Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.7 kB
import for_mathlib.topological_field
import for_mathlib.topology
import for_mathlib.uniform_space.uniform_field
import valuation.topology
import valuation.with_zero_topology
import topology.algebra.ordered
/-!
In this file we study the topology of a field `K` endowed with a valuation (in our application
to adic spaces, `K` will be the valuation field associated to some valuation on a ring, defined in
valuation.basic).
We already know from valuation.topology that one can build a topology on `K` which
makes it a topological ring.
The first goal is to show `K` is a topological *field*, ie inversion is continuous
at every non-zero element.
The next goal is to prove `K` is a *completable* topological field. This gives us
a completion `hat K` which is a topological field. We also prove that `K` is automatically
separated, so the map from `K` to `hat K` is injective.
Then we extend the valuation given on `K` to a valuation on `hat K`.
-/
open filter set linear_ordered_structure
local attribute [instance, priority 0] classical.DLO
local notation `𝓝` x: 70 := nhds x
section division_ring
variables {K : Type*} [division_ring K]
section valuation_topological_division_ring
section inversion_estimate
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] (v : valuation K Γ₀)
-- The following is the main technical lemma ensuring that inversion is continuous
-- in the topology induced by a valuation on a division ring (ie the next instance)
-- and the fact that a valued field is completable
-- [BouAC, VI.5.1 Lemme 1]
lemma valuation.inversion_estimate {x y : K} {γ : units Γ₀} (y_ne : y ≠ 0)
(h : v (x - y) < min (γ * ((v y) * (v y))) (v y)) :
v (x⁻¹ - y⁻¹) < γ :=
begin
have hyp1 : v (x - y) < γ * ((v y) * (v y)),
from lt_of_lt_of_le h (min_le_left _ _),
have hyp1' : v (x - y) * ((v y) * (v y))⁻¹ < γ,
from mul_inv_lt_of_lt_mul' hyp1,
have hyp2 : v (x - y) < v y,
from lt_of_lt_of_le h (min_le_right _ _),
have key : v x = v y, from valuation.map_eq_of_sub_lt v hyp2,
have x_ne : x ≠ 0,
{ intro h,
apply y_ne,
rw [h, v.map_zero] at key,
exact v.zero_iff.1 key.symm },
have decomp : x⁻¹ - y⁻¹ = x⁻¹ * (y - x) * y⁻¹,
by rw [mul_sub_left_distrib, sub_mul, mul_assoc,
show y * y⁻¹ = 1, from mul_inv_cancel y_ne,
show x⁻¹ * x = 1, from inv_mul_cancel x_ne, mul_one, one_mul],
calc
v (x⁻¹ - y⁻¹) = v (x⁻¹ * (y - x) * y⁻¹) : by rw decomp
... = (v x⁻¹) * (v $ y - x) * (v y⁻¹) : by repeat { rw valuation.map_mul }
... = (v x)⁻¹ * (v $ y - x) * (v y)⁻¹ : by rw [v.map_inv' x_ne, v.map_inv' y_ne]
... = (v $ y - x) * ((v y) * (v y))⁻¹ : by
rw [mul_assoc, mul_comm, key, mul_assoc, ← group_with_zero.mul_inv_rev]
... = (v $ y - x) * ((v y) * (v y))⁻¹ : rfl
... = (v $ x - y) * ((v y) * (v y))⁻¹ : by rw valuation.map_sub_swap
... < γ : hyp1',
end
end inversion_estimate
local attribute [instance] valued.subgroups_basis subgroups_basis.topology
ring_filter_basis.topological_ring
local notation `v` := valued.value
/-- The topology coming from a valuation on a division rings make it a topological division ring
[BouAC, VI.5.1 middle of Proposition 1] -/
instance valued.topological_division_ring [valued K] : topological_division_ring K :=
{ continuous_inv :=
begin
intros x x_ne s s_in,
