Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
section \<open>Counterclockwise\<close> | |
theory Counterclockwise | |
imports "HOL-Analysis.Multivariate_Analysis" | |
begin | |
text \<open>\label{sec:counterclockwise}\<close> | |
subsection \<open>Auxiliary Lemmas\<close> | |
lemma convex3_alt: | |
fixes x y z::"'a::real_vector" | |
assumes "0 \<le> a" "0 \<le> b" "0 \<le> c" "a + b + c = 1" | |
obtains u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)" | |
and "0 \<le> u" "0 \<le> v" "u + v \<le> 1" | |
proof - | |
from convex_hull_3[of x y z] have "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z \<in> convex hull {x, y, z}" | |
using assms by auto | |
also note convex_hull_3_alt | |
finally obtain u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)" | |
and uv: "0 \<le> u" "0 \<le> v" "u + v \<le> 1" | |
by auto | |
thus ?thesis .. | |
qed | |
lemma (in ordered_ab_group_add) add_nonpos_eq_0_iff: | |
assumes x: "0 \<ge> x" and y: "0 \<ge> y" | |
shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | |
proof - | |
from add_nonneg_eq_0_iff[of "-x" "-y"] assms | |
have "- (x + y) = 0 \<longleftrightarrow> - x = 0 \<and> - y = 0" | |
by simp | |
also have "(- (x + y) = 0) = (x + y = 0)" unfolding neg_equal_0_iff_equal .. | |
finally show ?thesis by simp | |
qed | |
lemma sum_nonpos_eq_0_iff: | |
fixes f :: "'a \<Rightarrow> 'b::ordered_ab_group_add" | |
shows "\<lbrakk>finite A; \<forall>x\<in>A. f x \<le> 0\<rbrakk> \<Longrightarrow> sum f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)" | |
by (induct set: finite) (simp_all add: add_nonpos_eq_0_iff sum_nonpos) | |
lemma fold_if_in_set: | |
"fold (\<lambda>x m. if P x m then x else m) xs x \<in> set (x#xs)" | |
by (induct xs arbitrary: x) auto | |
subsection \<open>Sort Elements of a List\<close> | |
locale linorder_list0 = fixes le::"'a \<Rightarrow> 'a \<Rightarrow> bool" | |
begin | |
definition "min_for a b = (if le a b then a else b)" | |
lemma min_for_in[simp]: "x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> min_for x y \<in> S" | |
by (auto simp: min_for_def) | |
lemma fold_min_eqI1: "fold min_for ys y \<notin> set ys \<Longrightarrow> fold min_for ys y = y" | |
using fold_if_in_set[of _ ys y] | |
by (auto simp: min_for_def[abs_def]) | |
function selsort where | |
"selsort [] = []" | |
| "selsort (y#ys) = (let | |
xm = fold min_for ys y; | |
xs' = List.remove1 xm (y#ys) | |
in (xm#selsort xs'))" | |
by pat_completeness auto | |
termination | |
by (relation "Wellfounded.measure length") | |
(auto simp: length_remove1 intro!: fold_min_eqI1 dest!: length_pos_if_in_set) | |
lemma in_set_selsort_eq: "x \<in> set (selsort xs) \<longleftrightarrow> x \<in> (set xs)" | |
by (induct rule: selsort.induct) (auto simp: Let_def intro!: fold_min_eqI1) | |
lemma set_selsort[simp]: "set (selsort xs) = set xs" | |
using in_set_selsort_eq by blast | |
lemma length_selsort[simp]: "length (selsort xs) = length xs" | |
proof (induct xs rule: selsort.induct) | |
case (2 x xs) | |
from 2[OF refl refl] | |
show ?case | |
unfolding selsort.simps | |
by (auto simp: Let_def length_remove1 | |
simp del: selsort.simps split: if_split_asm | |
