Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Riccardo Brasca. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Riccardo Brasca | |
-/ | |
import number_theory.cyclotomic.primitive_roots | |
import ring_theory.discriminant | |
/-! | |
# Discriminant of cyclotomic fields | |
We compute the discriminant of a `p ^ n`-th cyclotomic extension. | |
## Main results | |
* `is_cyclotomic_extension.discr_odd_prime` : if `p` is an odd prime such that | |
`is_cyclotomic_extension {p} K L` and `irreducible (cyclotomic p K)`, then | |
`discr K (hζ.power_basis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)` for any | |
`hζ : is_primitive_root ζ p`. | |
-/ | |
universes u v | |
open algebra polynomial nat is_primitive_root power_basis | |
open_locale polynomial cyclotomic | |
namespace is_primitive_root | |
variables {n : ℕ+} {K : Type u} [field K] [char_zero K] {ζ : K} | |
variables [is_cyclotomic_extension {n} ℚ K] | |
/-- The discriminant of the power basis given by a primitive root of unity `ζ` is the same as the | |
discriminant of the power basis given by `ζ - 1`. -/ | |
lemma discr_zeta_eq_discr_zeta_sub_one (hζ : is_primitive_root ζ n) : | |
discr ℚ (hζ.power_basis ℚ).basis = discr ℚ (hζ.sub_one_power_basis ℚ).basis := | |
begin | |
haveI : number_field K := number_field.mk, | |
have H₁ : (aeval (hζ.power_basis ℚ).gen) (X - 1 : ℤ[X]) = (hζ.sub_one_power_basis ℚ).gen := | |
by simp, | |
have H₂ : (aeval (hζ.sub_one_power_basis ℚ).gen) (X + 1 : ℤ[X]) = (hζ.power_basis ℚ).gen := | |
by simp, | |
refine discr_eq_discr_of_to_matrix_coeff_is_integral _ | |
(λ i j, to_matrix_is_integral H₁ _ _ _ _) | |
(λ i j, to_matrix_is_integral H₂ _ _ _ _), | |
{ exact hζ.is_integral n.pos }, | |
{ refine minpoly.gcd_domain_eq_field_fractions' _ (hζ.is_integral n.pos) }, | |
{ exact is_integral_sub (hζ.is_integral n.pos) is_integral_one }, | |
{ refine minpoly.gcd_domain_eq_field_fractions' _ _, | |
exact is_integral_sub (hζ.is_integral n.pos) is_integral_one } | |
end | |
end is_primitive_root | |
namespace is_cyclotomic_extension | |
variables {p : ℕ+} {k : ℕ} {K : Type u} {L : Type v} {ζ : L} [field K] [field L] | |
variables [algebra K L] | |
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ (k + 1)} K L`, then the discriminant of | |
`hζ.power_basis K` is `(-1) ^ ((p ^ (k + 1).totient) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))` | |
if `irreducible (cyclotomic (p ^ (k + 1)) K))`, and `p ^ (k + 1) ≠ 2`. -/ | |
lemma discr_prime_pow_ne_two [is_cyclotomic_extension {p ^ (k + 1)} K L] [hp : fact (p : ℕ).prime] | |
(hζ : is_primitive_root ζ ↑(p ^ (k + 1))) (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) | |
(hk : p ^ (k + 1) ≠ 2) : | |
discr K (hζ.power_basis K).basis = | |
(-1) ^ (((p ^ (k + 1) : ℕ).totient) / 2) * p ^ ((p : ℕ) ^ k * ((p - 1) * (k + 1) - 1)) := | |
begin | |
