Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.83 kB
/-
Copyright (c) 2020 Patrick Stevens. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Stevens
-/
import algebra.big_operators.associated
import data.nat.choose.sum
import data.nat.parity
import tactic.ring_exp
/-!
# Primorial
This file defines the primorial function (the product of primes less than or equal to some bound),
and proves that `primorial n ≤ 4 ^ n`.
## Notations
We use the local notation `n#` for the primorial of `n`: that is, the product of the primes less
than or equal to `n`.
-/
open finset
open nat
open_locale big_operators nat
/-- The primorial `n#` of `n` is the product of the primes less than or equal to `n`.
-/
def primorial (n : ℕ) : ℕ := ∏ p in (filter nat.prime (range (n + 1))), p
local notation x`#` := primorial x
lemma primorial_succ {n : ℕ} (n_big : 1 < n) (r : n % 2 = 1) : (n + 1)# = n# :=
begin
refine prod_congr _ (λ _ _, rfl),
rw [range_succ, filter_insert, if_neg (λ h, _)],
have two_dvd : 2 ∣ n + 1 := dvd_iff_mod_eq_zero.mpr (by rw [← mod_add_mod, r, mod_self]),
linarith [(h.dvd_iff_eq (nat.bit0_ne_one 1)).mp two_dvd],
end
lemma dvd_choose_of_middling_prime (p : ℕ) (is_prime : nat.prime p) (m : ℕ)
(p_big : m + 1 < p) (p_small : p2 * m + 1) : p ∣ choose (2 * m + 1) (m + 1) :=
begin
have m_size : m + 12 * m + 1 := le_of_lt (lt_of_lt_of_le p_big p_small),
have s : ¬(p ∣ (m + 1)!),
{ intros p_div_fact,
exact lt_le_antisymm p_big (is_prime.dvd_factorial.mp p_div_fact), },
have t : ¬(p ∣ (2 * m + 1 - (m + 1))!),
{ intros p_div_fact,
refine lt_le_antisymm (lt_of_succ_lt p_big) _,
convert is_prime.dvd_factorial.mp p_div_fact,
rw [two_mul, add_assoc, nat.add_sub_cancel] },
have expanded :
choose (2 * m + 1) (m + 1) * (m + 1)! * (2 * m + 1 - (m + 1))! = (2 * m + 1)! :=
@choose_mul_factorial_mul_factorial (2 * m + 1) (m + 1) m_size,
have p_div_big_fact : p ∣ (2 * m + 1)! := (prime.dvd_factorial is_prime).mpr p_small,
rw [←expanded, mul_assoc] at p_div_big_fact,
obtain p_div_choose | p_div_facts : p ∣ choose (2 * m + 1) (m + 1) ∨ p ∣ _! * _! :=
(prime.dvd_mul is_prime).1 p_div_big_fact,
{ exact p_div_choose, },
cases (prime.dvd_mul is_prime).1 p_div_facts,
exacts [(s h).elim, (t h).elim],
end
lemma primorial_le_4_pow : ∀ (n : ℕ), n# ≤ 4 ^ n
| 0 := le_rfl
| 1 := le_of_inf_eq rfl
| (n + 2) :=
match nat.mod_two_eq_zero_or_one (n + 1) with
| or.inl n_odd :=
match nat.even_iff.2 n_odd with
| ⟨m, twice_m⟩ :=
have recurse : m + 1 < n + 2 := by linarith,
begin
calc (n + 2)#
= ∏ i in filter nat.prime (range (2 * m + 2)), i : by simpa [two_mul, ←twice_m]
... = ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2) ∪ range (m + 2)), i :
begin
rw [range_eq_Ico, finset.union_comm, finset.Ico_union_Ico_eq_Ico],
{ exact bot_le },
{ simpa only [add_le_add_iff_right, two_mul] using nat.le_add_left m m },
end
... = ∏ i in (filter nat.prime (finset.Ico (m + 2) (2 * m + 2))
∪ (filter nat.prime (range (m + 2)))), i :
by rw filter_union
... = (∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i)
* (∏ i in filter nat.prime (range (m + 2)), i) :
begin
apply finset.prod_union,
have disj : disjoint (finset.Ico (m + 2) (2 * m + 2)) (range (m + 2)),
{ simp only [finset.disjoint_left, and_imp, finset.mem_Ico, not_lt,
finset.mem_range],
intros _ pr _, exact pr, },
exact finset.disjoint_filter_filter disj,
end
... ≤ (∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i) * 4 ^ (m + 1) :
nat.mul_le_mul_left _ (primorial_le_4_pow (m + 1))
... ≤ (choose (2 * m + 1) (m + 1)) * 4 ^ (m + 1) :
begin
have s : ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)),
i ∣ choose (2 * m + 1) (m + 1),
{ refine prod_primes_dvd (choose (2 * m + 1) (m + 1)) _ _,
{ intros a, rw [finset.mem_filter, nat.prime_iff], apply and.right, },
{ intros a, rw finset.mem_filter,
intros pr,
rcases pr with ⟨ size, is_prime ⟩,
simp only [finset.mem_Ico] at size,
rcases size with ⟨ a_big , a_small ⟩,
exact dvd_choose_of_middling_prime a is_prime m a_big
(nat.lt_succ_iff.mp a_small), }, },
have r : ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)),
i ≤ choose (2 * m + 1) (m + 1),
{ refine @nat.le_of_dvd _ _ _ s,
exact @choose_pos (2 * m + 1) (m + 1) (by linarith), },
exact nat.mul_le_mul_right _ r,
end
... = (choose (2 * m + 1) m) * 4 ^ (m + 1) : by rw choose_symm_half m
... ≤ 4 ^ m * 4 ^ (m + 1) : nat.mul_le_mul_right _ (choose_middle_le_pow m)
... = 4 ^ (2 * m + 1) : by ring_exp
... = 4 ^ (n + 2) : by rw [two_mul, ←twice_m],
end
end
| or.inr n_even :=
begin
obtain one_lt_n | n_le_one : 1 < n + 1 ∨ n + 11 := lt_or_le 1 (n + 1),
{ rw primorial_succ one_lt_n n_even,
calc (n + 1)#
4 ^ n.succ : primorial_le_4_pow (n + 1)
... ≤ 4 ^ (n + 2) : pow_le_pow (by norm_num) (nat.le_succ _), },
{ have n_zero : n = 0 := eq_bot_iff.2 (succ_le_succ_iff.1 n_le_one),
norm_num [n_zero, primorial, range_succ, prod_filter, nat.not_prime_zero, nat.prime_two] },
end
end