intro!: Suc_pred | |
dest!: fold_min_eqI1) | |
qed simp | |
lemma distinct_selsort[simp]: "distinct (selsort xs) = distinct xs" | |
by (auto intro!: card_distinct dest!: distinct_card) | |
lemma selsort_eq_empty_iff[simp]: "selsort xs = [] \<longleftrightarrow> xs = []" | |
by (cases xs) (auto simp: Let_def) | |
inductive sortedP :: "'a list \<Rightarrow> bool" where | |
Nil: "sortedP []" | |
| Cons: "\<forall>y\<in>set ys. le x y \<Longrightarrow> sortedP ys \<Longrightarrow> sortedP (x # ys)" | |
inductive_cases | |
sortedP_Nil: "sortedP []" and | |
sortedP_Cons: "sortedP (x#xs)" | |
inductive_simps | |
sortedP_Nil_iff: "sortedP Nil" and | |
sortedP_Cons_iff: "sortedP (Cons x xs)" | |
lemma sortedP_append_iff: | |
"sortedP (xs @ ys) = (sortedP xs & sortedP ys & (\<forall>x \<in> set xs. \<forall>y \<in> set ys. le x y))" | |
by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons) | |
lemma sortedP_appendI: | |
"sortedP xs \<Longrightarrow> sortedP ys \<Longrightarrow> (\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set ys \<Longrightarrow> le x y) \<Longrightarrow> sortedP (xs @ ys)" | |
by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons) | |
lemma sorted_nth_less: "sortedP xs \<Longrightarrow> i < j \<Longrightarrow> j < length xs \<Longrightarrow> le (xs ! i) (xs ! j)" | |
by (induct xs arbitrary: i j) (auto simp: nth_Cons split: nat.split elim!: sortedP_Cons) | |
lemma sorted_butlastI[intro, simp]: "sortedP xs \<Longrightarrow> sortedP (butlast xs)" | |
by (induct xs) (auto simp: elim!: sortedP_Cons intro!: sortedP.Cons dest!: in_set_butlastD) | |
lemma sortedP_right_of_append1: | |
assumes "sortedP (zs@[z])" | |
assumes "y \<in> set zs" | |
shows "le y z" | |
using assms | |
by (induct zs arbitrary: y z) (auto elim!: sortedP_Cons) | |
lemma sortedP_right_of_last: | |
assumes "sortedP zs" | |
assumes "y \<in> set zs" "y \<noteq> last zs" | |
shows "le y (last zs)" | |
using assms | |
apply (intro sortedP_right_of_append1[of "butlast zs" "last zs" y]) | |
subgoal by (metis append_is_Nil_conv list.distinct(1) snoc_eq_iff_butlast split_list) | |
subgoal by (metis List.insert_def append_butlast_last_id insert_Nil list.distinct(1) rotate1.simps(2) | |
set_ConsD set_rotate1) | |
done | |
lemma selsort_singleton_iff: "selsort xs = [x] \<longleftrightarrow> xs = [x]" | |
by (induct xs) (auto simp: Let_def) | |
lemma hd_last_sorted: | |
assumes "sortedP xs" "length xs > 1" | |
shows "le (hd xs) (last xs)" | |
proof (cases xs) | |
case (Cons y ys) | |
note ys = this | |
thus ?thesis | |
using ys assms | |
by (auto elim!: sortedP_Cons) | |
qed (insert assms, simp) | |
end | |
lemma (in comm_monoid_add) sum_list_distinct_selsort: | |
assumes "distinct xs" | |
shows "sum_list (linorder_list0.selsort le xs) = sum_list xs" | |
using assms | |
apply (simp add: distinct_sum_list_conv_Sum linorder_list0.distinct_selsort) | |
apply (rule sum.cong) | |
subgoal by (simp add: linorder_list0.set_selsort) | |
subgoal by simp | |
done | |
declare linorder_list0.sortedP_Nil_iff[code] | |
linorder_list0.sortedP_Cons_iff[code] | |
linorder_list0.selsort.simps[code] | |
linorder_list0.min_for_def[code] | |
