Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Patrick Stevens. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Stevens | |
-/ | |
import algebra.big_operators.associated | |
import data.nat.choose.sum | |
import data.nat.parity | |
import tactic.ring_exp | |
/-! | |
# Primorial | |
This file defines the primorial function (the product of primes less than or equal to some bound), | |
and proves that `primorial n ≤ 4 ^ n`. | |
## Notations | |
We use the local notation `n#` for the primorial of `n`: that is, the product of the primes less | |
than or equal to `n`. | |
-/ | |
open finset | |
open nat | |
open_locale big_operators nat | |
/-- The primorial `n#` of `n` is the product of the primes less than or equal to `n`. | |
-/ | |
def primorial (n : ℕ) : ℕ := ∏ p in (filter nat.prime (range (n + 1))), p | |
local notation x`#` := primorial x | |
lemma primorial_succ {n : ℕ} (n_big : 1 < n) (r : n % 2 = 1) : (n + 1)# = n# := | |
begin | |
refine prod_congr _ (λ _ _, rfl), | |
rw [range_succ, filter_insert, if_neg (λ h, _)], | |
have two_dvd : 2 ∣ n + 1 := dvd_iff_mod_eq_zero.mpr (by rw [← mod_add_mod, r, mod_self]), | |
linarith [(h.dvd_iff_eq (nat.bit0_ne_one 1)).mp two_dvd], | |
end | |
lemma dvd_choose_of_middling_prime (p : ℕ) (is_prime : nat.prime p) (m : ℕ) | |
(p_big : m + 1 < p) (p_small : p ≤ 2 * m + 1) : p ∣ choose (2 * m + 1) (m + 1) := | |
begin | |
have m_size : m + 1 ≤ 2 * m + 1 := le_of_lt (lt_of_lt_of_le p_big p_small), | |
have s : ¬(p ∣ (m + 1)!), | |
{ intros p_div_fact, | |
exact lt_le_antisymm p_big (is_prime.dvd_factorial.mp p_div_fact), }, | |
have t : ¬(p ∣ (2 * m + 1 - (m + 1))!), | |
{ intros p_div_fact, | |
refine lt_le_antisymm (lt_of_succ_lt p_big) _, | |
convert is_prime.dvd_factorial.mp p_div_fact, | |
rw [two_mul, add_assoc, nat.add_sub_cancel] }, | |
have expanded : | |
choose (2 * m + 1) (m + 1) * (m + 1)! * (2 * m + 1 - (m + 1))! = (2 * m + 1)! := | |
@choose_mul_factorial_mul_factorial (2 * m + 1) (m + 1) m_size, | |
have p_div_big_fact : p ∣ (2 * m + 1)! := (prime.dvd_factorial is_prime).mpr p_small, | |
rw [←expanded, mul_assoc] at p_div_big_fact, | |
obtain p_div_choose | p_div_facts : p ∣ choose (2 * m + 1) (m + 1) ∨ p ∣ _! * _! := | |
(prime.dvd_mul is_prime).1 p_div_big_fact, | |
{ exact p_div_choose, }, | |
cases (prime.dvd_mul is_prime).1 p_div_facts, | |
exacts [(s h).elim, (t h).elim], | |
end | |
lemma primorial_le_4_pow : ∀ (n : ℕ), n# ≤ 4 ^ n | |
| 0 := le_rfl | |
| 1 := le_of_inf_eq rfl | |
| (n + 2) := | |
match nat.mod_two_eq_zero_or_one (n + 1) with | |
| or.inl n_odd := | |
match nat.even_iff.2 n_odd with | |
| ⟨m, twice_m⟩ := | |
have recurse : m + 1 < n + 2 := by linarith, | |
begin | |
calc (n + 2)# | |
= ∏ i in filter nat.prime (range (2 * m + 2)), i : by simpa [two_mul, ←twice_m] | |
... = ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2) ∪ range (m + 2)), i : | |
begin | |
rw [range_eq_Ico, finset.union_comm, finset.Ico_union_Ico_eq_Ico], | |
{ exact bot_le }, | |
{ simpa only [add_le_add_iff_right, two_mul] using nat.le_add_left m m }, | |
end | |
... = ∏ i in (filter nat.prime (finset.Ico (m + 2) (2 * m + 2)) | |
∪ (filter nat.prime (range (m + 2)))), i : | |
by rw filter_union | |
... = (∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i) | |
* (∏ i in filter nat.prime (range (m + 2)), i) : | |
begin | |
apply finset.prod_union, | |
have disj : disjoint (finset.Ico (m + 2) (2 * m + 2)) (range (m + 2)), | |
{ simp only [finset.disjoint_left, and_imp, finset.mem_Ico, not_lt, | |
finset.mem_range], | |
intros _ pr _, exact pr, }, | |
exact finset.disjoint_filter_filter disj, | |
end | |
... ≤ (∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i) * 4 ^ (m + 1) : | |
nat.mul_le_mul_left _ (primorial_le_4_pow (m + 1)) | |
... ≤ (choose (2 * m + 1) (m + 1)) * 4 ^ (m + 1) : | |
begin | |
have s : ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), | |
i ∣ choose (2 * m + 1) (m + 1), | |
{ refine prod_primes_dvd (choose (2 * m + 1) (m + 1)) _ _, | |
{ intros a, rw [finset.mem_filter, nat.prime_iff], apply and.right, }, | |
{ intros a, rw finset.mem_filter, | |
intros pr, | |
rcases pr with ⟨ size, is_prime ⟩, | |
simp only [finset.mem_Ico] at size, | |
rcases size with ⟨ a_big , a_small ⟩, | |
exact dvd_choose_of_middling_prime a is_prime m a_big | |
(nat.lt_succ_iff.mp a_small), }, }, | |
have r : ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), | |
i ≤ choose (2 * m + 1) (m + 1), | |
{ refine @nat.le_of_dvd _ _ _ s, | |
exact @choose_pos (2 * m + 1) (m + 1) (by linarith), }, | |
exact nat.mul_le_mul_right _ r, | |
end | |
... = (choose (2 * m + 1) m) * 4 ^ (m + 1) : by rw choose_symm_half m | |
... ≤ 4 ^ m * 4 ^ (m + 1) : nat.mul_le_mul_right _ (choose_middle_le_pow m) | |
... = 4 ^ (2 * m + 1) : by ring_exp | |
... = 4 ^ (n + 2) : by rw [two_mul, ←twice_m], | |
end | |
end | |
| or.inr n_even := | |
begin | |
obtain one_lt_n | n_le_one : 1 < n + 1 ∨ n + 1 ≤ 1 := lt_or_le 1 (n + 1), | |
{ rw primorial_succ one_lt_n n_even, | |
calc (n + 1)# | |
≤ 4 ^ n.succ : primorial_le_4_pow (n + 1) | |
... ≤ 4 ^ (n + 2) : pow_le_pow (by norm_num) (nat.le_succ _), }, | |
{ have n_zero : n = 0 := eq_bot_iff.2 (succ_le_succ_iff.1 n_le_one), | |
norm_num [n_zero, primorial, range_succ, prod_filter, nat.not_prime_zero, nat.prime_two] }, | |
end | |
end | |