Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* | |
File: Connectivity.thy | |
Author: Bohua Zhan | |
*) | |
section \<open>Connectedness for a set of undirected edges.\<close> | |
theory Connectivity | |
imports Union_Find | |
begin | |
text \<open>A simple application of union-find for graph connectivity.\<close> | |
fun is_path :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> nat list \<Rightarrow> bool" where | |
"is_path n S [] = False" | |
| "is_path n S (x # xs) = | |
(if xs = [] then x < n else ((x, hd xs) \<in> S \<or> (hd xs, x) \<in> S) \<and> is_path n S xs)" | |
setup \<open>fold add_rewrite_rule @{thms is_path.simps}\<close> | |
definition has_path :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]: | |
"has_path n S i j \<longleftrightarrow> (\<exists>p. is_path n S p \<and> hd p = i \<and> last p = j)" | |
lemma is_path_nonempty [forward]: "is_path n S p \<Longrightarrow> p \<noteq> []" by auto2 | |
lemma nonempty_is_not_path [resolve]: "\<not>is_path n S []" by auto2 | |
lemma is_path_extend [forward]: | |
"is_path n S p \<Longrightarrow> S \<subseteq> T \<Longrightarrow> is_path n T p" | |
@proof @induct p @qed | |
lemma has_path_extend [forward]: | |
"has_path n S i j \<Longrightarrow> S \<subseteq> T \<Longrightarrow> has_path n T i j" by auto2 | |
definition joinable :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" where [rewrite]: | |
"joinable p q \<longleftrightarrow> (last p = hd q)" | |
definition path_join :: "nat list \<Rightarrow> nat list \<Rightarrow> nat list" where [rewrite]: | |
"path_join p q = p @ tl q" | |
setup \<open>register_wellform_data ("path_join p q", ["joinable p q"])\<close> | |
setup \<open>add_prfstep_check_req ("path_join p q", "joinable p q")\<close> | |
lemma path_join_hd [rewrite]: "p \<noteq> [] \<Longrightarrow> hd (path_join p q) = hd p" by auto2 | |
lemma path_join_last [rewrite]: "joinable p q \<Longrightarrow> q \<noteq> [] \<Longrightarrow> last (path_join p q) = last q" | |
@proof @have "q = hd q # tl q" @case "tl q = []" @qed | |
lemma path_join_is_path [backward]: | |
"joinable p q \<Longrightarrow> is_path n S p \<Longrightarrow> is_path n S q \<Longrightarrow> is_path n S (path_join p q)" | |
@proof @induct p @qed | |
lemma has_path_trans [forward]: | |
"has_path n S i j \<Longrightarrow> has_path n S j k \<Longrightarrow> has_path n S i k" | |
@proof | |
@obtain p where "is_path n S p" "hd p = i" "last p = j" | |
@obtain q where "is_path n S q" "hd q = j" "last q = k" | |
@have "is_path n S (path_join p q)" | |
@qed | |
definition is_valid_graph :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> bool" where [rewrite]: | |
"is_valid_graph n S \<longleftrightarrow> (\<forall>p\<in>S. fst p < n \<and> snd p < n)" | |
lemma has_path_single1 [backward1]: | |
"is_valid_graph n S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> has_path n S a b" | |
@proof @have "is_path n S [a, b]" @qed | |
lemma has_path_single2 [backward1]: | |
"is_valid_graph n S \<Longrightarrow> (a, b) \<in> S \<Longrightarrow> has_path n S b a" | |
@proof @have "is_path n S [b, a]" @qed | |
lemma has_path_refl [backward2]: | |
"is_valid_graph n S \<Longrightarrow> a < n \<Longrightarrow> has_path n S a a" | |
@proof @have "is_path n S [a]" @qed | |