locale linorder_list = linorder_list0 le for le::"'a::ab_group_add \<Rightarrow> _" + | |
fixes S | |
assumes order_refl: "a \<in> S \<Longrightarrow> le a a" | |
assumes trans': "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> c \<in> S \<Longrightarrow> a \<noteq> b \<Longrightarrow> b \<noteq> c \<Longrightarrow> a \<noteq> c \<Longrightarrow> | |
le a b \<Longrightarrow> le b c \<Longrightarrow> le a c" | |
assumes antisym: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> le a b \<Longrightarrow> le b a \<Longrightarrow> a = b" | |
assumes linear': "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> a \<noteq> b \<Longrightarrow> le a b \<or> le b a" | |
begin | |
lemma trans: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> c \<in> S \<Longrightarrow> le a b \<Longrightarrow> le b c \<Longrightarrow> le a c" | |
by (cases "a = b" "b = c" "a = c" | |
rule: bool.exhaust[case_product bool.exhaust[case_product bool.exhaust]]) | |
(auto simp: order_refl intro: trans') | |
lemma linear: "a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> le a b \<or> le b a" | |
by (cases "a = b") (auto simp: linear' order_refl) | |
lemma min_le1: "w \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> le (min_for w y) y" | |
and min_le2: "w \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> le (min_for w y) w" | |
using linear | |
by (auto simp: min_for_def refl) | |
lemma fold_min: | |
assumes "set xs \<subseteq> S" | |
shows "list_all (\<lambda>y. le (fold min_for (tl xs) (hd xs)) y) xs" | |
proof (cases xs) | |
case (Cons y ys) | |
hence subset: "set (y#ys) \<subseteq> S" using assms | |
by auto | |
show ?thesis | |
unfolding Cons list.sel | |
using subset | |
proof (induct ys arbitrary: y) | |
case (Cons z zs) | |
hence IH: "\<And>y. y \<in> S \<Longrightarrow> list_all (le (fold min_for zs y)) (y # zs)" | |
by simp | |
let ?f = "fold min_for zs (min_for z y)" | |
have "?f \<in> set ((min_for z y)#zs)" | |
unfolding min_for_def[abs_def] | |
by (rule fold_if_in_set) | |
also have "\<dots> \<subseteq> S" using Cons.prems by auto | |
finally have "?f \<in> S" . | |
have "le ?f (min_for z y)" | |
using IH[of "min_for z y"] Cons.prems | |
by auto | |
moreover have "le (min_for z y) y" "le (min_for z y) z" using Cons.prems | |
by (auto intro!: min_le1 min_le2) | |
ultimately have "le ?f y" "le ?f z" using Cons.prems \<open>?f \<in> S\<close> | |
by (auto intro!: trans[of ?f "min_for z y"]) | |
thus ?case | |
using IH[of "min_for z y"] | |
using Cons.prems | |
by auto | |
qed (simp add: order_refl) | |
qed simp | |
lemma | |
sortedP_selsort: | |
assumes "set xs \<subseteq> S" | |
shows "sortedP (selsort xs)" | |
using assms | |
proof (induction xs rule: selsort.induct) | |
case (2 z zs) | |
from this fold_min[of "z#zs"] | |
show ?case | |
by (fastforce simp: list_all_iff Let_def | |
simp del: remove1.simps | |
intro: Cons intro!: 2(1)[OF refl refl] | |
dest!: rev_subsetD[OF _ set_remove1_subset])+ | |
qed (auto intro!: Nil) | |
end | |
subsection \<open>Abstract CCW Systems\<close> | |
locale ccw_system0 = | |
fixes ccw::"'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" | |
and S::"'a set" | |
begin | |