cases valued.mem_nhds.mp s_in with γ hs, clear s_in,
rw [mem_map, valued.mem_nhds],
change ∃ (γ : units (valued.Γ₀ K)), {y : K | v (y - x) < γ} ⊆ {x : K | x⁻¹ ∈ s},
have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne,
let γ' := group_with_zero.mk₀ _ vx_ne,
use min (γ * (γ'*γ')) γ',
intros y y_in,
apply hs,
change v (y⁻¹ - x⁻¹) < γ,
simp only [mem_set_of_eq] at y_in,
rw [coe_min, units.coe_mul, units.coe_mul] at y_in,
exact valuation.inversion_estimate _ x_ne y_in
end,
..(by apply_instance : topological_ring K) }
section
local attribute [instance]
linear_ordered_comm_group_with_zero.topological_space
linear_ordered_comm_group_with_zero.regular_space
linear_ordered_comm_group_with_zero.nhds_basis
lemma valued.continuous_valuation [valued K] : continuous (v : K → valued.Γ₀ K) :=
begin
rw continuous_iff_continuous_at,
intro x,
classical,
by_cases h : x = 0,
{ rw h,
change tendsto _ _ (𝓝 (valued.v K 0)),
erw valuation.map_zero,
rw linear_ordered_comm_group_with_zero.tendsto_zero,
intro γ,
rw valued.mem_nhds_zero,
use [γ, set.subset.refl _] },
{ change tendsto _ _ _,
have v_ne : v x ≠ 0, from (valuation.ne_zero_iff _).mpr h,
rw linear_ordered_comm_group_with_zero.tendsto_nonzero v_ne,
apply valued.loc_const v_ne },
end
end
section
-- until the end of this section, all linearly ordered commutative groups will be endowed with
-- the discrete topology
-- In the next lemma, K will be endowed with its left uniformity coming from the valuation topology
local attribute [instance] valued.uniform_space
/-- A valued division ring is separated. -/
instance valued_ring.separated [valued K] : separated K :=
begin
apply topological_add_group.separated_of_zero_sep,
intros x x_ne,
refine ⟨{k | v k < v x}, _, λ h, lt_irrefl _ h⟩,
rw valued.mem_nhds,
have vx_ne := (valuation.ne_zero_iff $ valued.v K).mpr x_ne,
let γ' := group_with_zero.mk₀ _ vx_ne,
exact ⟨γ', λ y hy, by simpa using hy⟩,
end
end
end valuation_topological_division_ring
end division_ring
section valuation_on_valued_field_completion
open uniform_space
-- In this section K is commutative (hence a field), and equipped with a valuation
variables {K : Type*} [discrete_field K] [vK : valued K]
include vK
open valued
local notation `v` := valued.value
local attribute [instance, priority 0] valued.uniform_space valued.uniform_add_group
local notation `hat` K := completion K
set_option class.instance_max_depth 300
-- The following instances helps going over the uniform_add_group/topological_add_group loop
lemma hatK_top_group : topological_add_group (hat K) := uniform_add_group.to_topological_add_group
local attribute [instance] hatK_top_group
lemma hatK_top_monoid : topological_add_monoid (hat K) :=
topological_add_group.to_topological_add_monoid _
local attribute [instance] hatK_top_monoid
/-- A valued field is completable. -/
instance valued.completable : completable_top_field K :=
{ separated := by apply_instance,
nice := begin
rintros F hF h0,
have : ∃ (γ₀ : units (Γ₀ K)) (M ∈ F), ∀ x ∈ M, (γ₀ : Γ₀ K) ≤ v x,
{ rcases (filter.inf_eq_bot_iff _ _).1 h0 with ⟨U, U_in, M, M_in, H⟩,
rcases valued.mem_nhds_zero.mp U_in with ⟨γ₀, hU⟩,
existsi [γ₀, M, M_in],
intros x xM,
apply le_of_not_lt _,
intro hyp,
have : x ∈ U ∩ M := ⟨hU hyp, xM⟩,
