ←hf.map_mul] at this | |
@[to_additive] | |
lemma inv_ker_one' {f : G → H} (hf : is_group_hom f) {a b : G} (h : f a = f b) : f (a⁻¹ * b) = 1 := | |
have (f a)⁻¹ * f b = 1, by rw [h, mul_left_inv], | |
by rwa [←hf.map_inv, ←hf.map_mul] at this | |
@[to_additive] | |
lemma one_iff_ker_inv {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a * b⁻¹) = 1 := | |
⟨hf.inv_ker_one, hf.one_ker_inv⟩ | |
@[to_additive] | |
lemma one_iff_ker_inv' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ f (a⁻¹ * b) = 1 := | |
⟨hf.inv_ker_one', hf.one_ker_inv'⟩ | |
@[to_additive] | |
lemma inv_iff_ker {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a * b⁻¹ ∈ ker f := | |
by rw [mem_ker]; exact one_iff_ker_inv hf _ _ | |
@[to_additive] | |
lemma inv_iff_ker' {f : G → H} (hf : is_group_hom f) (a b : G) : f a = f b ↔ a⁻¹ * b ∈ ker f := | |
by rw [mem_ker]; exact one_iff_ker_inv' hf _ _ | |
@[to_additive] | |
lemma image_subgroup {f : G → H} (hf : is_group_hom f) {s : set G} (hs : is_subgroup s) : | |
is_subgroup (f '' s) := | |
{ mul_mem := assume a₁ a₂ ⟨b₁, hb₁, eq₁⟩ ⟨b₂, hb₂, eq₂⟩, | |
⟨b₁ * b₂, hs.mul_mem hb₁ hb₂, by simp [eq₁, eq₂, hf.map_mul]⟩, | |
one_mem := ⟨1, hs.to_is_submonoid.one_mem, hf.map_one⟩, | |
inv_mem := assume a ⟨b, hb, eq⟩, ⟨b⁻¹, hs.inv_mem hb, by { rw hf.map_inv, simp * }⟩ } | |
@[to_additive] | |
lemma range_subgroup {f : G → H} (hf : is_group_hom f) : is_subgroup (set.range f) := | |
@set.image_univ _ _ f ▸ hf.image_subgroup univ_subgroup.to_is_subgroup | |
local attribute [simp] one_mem inv_mem mul_mem is_normal_subgroup.normal | |
@[to_additive] | |
lemma preimage {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_subgroup s) : | |
is_subgroup (f ⁻¹' s) := | |
by { refine {..}; | |
simp [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv, | |
inv_mem_class.inv_mem] | |
{contextual := tt} } | |
@[to_additive] | |
lemma preimage_normal {f : G → H} (hf : is_group_hom f) {s : set H} (hs : is_normal_subgroup s) : | |
is_normal_subgroup (f ⁻¹' s) := | |
{ one_mem := by simp [hf.map_one, hs.to_is_subgroup.one_mem], | |
mul_mem := by simp [hf.map_mul, hs.to_is_subgroup.mul_mem] {contextual := tt}, | |
inv_mem := by simp [hf.map_inv, hs.to_is_subgroup.inv_mem] {contextual := tt}, | |
normal := by simp [hs.normal, hf.map_mul, hf.map_inv] {contextual := tt}} | |
@[to_additive] | |
lemma is_normal_subgroup_ker {f : G → H} (hf : is_group_hom f) : is_normal_subgroup (ker f) := | |
hf.preimage_normal (trivial_normal) | |
@[to_additive] | |
lemma injective_of_trivial_ker {f : G → H} (hf : is_group_hom f) (h : ker f = trivial G) : | |
function.injective f := | |
begin | |
intros a₁ a₂ hfa, | |
simp [ext_iff, ker, is_subgroup.trivial] at h, | |
have ha : a₁ * a₂⁻¹ = 1, by rw ←h; exact hf.inv_ker_one hfa, | |
rw [eq_inv_of_mul_eq_one_left ha, inv_inv a₂] | |
end | |
@[to_additive] | |
lemma trivial_ker_of_injective {f : G → H} (hf : is_group_hom f) (h : function.injective f) : | |
ker f = trivial G := | |
set.ext $ assume x, iff.intro | |
(assume hx, | |
suffices f x = f 1, by simpa using h this, | |
by simp [hf.map_one]; rwa [mem_ker] at hx) | |
(by simp [mem_ker, hf.map_one] {contextual := tt}) | |
@[to_additive] | |
lemma injective_iff_trivial_ker {f : G → H} (hf : is_group_hom f) : | |
function.injective f ↔ ker f = trivial G := | |
⟨hf.trivial_ker_of_injective, hf.injective_of_trivial_ker⟩ | |
@[to_additive] | |