abbreviation "indelta t p q r \<equiv> ccw t q r \<and> ccw p t r \<and> ccw p q t" | |
abbreviation "insquare p q r s \<equiv> ccw p q r \<and> ccw q r s \<and> ccw r s p \<and> ccw s p q" | |
end | |
abbreviation "distinct3 p q r \<equiv> \<not>(p = q \<or> p = r \<or> q = r)" | |
abbreviation "distinct4 p q r s \<equiv> \<not>(p = q \<or> p = r \<or> p = s \<or> \<not> distinct3 q r s)" | |
abbreviation "distinct5 p q r s t \<equiv> \<not>(p = q \<or> p = r \<or> p = s \<or> p = t \<or> \<not> distinct4 q r s t)" | |
abbreviation "in3 S p q r \<equiv> p \<in> S \<and> q \<in> S \<and> r \<in> S" | |
abbreviation "in4 S p q r s \<equiv> in3 S p q r \<and> s \<in> S" | |
abbreviation "in5 S p q r s t \<equiv> in4 S p q r s \<and> t \<in> S" | |
locale ccw_system12 = ccw_system0 + | |
assumes cyclic: "ccw p q r \<Longrightarrow> ccw q r p" | |
assumes ccw_antisym: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> ccw p q r \<Longrightarrow> \<not> ccw p r q" | |
locale ccw_system123 = ccw_system12 + | |
assumes nondegenerate: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> ccw p q r \<or> ccw p r q" | |
begin | |
lemma not_ccw_eq: "distinct3 p q r \<Longrightarrow> in3 S p q r \<Longrightarrow> \<not> ccw p q r \<longleftrightarrow> ccw p r q" | |
using ccw_antisym nondegenerate by blast | |
end | |
locale ccw_system4 = ccw_system123 + | |
assumes interior: | |
"distinct4 p q r t \<Longrightarrow> in4 S p q r t \<Longrightarrow> ccw t q r \<Longrightarrow> ccw p t r \<Longrightarrow> ccw p q t \<Longrightarrow> ccw p q r" | |
begin | |
lemma interior': | |
"distinct4 p q r t \<Longrightarrow> in4 S p q r t \<Longrightarrow> ccw p q t \<Longrightarrow> ccw q r t \<Longrightarrow> ccw r p t \<Longrightarrow> ccw p q r" | |
by (metis ccw_antisym cyclic interior nondegenerate) | |
end | |
locale ccw_system1235' = ccw_system123 + | |
assumes dual_transitive: | |
"distinct5 p q r s t \<Longrightarrow> in5 S p q r s t \<Longrightarrow> | |
ccw s t p \<Longrightarrow> ccw s t q \<Longrightarrow> ccw s t r \<Longrightarrow> ccw t p q \<Longrightarrow> ccw t q r \<Longrightarrow> ccw t p r" | |
locale ccw_system1235 = ccw_system123 + | |
assumes transitive: "distinct5 p q r s t \<Longrightarrow> in5 S p q r s t \<Longrightarrow> | |
ccw t s p \<Longrightarrow> ccw t s q \<Longrightarrow> ccw t s r \<Longrightarrow> ccw t p q \<Longrightarrow> ccw t q r \<Longrightarrow> ccw t p r" | |
begin | |
lemmas ccw_axioms = cyclic nondegenerate ccw_antisym transitive | |
sublocale ccw_system1235' | |
proof (unfold_locales, rule ccontr, goal_cases) | |
case prems: (1 p q r s t) | |
hence "ccw s p q \<Longrightarrow> ccw s r p" | |
by (metis ccw_axioms prems) | |
moreover | |
have "ccw s r p \<Longrightarrow> ccw s q r" | |
by (metis ccw_axioms prems) | |
moreover | |
have "ccw s q r \<Longrightarrow> ccw s p q" | |
by (metis ccw_axioms prems) | |
ultimately | |
have "ccw s p q \<and> ccw s r p \<and> ccw s q r \<or> ccw s q p \<and> ccw s p r \<and> ccw s r q" | |
by (metis ccw_axioms prems) | |
thus False | |
by (metis ccw_axioms prems) | |
qed | |
end | |
locale ccw_system = ccw_system1235 + ccw_system4 | |
end | |