haveI hne := is_cyclotomic_extension.ne_zero' (p ^ (k + 1)) K L, | |
have hp2 : p = 2 → 1 ≤ k, | |
{ intro hp, | |
refine one_le_iff_ne_zero.2 (λ h, _), | |
rw [h, hp, zero_add, pow_one] at hk, | |
exact hk rfl }, | |
rw [discr_power_basis_eq_norm, finrank _ hirr, hζ.power_basis_gen _, | |
← hζ.minpoly_eq_cyclotomic_of_irreducible hirr, pnat.pow_coe, totient_prime_pow hp.out | |
(succ_pos k)], | |
congr' 1, | |
{ by_cases hptwo : p = 2, | |
{ obtain ⟨k₁, hk₁⟩ := nat.exists_eq_succ_of_ne_zero (one_le_iff_ne_zero.1 (hp2 hptwo)), | |
rw [hk₁, succ_sub_one, hptwo, pnat.coe_bit0, pnat.one_coe, succ_sub_succ_eq_sub, tsub_zero, | |
mul_one, pow_succ, mul_assoc, nat.mul_div_cancel_left _ zero_lt_two, | |
nat.mul_div_cancel_left _ zero_lt_two], | |
by_cases hk₁zero : k₁ = 0, | |
{ simp [hk₁zero] }, | |
obtain ⟨k₂, rfl⟩ := nat.exists_eq_succ_of_ne_zero hk₁zero, | |
rw [pow_succ, mul_assoc, pow_mul (-1 : K), pow_mul (-1 : K), neg_one_sq, one_pow, one_pow] }, | |
{ simp only [succ_sub_succ_eq_sub, tsub_zero], | |
replace hptwo : ↑p ≠ 2, | |
{ intro h, | |
rw [← pnat.one_coe, ← pnat.coe_bit0, pnat.coe_inj] at h, | |
exact hptwo h }, | |
obtain ⟨a, ha⟩ := even_sub_one_of_prime_ne_two hp.out hptwo, | |
rw [mul_comm ((p : ℕ) ^ k), mul_assoc, ha], | |
nth_rewrite 0 [← mul_one a], | |
nth_rewrite 4 [← mul_one a], | |
rw [← nat.mul_succ, mul_comm a, mul_assoc, mul_assoc 2, nat.mul_div_cancel_left _ | |
zero_lt_two, nat.mul_div_cancel_left _ zero_lt_two, ← mul_assoc, mul_comm | |
(a * (p : ℕ) ^ k), pow_mul, ← ha], | |
congr' 1, | |
refine odd.neg_one_pow (nat.even.sub_odd (nat.succ_le_iff.2 (mul_pos (tsub_pos_iff_lt.2 | |
hp.out.one_lt) (pow_pos hp.out.pos _))) (even.mul_right (nat.even_sub_one_of_prime_ne_two | |
hp.out hptwo) _) odd_one) } }, | |
{ have H := congr_arg derivative (cyclotomic_prime_pow_mul_X_pow_sub_one K p k), | |
rw [derivative_mul, derivative_sub, derivative_one, sub_zero, derivative_pow, | |
derivative_X, mul_one, derivative_sub, derivative_one, sub_zero, derivative_pow, | |
derivative_X, mul_one, ← pnat.pow_coe, hζ.minpoly_eq_cyclotomic_of_irreducible hirr] at H, | |
replace H := congr_arg (λ P, aeval ζ P) H, | |
simp only [aeval_add, aeval_mul, minpoly.aeval, zero_mul, add_zero, aeval_nat_cast, | |
_root_.map_sub, aeval_one, aeval_X_pow] at H, | |
replace H := congr_arg (algebra.norm K) H, | |
have hnorm : (norm K) (ζ ^ (p : ℕ) ^ k - 1) = p ^ ((p : ℕ) ^ k), | |
{ by_cases hp : p = 2, | |
{ exact hζ.pow_sub_one_norm_prime_pow_of_one_le hirr rfl.le (hp2 hp) }, | |
{ exact hζ.pow_sub_one_norm_prime_ne_two hirr rfl.le hp } }, | |
rw [monoid_hom.map_mul, hnorm, monoid_hom.map_mul, ← map_nat_cast (algebra_map K L), | |
algebra.norm_algebra_map, finrank _ hirr, pnat.pow_coe, totient_prime_pow hp.out (succ_pos k), | |
nat.sub_one, nat.pred_succ, ← hζ.minpoly_eq_cyclotomic_of_irreducible hirr, map_pow, | |
