Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import for_mathlib.topological_field | |
import for_mathlib.topology | |
import for_mathlib.uniform_space.uniform_field | |
import valuation.topology | |
import valuation.with_zero_topology | |
import topology.algebra.ordered | |
/-! | |
In this file we study the topology of a field `K` endowed with a valuation (in our application | |
to adic spaces, `K` will be the valuation field associated to some valuation on a ring, defined in | |
valuation.basic). | |
We already know from valuation.topology that one can build a topology on `K` which | |
makes it a topological ring. | |
The first goal is to show `K` is a topological *field*, ie inversion is continuous | |
at every non-zero element. | |
The next goal is to prove `K` is a *completable* topological field. This gives us | |
a completion `hat K` which is a topological field. We also prove that `K` is automatically | |
separated, so the map from `K` to `hat K` is injective. | |
Then we extend the valuation given on `K` to a valuation on `hat K`. | |
-/ | |
open filter set linear_ordered_structure | |
local attribute [instance, priority 0] classical.DLO | |
local notation `𝓝` x: 70 := nhds x | |
section division_ring | |
variables {K : Type*} [division_ring K] | |
section valuation_topological_division_ring | |
section inversion_estimate | |
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] (v : valuation K Γ₀) | |
-- The following is the main technical lemma ensuring that inversion is continuous | |
-- in the topology induced by a valuation on a division ring (ie the next instance) | |
-- and the fact that a valued field is completable | |
-- [BouAC, VI.5.1 Lemme 1] | |
lemma valuation.inversion_estimate {x y : K} {γ : units Γ₀} (y_ne : y ≠ 0) | |
(h : v (x - y) < min (γ * ((v y) * (v y))) (v y)) : | |
v (x⁻¹ - y⁻¹) < γ := | |
begin | |
have hyp1 : v (x - y) < γ * ((v y) * (v y)), | |
from lt_of_lt_of_le h (min_le_left _ _), | |
have hyp1' : v (x - y) * ((v y) * (v y))⁻¹ < γ, | |
from mul_inv_lt_of_lt_mul' hyp1, | |
have hyp2 : v (x - y) < v y, | |
from lt_of_lt_of_le h (min_le_right _ _), | |
have key : v x = v y, from valuation.map_eq_of_sub_lt v hyp2, | |
have x_ne : x ≠ 0, | |
{ intro h, | |
apply y_ne, | |
rw [h, v.map_zero] at key, | |
exact v.zero_iff.1 key.symm }, | |
have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹, | |
by rw [mul_sub_left_distrib, sub_mul, mul_assoc, | |
show y * y⁻¹ = 1, from mul_inv_cancel y_ne, | |
show x⁻¹ * x = 1, from inv_mul_cancel x_ne, mul_one, one_mul], | |
calc | |
v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) : by rw decomp | |
... = (v x⁻¹) * (v $ y - x) * (v y⁻¹) : by repeat { rw valuation.map_mul } | |
... = (v x)⁻¹ * (v $ y - x) * (v y)⁻¹ : by rw [v.map_inv' x_ne, v.map_inv' y_ne] | |
... = (v $ y - x) * ((v y) * (v y))⁻¹ : by | |
rw [mul_assoc, mul_comm, key, mul_assoc, ← group_with_zero.mul_inv_rev] | |
... = (v $ y - x) * ((v y) * (v y))⁻¹ : rfl | |
... = (v $ x - y) * ((v y) * (v y))⁻¹ : by rw valuation.map_sub_swap | |
... < γ : hyp1', | |
end | |
end inversion_estimate | |
local attribute [instance] valued.subgroups_basis subgroups_basis.topology | |
ring_filter_basis.topological_ring | |
local notation `v` := valued.value | |
/-- The topology coming from a valuation on a division rings make it a topological division ring | |
[BouAC, VI.5.1 middle of Proposition 1] -/ | |
instance valued.topological_division_ring [valued K] : topological_division_ring K := | |
{ continuous_inv := | |
begin | |
intros x x_ne s s_in, | |