lemma trivial_ker_iff_eq_one {f : G → H} (hf : is_group_hom f) : | |
ker f = trivial G ↔ ∀ x, f x = 1 → x = 1 := | |
by rw set.ext_iff; simp [ker]; exact | |
⟨λ h x hx, (h x).1 hx, λ h x, ⟨h x, λ hx, by rw [hx, hf.map_one]⟩⟩ | |
end is_group_hom | |
namespace add_group | |
variables [add_group A] | |
/-- If `A` is an additive group and `s : set A`, then `in_closure s : set A` is the underlying | |
subset of the subgroup generated by `s`. -/ | |
inductive in_closure (s : set A) : A → Prop | |
| basic {a : A} : a ∈ s → in_closure a | |
| zero : in_closure 0 | |
| neg {a : A} : in_closure a → in_closure (-a) | |
| add {a b : A} : in_closure a → in_closure b → in_closure (a + b) | |
end add_group | |
namespace group | |
open is_submonoid is_subgroup | |
variables [group G] {s : set G} | |
/-- If `G` is a group and `s : set G`, then `in_closure s : set G` is the underlying | |
subset of the subgroup generated by `s`. -/ | |
@[to_additive] | |
inductive in_closure (s : set G) : G → Prop | |
| basic {a : G} : a ∈ s → in_closure a | |
| one : in_closure 1 | |
| inv {a : G} : in_closure a → in_closure a⁻¹ | |
| mul {a b : G} : in_closure a → in_closure b → in_closure (a * b) | |
/-- `group.closure s` is the subgroup generated by `s`, i.e. the smallest subgroup containg `s`. -/ | |
@[to_additive "`add_group.closure s` is the additive subgroup generated by `s`, i.e., the | |
smallest additive subgroup containing `s`."] | |
def closure (s : set G) : set G := {a | in_closure s a } | |
@[to_additive] | |
lemma mem_closure {a : G} : a ∈ s → a ∈ closure s := in_closure.basic | |
@[to_additive] | |
lemma closure.is_subgroup (s : set G) : is_subgroup (closure s) := | |
{ one_mem := in_closure.one, | |
mul_mem := assume a b, in_closure.mul, | |
inv_mem := assume a, in_closure.inv } | |
@[to_additive] | |
theorem subset_closure {s : set G} : s ⊆ closure s := λ a, mem_closure | |
@[to_additive] | |
theorem closure_subset {s t : set G} (ht : is_subgroup t) (h : s ⊆ t) : closure s ⊆ t := | |
assume a ha, by induction ha; simp [h _, *, ht.one_mem, ht.mul_mem, is_subgroup.inv_mem_iff] | |
@[to_additive] | |
lemma closure_subset_iff {s t : set G} (ht : is_subgroup t) : closure s ⊆ t ↔ s ⊆ t := | |
⟨assume h b ha, h (mem_closure ha), assume h b ha, closure_subset ht h ha⟩ | |
@[to_additive] | |
theorem closure_mono {s t : set G} (h : s ⊆ t) : closure s ⊆ closure t := | |
closure_subset (closure.is_subgroup _) $ set.subset.trans h subset_closure | |
@[simp, to_additive] | |
lemma closure_subgroup {s : set G} (hs : is_subgroup s) : closure s = s := | |
set.subset.antisymm (closure_subset hs $ set.subset.refl s) subset_closure | |
@[to_additive] | |
theorem exists_list_of_mem_closure {s : set G} {a : G} (h : a ∈ closure s) : | |
(∃l:list G, (∀x∈l, x ∈ s ∨ x⁻¹ ∈ s) ∧ l.prod = a) := | |
in_closure.rec_on h | |
(λ x hxs, ⟨[x], list.forall_mem_singleton.2 $ or.inl hxs, one_mul _⟩) | |
⟨[], list.forall_mem_nil _, rfl⟩ | |
(λ x _ ⟨L, HL1, HL2⟩, ⟨L.reverse.map has_inv.inv, | |
λ x hx, let ⟨y, hy1, hy2⟩ := list.exists_of_mem_map hx in | |
hy2 ▸ or.imp id (by rw [inv_inv]; exact id) (HL1 _ $ list.mem_reverse.1 hy1).symm, | |
HL2 ▸ list.rec_on L inv_one.symm (λ hd tl ih, | |
by rw [list.reverse_cons, list.map_append, list.prod_append, ih, list.map_singleton, | |
list.prod_cons, list.prod_nil, mul_one, list.prod_cons, mul_inv_rev])⟩) | |
(λ x y hx hy ⟨L1, HL1, HL2⟩ ⟨L2, HL3, HL4⟩, ⟨L1 ++ L2, list.forall_mem_append.2 ⟨HL1, HL3⟩, | |