hζ.norm_eq_one hk hirr, one_pow, mul_one, cast_pow, ← coe_coe, ← pow_mul, ← mul_assoc, | |
mul_comm (k + 1), mul_assoc] at H, | |
{ have := mul_pos (succ_pos k) (tsub_pos_iff_lt.2 hp.out.one_lt), | |
rw [← succ_pred_eq_of_pos this, mul_succ, pow_add _ _ ((p : ℕ) ^ k)] at H, | |
replace H := (mul_left_inj' (λ h, _)).1 H, | |
{ simpa only [← pnat.pow_coe, H, mul_comm _ (k + 1)] }, | |
{ replace h := pow_eq_zero h, | |
rw [coe_coe] at h, | |
simpa using hne.1 } }, | |
all_goals { apply_instance } }, | |
all_goals { apply_instance } | |
end | |
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ (k + 1)} K L`, then the discriminant of | |
`hζ.power_basis K` is `(-1) ^ (p ^ k * (p - 1) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))` | |
if `irreducible (cyclotomic (p ^ (k + 1)) K))`, and `p ^ (k + 1) ≠ 2`. -/ | |
lemma discr_prime_pow_ne_two' [is_cyclotomic_extension {p ^ (k + 1)} K L] [hp : fact (p : ℕ).prime] | |
(hζ : is_primitive_root ζ ↑(p ^ (k + 1))) (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) | |
(hk : p ^ (k + 1) ≠ 2) : | |
discr K (hζ.power_basis K).basis = | |
(-1) ^ (((p : ℕ) ^ k * (p - 1)) / 2) * p ^ ((p : ℕ) ^ k * ((p - 1) * (k + 1) - 1)) := | |
by simpa [totient_prime_pow hp.out (succ_pos k)] using discr_prime_pow_ne_two hζ hirr hk | |
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ k} K L`, then the discriminant of | |
`hζ.power_basis K` is `(-1) ^ ((p ^ k).totient / 2) * p ^ (p ^ (k - 1) * ((p - 1) * k - 1))` | |
if `irreducible (cyclotomic (p ^ k) K))`. Beware that in the cases `p ^ k = 1` and `p ^ k = 2` | |
the formula uses `1 / 2 = 0` and `0 - 1 = 0`. It is useful only to have a uniform result. | |
See also `is_cyclotomic_extension.discr_prime_pow_eq_unit_mul_pow`. -/ | |
lemma discr_prime_pow [hcycl : is_cyclotomic_extension {p ^ k} K L] [hp : fact (p : ℕ).prime] | |
(hζ : is_primitive_root ζ ↑(p ^ k)) (hirr : irreducible (cyclotomic (↑(p ^ k) : ℕ) K)) : | |
discr K (hζ.power_basis K).basis = | |
(-1) ^ (((p ^ k : ℕ).totient) / 2) * p ^ ((p : ℕ) ^ (k - 1) * ((p - 1) * k - 1)) := | |
begin | |
unfreezingI { cases k }, | |
{ simp only [coe_basis, pow_zero, power_basis_gen, totient_one, mul_zero, mul_one, show 1 / 2 = 0, | |
by refl, discr, trace_matrix], | |
have hζone : ζ = 1 := by simpa using hζ, | |
rw [hζ.power_basis_dim _, hζone, ← (algebra_map K L).map_one, | |
minpoly.eq_X_sub_C_of_algebra_map_inj _ (algebra_map K L).injective, nat_degree_X_sub_C], | |
simp only [trace_matrix, map_one, one_pow, matrix.det_unique, trace_form_apply, mul_one], | |
rw [← (algebra_map K L).map_one, trace_algebra_map, finrank _ hirr], | |
{ simp }, | |
{ apply_instance }, | |
{ exact hcycl } }, | |
{ by_cases hk : p ^ (k + 1) = 2, | |
{ have hp : p = 2, | |
{ rw [← pnat.coe_inj, pnat.coe_bit0, pnat.one_coe, pnat.pow_coe, ← pow_one 2] at hk, | |