cases valued.mem_nhds.mp s_in with γ hs, clear s_in, | |
rw [mem_map, valued.mem_nhds], | |
change ∃ (γ : units (valued.Γ₀ K)), {y : K | v (y - x) < γ} ⊆ {x : K | x⁻¹ ∈ s}, | |
have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne, | |
let γ' := group_with_zero.mk₀ _ vx_ne, | |
use min (γ * (γ'*γ')) γ', | |
intros y y_in, | |
apply hs, | |
change v (y⁻¹ - x⁻¹) < γ, | |
simp only [mem_set_of_eq] at y_in, | |
rw [coe_min, units.coe_mul, units.coe_mul] at y_in, | |
exact valuation.inversion_estimate _ x_ne y_in | |
end, | |
..(by apply_instance : topological_ring K) } | |
section | |
local attribute [instance] | |
linear_ordered_comm_group_with_zero.topological_space | |
linear_ordered_comm_group_with_zero.regular_space | |
linear_ordered_comm_group_with_zero.nhds_basis | |
lemma valued.continuous_valuation [valued K] : continuous (v : K → valued.Γ₀ K) := | |
begin | |
rw continuous_iff_continuous_at, | |
intro x, | |
classical, | |
by_cases h : x = 0, | |
{ rw h, | |
change tendsto _ _ (𝓝 (valued.v K 0)), | |
erw valuation.map_zero, | |
rw linear_ordered_comm_group_with_zero.tendsto_zero, | |
intro γ, | |
rw valued.mem_nhds_zero, | |
use [γ, set.subset.refl _] }, | |
{ change tendsto _ _ _, | |
have v_ne : v x ≠ 0, from (valuation.ne_zero_iff _).mpr h, | |
rw linear_ordered_comm_group_with_zero.tendsto_nonzero v_ne, | |
apply valued.loc_const v_ne }, | |
end | |
end | |
section | |
-- until the end of this section, all linearly ordered commutative groups will be endowed with | |
-- the discrete topology | |
-- In the next lemma, K will be endowed with its left uniformity coming from the valuation topology | |
local attribute [instance] valued.uniform_space | |
/-- A valued division ring is separated. -/ | |
instance valued_ring.separated [valued K] : separated K := | |
begin | |
apply topological_add_group.separated_of_zero_sep, | |
intros x x_ne, | |
refine ⟨{k | v k < v x}, _, λ h, lt_irrefl _ h⟩, | |
rw valued.mem_nhds, | |
have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne, | |
let γ' := group_with_zero.mk₀ _ vx_ne, | |
exact ⟨γ', λ y hy, by simpa using hy⟩, | |
end | |
end | |
end valuation_topological_division_ring | |
end division_ring | |
section valuation_on_valued_field_completion | |
open uniform_space | |
-- In this section K is commutative (hence a field), and equipped with a valuation | |
variables {K : Type*} [discrete_field K] [vK : valued K] | |
include vK | |
open valued | |
local notation `v` := valued.value | |
local attribute [instance, priority 0] valued.uniform_space valued.uniform_add_group | |
local notation `hat` K := completion K | |
set_option class.instance_max_depth 300 | |
-- The following instances helps going over the uniform_add_group/topological_add_group loop | |
lemma hatK_top_group : topological_add_group (hat K) := uniform_add_group.to_topological_add_group | |
local attribute [instance] hatK_top_group | |
lemma hatK_top_monoid : topological_add_monoid (hat K) := | |
topological_add_group.to_topological_add_monoid _ | |
local attribute [instance] hatK_top_monoid | |
/-- A valued field is completable. -/ | |
instance valued.completable : completable_top_field K := | |
{ separated := by apply_instance, | |
nice := begin | |
rintros F hF h0, | |
have : ∃ (γ₀ : units (Γ₀ K)) (M ∈ F), ∀ x ∈ M, (γ₀ : Γ₀ K) ≤ v x, | |
{ rcases (filter.inf_eq_bot_iff _ _).1 h0 with ⟨U, U_in, M, M_in, H⟩, | |
rcases valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩, | |
existsi [γ₀, M, M_in], | |
intros x xM, | |
apply le_of_not_lt _, | |
intro hyp, | |
have : x ∈ U ∩ M := ⟨hU hyp, xM⟩, | |
rwa H at this }, | |
rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩, | |
rw valued.cauchy_iff at hF ⊢, | |
refine ⟨map_ne_bot hF.1, _⟩, | |
replace hF := hF.2, | |
intros γ, | |
rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩, clear hF, | |
use (λ x : K, x⁻¹) '' (M₀ ∩ M₁), | |
split, | |
{ rw mem_map, | |
apply mem_sets_of_superset (filter.inter_mem_sets M₀_in M₁_in), | |
exact subset_preimage_image _ _ }, | |
{ rintros _ _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ ⟨y, ⟨y_in₀, y_in₁⟩, rfl⟩, | |
simp only [mem_set_of_eq], | |
specialize H₁ x y x_in₁ y_in₁, | |
replace x_in₀ := H₀ x x_in₀, | |
replace y_in₀ := H₀ y y_in₀, clear H₀, | |
apply valuation.inversion_estimate, | |
{ have : v x ≠ 0, | |
{ intro h, rw h at x_in₀, simpa using x_in₀, }, | |
exact (valuation.ne_zero_iff _).mp this }, | |
{ refine lt_of_lt_of_le H₁ _, | |
rw coe_min, | |
apply min_le_min _ x_in₀, | |
rw mul_assoc, | |
have : ((γ₀ * γ₀ : units (Γ₀ K)) : Γ₀ K) ≤ v x * v x, | |
from calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x : actual_ordered_comm_monoid.mul_le_mul_left' x_in₀ | |
... ≤ _ : actual_ordered_comm_monoid.mul_le_mul_right' x_in₀, | |
exact actual_ordered_comm_monoid.mul_le_mul_left' this } } | |
end } | |
local attribute [instance] | |
linear_ordered_comm_group_with_zero.topological_space | |
linear_ordered_comm_group_with_zero.regular_space | |
linear_ordered_comm_group_with_zero.nhds_basis | |
linear_ordered_comm_group_with_zero.t2_space | |
linear_ordered_comm_group_with_zero.ordered_topology | |
/-- The extension of the valuation of a valued field to the completion of the field. -/ | |
noncomputable def valued.extension : (hat K) → Γ₀ K := | |
completion.dense_inducing_coe.extend (v : K → Γ₀ K) | |
lemma valued.continuous_extension : continuous (valued.extension : (hat K) → Γ₀ K) := | |
begin | |
refine completion.dense_inducing_coe.continuous_extend _, | |
intro x₀, | |
by_cases h : x₀ = coe 0, | |
{ refine ⟨0, _⟩, | |
erw [h, ← completion.dense_inducing_coe.to_inducing.nhds_eq_comap]; try { apply_instance }, | |
rw linear_ordered_comm_group_with_zero.tendsto_zero, | |
intro γ₀, | |
rw valued.mem_nhds, | |
exact ⟨γ₀, by simp⟩ }, | |
{ have preimage_one : v ⁻¹' {(1 : Γ₀ K)} ∈ 𝓝 (1 : K), | |
{ have : v (1 : K) ≠ 0, { rw valued.map_one, exact zero_ne_one.symm }, | |
convert valued.loc_const this, | |
ext x, | |
rw [valued.map_one, mem_preimage, mem_singleton_iff, mem_set_of_eq] }, | |
obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → v x = 1, | |
{ rwa [completion.dense_inducing_coe.nhds_eq_comap, mem_comap_sets] at preimage_one, | |
rcases preimage_one with ⟨V, V_in, hV⟩, | |
use [V, V_in], | |
intros x x_in, | |
specialize hV x_in, | |
rwa [mem_preimage, mem_singleton_iff] at hV }, | |
have : ∃ V' ∈ (𝓝 (1 : hat K)), (0 : hat K) ∉ V' ∧ ∀ x y ∈ V', x*y⁻¹ ∈ V, | |
{ have : tendsto (λ p : (hat K) × hat K, p.1*p.2⁻¹) ((𝓝 1).prod 𝓝 1) 𝓝 1, | |
{ rw ← nhds_prod_eq, | |
conv {congr, skip, skip, rw ← (one_mul (1 : hat K))}, | |
refine tendsto.mul continuous_fst.continuous_at (tendsto.comp _ continuous_snd.continuous_at), | |
convert topological_division_ring.continuous_inv (1 : hat K) zero_ne_one.symm, | |
exact inv_one.symm }, | |
rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩, | |
let hatKstar := (-{0} : set $ hat K), | |
have : hatKstar ∈ 𝓝 (1 : hat K), | |
{ haveI : t1_space (hat K) := @t2_space.t1_space (hat K) _ (@separated_t2 (hat K) _ _), | |
exact compl_singleton_mem_nhds zero_ne_one.symm }, | |
use [U ∩ hatKstar, filter.inter_mem_sets U_in this], | |
split, | |
{ rintro ⟨h, h'⟩, | |