by rw [list.prod_append, HL2, HL4]⟩) | |
@[to_additive] | |
lemma image_closure [group H] {f : G → H} (hf : is_group_hom f) (s : set G) : | |
f '' closure s = closure (f '' s) := | |
le_antisymm | |
begin | |
rintros _ ⟨x, hx, rfl⟩, | |
apply in_closure.rec_on hx; intros, | |
{ solve_by_elim [subset_closure, set.mem_image_of_mem] }, | |
{ rw [hf.to_is_monoid_hom.map_one], | |
apply is_submonoid.one_mem (closure.is_subgroup _).to_is_submonoid, }, | |
{ rw [hf.map_inv], | |
apply is_subgroup.inv_mem (closure.is_subgroup _), assumption }, | |
{ rw [hf.to_is_monoid_hom.map_mul], | |
solve_by_elim [is_submonoid.mul_mem (closure.is_subgroup _).to_is_submonoid] } | |
end | |
(closure_subset (hf.image_subgroup $ closure.is_subgroup _) $ set.image_subset _ subset_closure) | |
@[to_additive] | |
theorem mclosure_subset {s : set G} : monoid.closure s ⊆ closure s := | |
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ subset_closure | |
@[to_additive] | |
theorem mclosure_inv_subset {s : set G} : monoid.closure (has_inv.inv ⁻¹' s) ⊆ closure s := | |
monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ λ x hx, | |
inv_inv x ▸ ((closure.is_subgroup _).inv_mem $ subset_closure hx) | |
@[to_additive] | |
theorem closure_eq_mclosure {s : set G} : closure s = monoid.closure (s ∪ has_inv.inv ⁻¹' s) := | |
set.subset.antisymm | |
(@closure_subset _ _ _ (monoid.closure (s ∪ has_inv.inv ⁻¹' s)) | |
{ one_mem := (monoid.closure.is_submonoid _).one_mem, | |
mul_mem := (monoid.closure.is_submonoid _).mul_mem, | |
inv_mem := λ x hx, monoid.in_closure.rec_on hx | |
(λ x hx, or.cases_on hx (λ hx, monoid.subset_closure $ or.inr $ | |
show x⁻¹⁻¹ ∈ s, from (inv_inv x).symm ▸ hx) | |
(λ hx, monoid.subset_closure $ or.inl hx)) | |
((@inv_one G _).symm ▸ is_submonoid.one_mem (monoid.closure.is_submonoid _)) | |
(λ x y hx hy ihx ihy, | |
(mul_inv_rev x y).symm ▸ is_submonoid.mul_mem (monoid.closure.is_submonoid _) ihy ihx) } | |
(set.subset.trans (set.subset_union_left _ _) monoid.subset_closure)) | |
(monoid.closure_subset (closure.is_subgroup _).to_is_submonoid $ set.union_subset subset_closure $ | |
λ x hx, inv_inv x ▸ (is_subgroup.inv_mem (closure.is_subgroup _) $ subset_closure hx)) | |
@[to_additive] | |
theorem mem_closure_union_iff {G : Type*} [comm_group G] {s t : set G} {x : G} : | |
x ∈ closure (s ∪ t) ↔ ∃ y ∈ closure s, ∃ z ∈ closure t, y * z = x := | |
begin | |
simp only [closure_eq_mclosure, monoid.mem_closure_union_iff, exists_prop, preimage_union], split, | |
{ rintro ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, rfl⟩, | |
refine ⟨_, ⟨_, hys, _, hzs, rfl⟩, _, ⟨_, hyt, _, hzt, rfl⟩, _⟩, | |
rw [mul_assoc, mul_assoc, mul_left_comm zs] }, | |
{ rintro ⟨_, ⟨ys, hys, zs, hzs, rfl⟩, _, ⟨yt, hyt, zt, hzt, rfl⟩, rfl⟩, | |
refine ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, _⟩, | |
rw [mul_assoc, mul_assoc, mul_left_comm yt] } | |
end | |
end group | |
namespace is_subgroup | |
variable [group G] | |
@[to_additive] | |
lemma trivial_eq_closure : trivial G = group.closure ∅ := | |
subset.antisymm | |
(by simp [set.subset_def, (group.closure.is_subgroup _).one_mem]) | |
(group.closure_subset (trivial_normal).to_is_subgroup $ by simp) | |
end is_subgroup | |
/-The normal closure of a set s is the subgroup closure of all the conjugates of | |
elements of s. It is the smallest normal subgroup containing s. -/ | |
namespace group | |