rwa H at this },
rcases this with ⟨γ₀, M₀, M₀_in, H₀⟩,
rw valued.cauchy_iff at hF ⊢,
refine ⟨map_ne_bot hF.1, _⟩,
replace hF := hF.2,
intros γ,
rcases hF (min (γ * γ₀ * γ₀) γ₀) with ⟨M₁, M₁_in, H₁⟩, clear hF,
use (λ x : K, x⁻¹) '' (M₀ ∩ M₁),
split,
{ rw mem_map,
apply mem_sets_of_superset (filter.inter_mem_sets M₀_in M₁_in),
exact subset_preimage_image _ _ },
{ rintros _ _ ⟨x, ⟨x_in₀, x_in₁⟩, rfl⟩ ⟨y, ⟨y_in₀, y_in₁⟩, rfl⟩,
simp only [mem_set_of_eq],
specialize H₁ x y x_in₁ y_in₁,
replace x_in₀ := H₀ x x_in₀,
replace y_in₀ := H₀ y y_in₀, clear H₀,
apply valuation.inversion_estimate,
{ have : v x ≠ 0,
{ intro h, rw h at x_in₀, simpa using x_in₀, },
exact (valuation.ne_zero_iff _).mp this },
{ refine lt_of_lt_of_le H₁ _,
rw coe_min,
apply min_le_min _ x_in₀,
rw mul_assoc,
have : ((γ₀ * γ₀ : units (Γ₀ K)) : Γ₀ K) ≤ v x * v x,
from calc ↑γ₀ * ↑γ₀ ≤ ↑γ₀ * v x : actual_ordered_comm_monoid.mul_le_mul_left' x_in₀
... ≤ _ : actual_ordered_comm_monoid.mul_le_mul_right' x_in₀,
exact actual_ordered_comm_monoid.mul_le_mul_left' this } }
end }
local attribute [instance]
linear_ordered_comm_group_with_zero.topological_space
linear_ordered_comm_group_with_zero.regular_space
linear_ordered_comm_group_with_zero.nhds_basis
linear_ordered_comm_group_with_zero.t2_space
linear_ordered_comm_group_with_zero.ordered_topology
/-- The extension of the valuation of a valued field to the completion of the field. -/
noncomputable def valued.extension : (hat K) → Γ₀ K :=
completion.dense_inducing_coe.extend (v : K → Γ₀ K)
lemma valued.continuous_extension : continuous (valued.extension : (hat K) → Γ₀ K) :=
begin
refine completion.dense_inducing_coe.continuous_extend _,
intro x₀,
by_cases h : x₀ = coe 0,
{ refine ⟨0, _⟩,
erw [h, ← completion.dense_inducing_coe.to_inducing.nhds_eq_comap]; try { apply_instance },
rw linear_ordered_comm_group_with_zero.tendsto_zero,
intro γ₀,
rw valued.mem_nhds,
exact ⟨γ₀, by simp⟩ },
{ have preimage_one : v ⁻¹' {(1 : Γ₀ K)} ∈ 𝓝 (1 : K),
{ have : v (1 : K) ≠ 0, { rw valued.map_one, exact zero_ne_one.symm },
convert valued.loc_const this,
ext x,
rw [valued.map_one, mem_preimage, mem_singleton_iff, mem_set_of_eq] },
obtain ⟨V, V_in, hV⟩ : ∃ V ∈ 𝓝 (1 : hat K), ∀ x : K, (x : hat K) ∈ V → v x = 1,
{ rwa [completion.dense_inducing_coe.nhds_eq_comap, mem_comap_sets] at preimage_one,
rcases preimage_one with ⟨V, V_in, hV⟩,
use [V, V_in],
intros x x_in,
specialize hV x_in,
rwa [mem_preimage, mem_singleton_iff] at hV },
have : ∃ V' ∈ (𝓝 (1 : hat K)), (0 : hat K) ∉ V' ∧ ∀ x y ∈ V', x*y⁻¹ ∈ V,
{ have : tendsto (λ p : (hat K) × hat K, p.1*p.2⁻¹) ((𝓝 1).prod 𝓝 1) 𝓝 1,
{ rw ← nhds_prod_eq,
conv {congr, skip, skip, rw ← (one_mul (1 : hat K))},
refine tendsto.mul continuous_fst.continuous_at (tendsto.comp _ continuous_snd.continuous_at),
convert topological_division_ring.continuous_inv (1 : hat K) zero_ne_one.symm,
exact inv_one.symm },
rcases tendsto_prod_self_iff.mp this V V_in with ⟨U, U_in, hU⟩,
let hatKstar := (-{0} : set $ hat K),
have : hatKstar ∈ 𝓝 (1 : hat K),
{ haveI : t1_space (hat K) := @t2_space.t1_space (hat K) _ (@separated_t2 (hat K) _ _),
exact compl_singleton_mem_nhds zero_ne_one.symm },
use [U ∩ hatKstar, filter.inter_mem_sets U_in this],
split,
{ rintro ⟨h, h'⟩,
rw mem_compl_singleton_iff at h',