rw mem_compl_singleton_iff at h', | |
exact h' rfl }, | |
{ rintros x y ⟨hx, _⟩ ⟨hy, _⟩, | |
apply hU ; assumption } }, | |
rcases this with ⟨V', V'_in, zeroV', hV'⟩, | |
have nhds_right : (λ x, x*x₀) '' V' ∈ 𝓝 x₀, | |
{ have l : function.left_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀), | |
{ intro x, | |
simp only [mul_assoc, mul_inv_cancel h, mul_one] }, | |
have r: function.right_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀), | |
{ intro x, | |
simp only [mul_assoc, inv_mul_cancel h, mul_one] }, | |
have c : continuous (λ (x : hat K), x * x₀⁻¹), | |
from continuous_id.mul continuous_const, | |
rw image_eq_preimage_of_inverse l r, | |
rw ← mul_inv_cancel h at V'_in, | |
exact c.continuous_at V'_in }, | |
have : ∃ (z₀ : K) (y₀ ∈ V'), coe z₀ = y₀*x₀ ∧ z₀ ≠ 0, | |
{ rcases dense_range.mem_nhds completion.dense nhds_right with ⟨z₀, y₀, y₀_in, h⟩, | |
refine ⟨z₀, y₀, y₀_in, ⟨h.symm, _⟩⟩, | |
intro hz, | |
rw hz at h, | |
cases discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero _ _ h ; finish }, | |
rcases this with ⟨z₀, y₀, y₀_in, hz₀, z₀_ne⟩, | |
have vz₀_ne: valued.v K z₀ ≠ 0 := by rwa valuation.ne_zero_iff, | |
refine ⟨valued.v K z₀, _⟩, | |
rw [linear_ordered_comm_group_with_zero.tendsto_nonzero vz₀_ne, mem_comap_sets], | |
use [(λ x, x*x₀) '' V', nhds_right], | |
intros x x_in, | |
rcases mem_preimage.1 x_in with ⟨y, y_in, hy⟩, clear x_in, | |
change y*x₀ = coe x at hy, | |
have : valued.v K (x*z₀⁻¹) = 1, | |
{ apply hV, | |
rw [completion.coe_mul, is_ring_hom.map_inv' (coe : K → hat K) z₀_ne, ← hy, hz₀, mul_inv'], | |
assoc_rw mul_inv_cancel h, | |
rw mul_one, | |
solve_by_elim }, | |
calc valued.v K x = valued.v K (x*z₀⁻¹*z₀) : by rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one] | |
... = valued.v K (x*z₀⁻¹)*valued.v K z₀ : valuation.map_mul _ _ _ | |
... = valued.v K z₀ : by rw [this, one_mul] }, | |
end | |
@[elim_cast] | |
lemma valued.extension_extends (x : K) : valued.extension (x : hat K) = v x := | |
begin | |
haveI : t2_space (valued.Γ₀ K) := regular_space.t2_space _, | |
exact completion.dense_inducing_coe.extend_eq_of_cont valued.continuous_valuation x | |
end | |
/-- the extension of a valuation on a division ring to its completion. -/ | |
noncomputable def valued.extension_valuation : | |
valuation (hat K) (Γ₀ K) := | |
{ to_fun := valued.extension, | |
map_zero' := by exact_mod_cast valuation.map_zero _, | |
map_one' := by { rw [← completion.coe_one, valued.extension_extends (1 : K)], exact valuation.map_one _ }, | |
map_mul' := λ x y, begin | |
apply completion.induction_on₂ x y, | |
{ have c1 : continuous (λ (x : (hat K) × hat K), valued.extension (x.1 * x.2)), | |
from valued.continuous_extension.comp (continuous_fst.mul continuous_snd), | |
have c2 : continuous (λ (x : (hat K) × hat K), valued.extension x.1 * valued.extension x.2), | |
from (valued.continuous_extension.comp continuous_fst).mul | |
(valued.continuous_extension.comp continuous_snd), | |
exact is_closed_eq c1 c2 }, | |
{ intros x y, | |
norm_cast, | |
exact valuation.map_mul _ _ _ }, | |
end, | |
map_add' := λ x y, begin | |
rw le_max_iff, | |
apply completion.induction_on₂ x y, | |
{ exact is_closed_union | |
(is_closed_le ((valued.continuous_extension).comp continuous_add) | |
((valued.continuous_extension).comp continuous_fst)) | |
(is_closed_le ((valued.continuous_extension).comp continuous_add) | |
((valued.continuous_extension).comp continuous_snd)) }, | |
{ intros x y, | |
norm_cast, | |
rw ← le_max_iff, | |
exact valuation.map_add _ _ _ }, | |
end } | |
end valuation_on_valued_field_completion | |