variables {s : set G} [group G] | |
lemma conjugates_of_subset {t : set G} (ht : is_normal_subgroup t) {a : G} (h : a ∈ t) : | |
conjugates_of a ⊆ t := | |
λ x hc, | |
begin | |
obtain ⟨c, w⟩ := is_conj_iff.1 hc, | |
have H := is_normal_subgroup.normal ht a h c, | |
rwa ←w, | |
end | |
theorem conjugates_of_set_subset' {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) : | |
conjugates_of_set s ⊆ t := | |
set.Union₂_subset (λ x H, conjugates_of_subset ht (h H)) | |
/-- The normal closure of a set s is the subgroup closure of all the conjugates of | |
elements of s. It is the smallest normal subgroup containing s. -/ | |
def normal_closure (s : set G) : set G := closure (conjugates_of_set s) | |
theorem conjugates_of_set_subset_normal_closure : conjugates_of_set s ⊆ normal_closure s := | |
subset_closure | |
theorem subset_normal_closure : s ⊆ normal_closure s := | |
set.subset.trans subset_conjugates_of_set conjugates_of_set_subset_normal_closure | |
/-- The normal closure of a set is a subgroup. -/ | |
lemma normal_closure.is_subgroup (s : set G) : is_subgroup (normal_closure s) := | |
closure.is_subgroup (conjugates_of_set s) | |
/-- The normal closure of s is a normal subgroup. -/ | |
lemma normal_closure.is_normal : is_normal_subgroup (normal_closure s) := | |
{ normal := λ n h g, | |
begin | |
induction h with x hx x hx ihx x y hx hy ihx ihy, | |
{exact (conjugates_of_set_subset_normal_closure (conj_mem_conjugates_of_set hx))}, | |
{simpa using (normal_closure.is_subgroup s).one_mem}, | |
{rw ←conj_inv, | |
exact ((normal_closure.is_subgroup _).inv_mem ihx)}, | |
{rw ←conj_mul, | |
exact ((normal_closure.is_subgroup _).to_is_submonoid.mul_mem ihx ihy)}, | |
end, | |
..normal_closure.is_subgroup _ } | |
/-- The normal closure of s is the smallest normal subgroup containing s. -/ | |
theorem normal_closure_subset {s t : set G} (ht : is_normal_subgroup t) (h : s ⊆ t) : | |
normal_closure s ⊆ t := | |
λ a w, | |
begin | |
induction w with x hx x hx ihx x y hx hy ihx ihy, | |
{exact (conjugates_of_set_subset' ht h $ hx)}, | |
{exact ht.to_is_subgroup.to_is_submonoid.one_mem}, | |
{exact ht.to_is_subgroup.inv_mem ihx}, | |
{exact ht.to_is_subgroup.to_is_submonoid.mul_mem ihx ihy} | |
end | |
lemma normal_closure_subset_iff {s t : set G} (ht : is_normal_subgroup t) : | |
s ⊆ t ↔ normal_closure s ⊆ t := | |
⟨normal_closure_subset ht, set.subset.trans (subset_normal_closure)⟩ | |
theorem normal_closure_mono {s t : set G} : s ⊆ t → normal_closure s ⊆ normal_closure t := | |
λ h, normal_closure_subset normal_closure.is_normal (set.subset.trans h (subset_normal_closure)) | |
end group | |
/-- Create a bundled subgroup from a set `s` and `[is_subgroup s]`. -/ | |
@[to_additive "Create a bundled additive subgroup from a set `s` and `[is_add_subgroup s]`."] | |
def subgroup.of [group G] {s : set G} (h : is_subgroup s) : subgroup G := | |
{ carrier := s, | |
one_mem' := h.1.1, | |
mul_mem' := h.1.2, | |
inv_mem' := h.2 } | |
@[to_additive] | |
lemma subgroup.is_subgroup [group G] (K : subgroup G) : is_subgroup (K : set G) := | |
{ one_mem := K.one_mem', | |
mul_mem := K.mul_mem', | |
inv_mem := K.inv_mem' } | |
-- this will never fire if it's an instance | |
@[to_additive] | |
lemma subgroup.of_normal [group G] (s : set G) (h : is_subgroup s) (n : is_normal_subgroup s) : | |
subgroup.normal (subgroup.of h) := | |
{ conj_mem := n.normal, } | |