definition connected_rel :: "nat \<Rightarrow> (nat \<times> nat) set \<Rightarrow> (nat \<times> nat) set" where | |
"connected_rel n S = {(a,b). has_path n S a b}" | |
lemma connected_rel_iff [rewrite]: | |
"(a, b) \<in> connected_rel n S \<longleftrightarrow> has_path n S a b" using connected_rel_def by simp | |
lemma connected_rel_trans [forward]: | |
"trans (connected_rel n S)" by auto2 | |
lemma connected_rel_refl [backward2]: | |
"is_valid_graph n S \<Longrightarrow> a < n \<Longrightarrow> (a, a) \<in> connected_rel n S" by auto2 | |
lemma is_path_per_union [rewrite]: | |
"is_valid_graph n (S \<union> {(a, b)}) \<Longrightarrow> | |
has_path n (S \<union> {(a, b)}) i j \<longleftrightarrow> (i, j) \<in> per_union (connected_rel n S) a b" | |
@proof | |
@let "R = connected_rel n S" | |
@let "S' = S \<union> {(a, b)}" @have "S \<subseteq> S'" | |
@case "(i, j) \<in> per_union R a b" @with | |
@case "(i, a) \<in> R \<and> (b, j) \<in> R" @with | |
@have "has_path n S' i a" @have "has_path n S' a b" @have "has_path n S' b j" | |
@end | |
@case "(i, b) \<in> R \<and> (a, j) \<in> R" @with | |
@have "has_path n S' i b" @have "has_path n S' b a" @have "has_path n S' a j" | |
@end | |
@end | |
@case "has_path n S' i j" @with | |
@have (@rule) "\<forall>p. is_path n S' p \<longrightarrow> (hd p, last p) \<in> per_union R a b" @with | |
@induct p @with | |
@subgoal "p = x # xs" @case "xs = []" | |
@have "(x, hd xs) \<in> per_union R a b" @with | |
@have "is_valid_graph n S" | |
@case "(x, hd xs) \<in> S'" @with @case "(x, hd xs) \<in> S" @end | |
@case "(hd xs, x) \<in> S'" @with @case "(hd xs, x) \<in> S" @end | |
@end | |
@endgoal @end | |
@end | |
@obtain p where "is_path n S' p" "hd p = i" "last p = j" | |
@end | |
@qed | |
lemma connected_rel_union [rewrite]: | |
"is_valid_graph n (S \<union> {(a, b)}) \<Longrightarrow> | |
connected_rel n (S \<union> {(a, b)}) = per_union (connected_rel n S) a b" by auto2 | |
lemma connected_rel_init [rewrite]: | |
"connected_rel n {} = uf_init_rel n" | |
@proof | |
@have "is_valid_graph n {}" | |
@have "\<forall>i j. has_path n {} i j \<longleftrightarrow> (i, j) \<in> uf_init_rel n" @with | |
@case "has_path n {} i j" @with | |
@obtain p where "is_path n {} p" "hd p = i" "last p = j" | |
@have "p = hd p # tl p" | |
@end | |
@end | |
@qed | |
fun connected_rel_ind :: "nat \<Rightarrow> (nat \<times> nat) list \<Rightarrow> nat \<Rightarrow> (nat \<times> nat) set" where | |
"connected_rel_ind n es 0 = uf_init_rel n" | |
| "connected_rel_ind n es (Suc k) = | |
(let R = connected_rel_ind n es k; p = es ! k in | |
per_union R (fst p) (snd p))" | |
setup \<open>fold add_rewrite_rule @{thms connected_rel_ind.simps}\<close> | |
lemma connected_rel_ind_rule [rewrite]: | |
"is_valid_graph n (set es) \<Longrightarrow> k \<le> length es \<Longrightarrow> | |
connected_rel_ind n es k = connected_rel n (set (take k es))" | |
@proof @induct k @with | |
@subgoal "k = Suc m" | |
@have "is_valid_graph n (set (take (Suc m) es))" | |
@endgoal @end | |
@qed | |
text \<open>Correctness of the functional algorithm.\<close> | |
theorem connected_rel_ind_compute [rewrite]: | |
"is_valid_graph n (set es) \<Longrightarrow> | |
connected_rel_ind n es (length es) = connected_rel n (set es)" by auto2 | |
end | |