replace hk := eq_of_prime_pow_eq (prime_iff.1 hp.out) (prime_iff.1 nat.prime_two) | |
(succ_pos _) hk, | |
rwa [show 2 = ((2 : ℕ+) : ℕ), by simp, pnat.coe_inj] at hk }, | |
rw [hp, ← pnat.coe_inj, pnat.pow_coe, pnat.coe_bit0, pnat.one_coe] at hk, | |
nth_rewrite 1 [← pow_one 2] at hk, | |
replace hk := nat.pow_right_injective rfl.le hk, | |
rw [add_left_eq_self] at hk, | |
simp only [hp, hk, pow_one, pnat.coe_bit0, pnat.one_coe] at hζ, | |
simp only [hp, hk, show 1 / 2 = 0, by refl, coe_basis, pow_one, power_basis_gen, | |
pnat.coe_bit0, pnat.one_coe, totient_two, pow_zero, mul_one, mul_zero], | |
rw [power_basis_dim, hζ.eq_neg_one_of_two_right, show (-1 : L) = algebra_map K L (-1), | |
by simp, minpoly.eq_X_sub_C_of_algebra_map_inj _ (algebra_map K L).injective, | |
nat_degree_X_sub_C], | |
simp only [discr, trace_matrix, matrix.det_unique, fin.default_eq_zero, fin.coe_zero, | |
pow_zero, trace_form_apply, mul_one], | |
rw [← (algebra_map K L).map_one, trace_algebra_map, finrank _ hirr, hp, hk], | |
{ simp }, | |
{ apply_instance }, | |
{ exact hcycl } }, | |
{ exact discr_prime_pow_ne_two hζ hirr hk } } | |
end | |
/-- If `p` is a prime and `is_cyclotomic_extension {p ^ k} K L`, then there are `u : ℤˣ` and | |
`n : ℕ` such that the discriminant of `hζ.power_basis K` is `u * p ^ n`. Often this is enough and | |
less cumbersome to use than `is_cyclotomic_extension.discr_prime_pow`. -/ | |
lemma discr_prime_pow_eq_unit_mul_pow [is_cyclotomic_extension {p ^ k} K L] | |
[hp : fact (p : ℕ).prime] (hζ : is_primitive_root ζ ↑(p ^ k)) | |
(hirr : irreducible (cyclotomic (↑(p ^ k) : ℕ) K)) : | |
∃ (u : ℤˣ) (n : ℕ), discr K (hζ.power_basis K).basis = u * p ^ n := | |
begin | |
rw [discr_prime_pow hζ hirr], | |
by_cases heven : even (((p ^ k : ℕ).totient) / 2), | |
{ refine ⟨1, (p : ℕ) ^ (k - 1) * ((p - 1) * k - 1), by simp [heven.neg_one_pow]⟩ }, | |
{ exact ⟨-1, (p : ℕ) ^ (k - 1) * ((p - 1) * k - 1), | |
by simp [(odd_iff_not_even.2 heven).neg_one_pow]⟩ }, | |
end | |
/-- If `p` is an odd prime and `is_cyclotomic_extension {p} K L`, then | |
`discr K (hζ.power_basis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)` if | |
`irreducible (cyclotomic p K)`. -/ | |
lemma discr_odd_prime [is_cyclotomic_extension {p} K L] [hp : fact (p : ℕ).prime] | |
(hζ : is_primitive_root ζ p) (hirr : irreducible (cyclotomic p K)) (hodd : p ≠ 2) : | |
discr K (hζ.power_basis K).basis = (-1) ^ (((p : ℕ) - 1) / 2) * p ^ ((p : ℕ) - 2) := | |
begin | |
haveI : is_cyclotomic_extension {p ^ (0 + 1)} K L, | |
{ rw [zero_add, pow_one], | |
apply_instance }, | |
have hζ' : is_primitive_root ζ ↑(p ^ (0 + 1)) := by simpa using hζ, | |
convert discr_prime_pow_ne_two hζ' (by simpa [hirr]) (by simp [hodd]), | |
{ rw [zero_add, pow_one, totient_prime hp.out] }, | |
{ rw [pow_zero, one_mul, zero_add, mul_one, nat.sub_sub] } | |
end | |
end is_cyclotomic_extension | |