exact h' rfl },
{ rintros x y ⟨hx, _⟩ ⟨hy, _⟩,
apply hU ; assumption } },
rcases this with ⟨V', V'_in, zeroV', hV'⟩,
have nhds_right : (λ x, x*x₀) '' V' ∈ 𝓝 x₀,
{ have l : function.left_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀),
{ intro x,
simp only [mul_assoc, mul_inv_cancel h, mul_one] },
have r: function.right_inverse (λ (x : hat K), x * x₀⁻¹) (λ (x : hat K), x * x₀),
{ intro x,
simp only [mul_assoc, inv_mul_cancel h, mul_one] },
have c : continuous (λ (x : hat K), x * x₀⁻¹),
from continuous_id.mul continuous_const,
rw image_eq_preimage_of_inverse l r,
rw ← mul_inv_cancel h at V'_in,
exact c.continuous_at V'_in },
have : ∃ (z₀ : K) (y₀ ∈ V'), coe z₀ = y₀*x₀ ∧ z₀ ≠ 0,
{ rcases dense_range.mem_nhds completion.dense nhds_right with ⟨z₀, y₀, y₀_in, h⟩,
refine ⟨z₀, y₀, y₀_in, ⟨h.symm, _⟩⟩,
intro hz,
rw hz at h,
cases discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero _ _ h ; finish },
rcases this with ⟨z₀, y₀, y₀_in, hz₀, z₀_ne⟩,
have vz₀_ne: valued.v K z₀ ≠ 0 := by rwa valuation.ne_zero_iff,
refine ⟨valued.v K z₀, _⟩,
rw [linear_ordered_comm_group_with_zero.tendsto_nonzero vz₀_ne, mem_comap_sets],
use [(λ x, x*x₀) '' V', nhds_right],
intros x x_in,
rcases mem_preimage.1 x_in with ⟨y, y_in, hy⟩, clear x_in,
change y*x₀ = coe x at hy,
have : valued.v K (x*z₀⁻¹) = 1,
{ apply hV,
rw [completion.coe_mul, is_ring_hom.map_inv' (coe : K → hat K) z₀_ne, ← hy, hz₀, mul_inv'],
assoc_rw mul_inv_cancel h,
rw mul_one,
solve_by_elim },
calc valued.v K x = valued.v K (x*z₀⁻¹*z₀) : by rw [mul_assoc, inv_mul_cancel z₀_ne, mul_one]
... = valued.v K (x*z₀⁻¹)*valued.v K z₀ : valuation.map_mul _ _ _
... = valued.v K z₀ : by rw [this, one_mul] },
end
@[elim_cast]
lemma valued.extension_extends (x : K) : valued.extension (x : hat K) = v x :=
begin
haveI : t2_space (valued.Γ₀ K) := regular_space.t2_space _,
exact completion.dense_inducing_coe.extend_eq_of_cont valued.continuous_valuation x
end
/-- the extension of a valuation on a division ring to its completion. -/
noncomputable def valued.extension_valuation :
valuation (hat K) (Γ₀ K) :=
{ to_fun := valued.extension,
map_zero' := by exact_mod_cast valuation.map_zero _,
map_one' := by { rw [← completion.coe_one, valued.extension_extends (1 : K)], exact valuation.map_one _ },
map_mul' := λ x y, begin
apply completion.induction_on₂ x y,
{ have c1 : continuous (λ (x : (hat K) × hat K), valued.extension (x.1 * x.2)),
from valued.continuous_extension.comp (continuous_fst.mul continuous_snd),
have c2 : continuous (λ (x : (hat K) × hat K), valued.extension x.1 * valued.extension x.2),
from (valued.continuous_extension.comp continuous_fst).mul
(valued.continuous_extension.comp continuous_snd),
exact is_closed_eq c1 c2 },
{ intros x y,
norm_cast,
exact valuation.map_mul _ _ _ },
end,
map_add' := λ x y, begin
rw le_max_iff,
apply completion.induction_on₂ x y,
{ exact is_closed_union
(is_closed_le ((valued.continuous_extension).comp continuous_add)
((valued.continuous_extension).comp continuous_fst))
(is_closed_le ((valued.continuous_extension).comp continuous_add)
((valued.continuous_extension).comp continuous_snd)) },
{ intros x y,
norm_cast,
rw ← le_max_iff,
exact valuation.map_add _ _ _ },
end }
end valuation_on_valued_field_completion