Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice. | |
From mathcomp Require Import fintype div path tuple bigop prime finset. | |
(******************************************************************************) | |
(* This file defines the main interface for finite groups : *) | |
(* finGroupType == the structure for finite types with a group law. *) | |
(* {group gT} == type of groups with elements of type gT. *) | |
(* baseFinGroupType == the structure for finite types with a monoid law *) | |
(* and an involutive antimorphism; finGroupType is *) | |
(* derived from baseFinGroupType (via a telescope). *) | |
(* FinGroupType mulVg == the finGroupType structure for an existing *) | |
(* baseFinGroupType structure, built from a proof of *) | |
(* the left inverse group axiom for that structure's *) | |
(* operations. *) | |
(* BaseFinGroupType bgm == the baseFingroupType structure built by packaging *) | |
(* bgm : FinGroup.mixin_of T for a type T with an *) | |
(* existing finType structure. *) | |
(* FinGroup.BaseMixin mulA mul1x invK invM == *) | |
(* the mixin for a baseFinGroupType structure, built *) | |
(* from proofs of the baseFinGroupType axioms. *) | |
(* FinGroup.Mixin mulA mul1x mulVg == *) | |
(* the mixin for a baseFinGroupType structure, built *) | |
(* from proofs of the group axioms. *) | |
(* [baseFinGroupType of T] == a clone of an existing baseFinGroupType *) | |
(* structure on T, for T (the existing structure *) | |
(* might be for some delta-expansion of T). *) | |
(* [finGroupType of T] == a clone of an existing finGroupType structure on *) | |
(* T, for the canonical baseFinGroupType structure *) | |
(* of T (the existing structure might be for the *) | |
(* baseFinGroupType of some delta-expansion of T). *) | |
(* [group of G] == a clone for an existing {group gT} structure on *) | |
(* G : {set gT} (the existing structure might be for *) | |
(* some delta-expansion of G). *) | |
(* If gT implements finGroupType, then we can form {set gT}, the type of *) | |
(* finite sets with elements of type gT (as finGroupType extends finType). *) | |
(* The group law extends pointwise to {set gT}, which thus implements a sub- *) | |
(* interface baseFinGroupType of finGroupType. To be consistent with the *) | |
(* predType interface, this is done by coercion to FinGroup.arg_sort, an *) | |
(* alias for FinGroup.sort. Accordingly, all pointwise group operations below *) | |
(* have arguments of type (FinGroup.arg_sort) gT and return results of type *) | |
(* FinGroup.sort gT. *) | |
(* The notations below are declared in two scopes: *) | |
(* group_scope (delimiter %g) for point operations and set constructs. *) | |
(* Group_scope (delimiter %G) for explicit {group gT} structures. *) | |
(* These scopes should not be opened globally, although group_scope is often *) | |
(* opened locally in group-theory files (via Import GroupScope). *) | |
(* As {group gT} is both a subtype and an interface structure for {set gT}, *) | |
(* the fact that a given G : {set gT} is a group can (and usually should) be *) | |
(* inferred by type inference with canonical structures. This means that all *) | |
(* `group' constructions (e.g., the normaliser 'N_G(H)) actually define sets *) | |
(* with a canonical {group gT} structure; the %G delimiter can be used to *) | |
(* specify the actual {group gT} structure (e.g., 'N_G(H)%G). *) | |
(* Operations on elements of a group: *) | |
(* x * y == the group product of x and y. *) | |
(* x ^+ n == the nth power of x, i.e., x * ... * x (n times). *) | |
(* x^-1 == the group inverse of x. *) | |
(* x ^- n == the inverse of x ^+ n (notation for (x ^+ n)^-1). *) | |
(* 1 == the unit element. *) | |
(* x ^ y == the conjugate of x by y (i.e., y^-1 * (x * y)). *) | |
(* [~ x, y] == the commutator of x and y (i.e., x^-1 * x ^ y). *) | |
(* [~ x1, ..., xn] == the commutator of x1, ..., xn (associating left). *) | |
(* \prod_(i ...) x i == the product of the x i (order-sensitive). *) | |
(* commute x y <-> x and y commute. *) | |
(* centralises x A <-> x centralises A. *) | |
(* 'C[x] == the set of elements that commute with x. *) | |
(* 'C_G[x] == the set of elements of G that commute with x. *) | |
(* <[x]> == the cyclic subgroup generated by the element x. *) | |
(* #[x] == the order of the element x, i.e., #|<[x]>|. *) | |
(* Operations on subsets/subgroups of a finite group: *) | |
(* H * G == {xy | x \in H, y \in G}. *) | |
(* 1 or [1] or [1 gT] == the unit group. *) | |
(* [set: gT]%G == the group of all x : gT (in Group_scope). *) | |
(* group_set G == G contains 1 and is closed under binary product; *) | |
(* this is the characteristic property of the *) | |
(* {group gT} subtype of {set gT}. *) | |
(* [subg G] == the subtype, set, or group of all x \in G: this *) | |
(* notation is defined simultaneously in %type, %g *) | |
(* and %G scopes, and G must denote a {group gT} *) | |
(* structure (G is in the %G scope). *) | |
(* subg, sgval == the projection into and injection from [subg G]. *) | |
(* H^# == the set H minus the unit element. *) | |
(* repr H == some element of H if 1 \notin H != set0, else 1. *) | |
(* (repr is defined over sets of a baseFinGroupType, *) | |
(* so it can be used, e.g., to pick right cosets.) *) | |
(* x *: H == left coset of H by x. *) | |
(* lcosets H G == the set of the left cosets of H by elements of G. *) | |
(* H :* x == right coset of H by x. *) | |
(* rcosets H G == the set of the right cosets of H by elements of G. *) | |
(* #|G : H| == the index of H in G, i.e., #|rcosets G H|. *) | |
(* H :^ x == the conjugate of H by x. *) | |
(* x ^: H == the conjugate class of x in H. *) | |
(* classes G == the set of all conjugate classes of G. *) | |
(* G :^: H == {G :^ x | x \in H}. *) | |
(* class_support G H == {x ^ y | x \in G, y \in H}. *) | |
(* commg_set G H == {[~ x, y] | x \in G, y \in H}; NOT the commutator! *) | |
(* <<H>> == the subgroup generated by the set H. *) | |
(* [~: G, H] == the commmutator subgroup of G and H, i.e., *) | |
(* <<commg_set G H>>>. *) | |
(* [~: H1, ..., Hn] == commutator subgroup of H1, ..., Hn (left assoc.). *) | |
(* H <*> G == the subgroup generated by sets H and G (H join G). *) | |
(* (H * G)%G == the join of G H : {group gT} (convertible, but not *) | |
(* identical to (G <*> H)%G). *) | |
(* (\prod_(i ...) H i)%G == the group generated by the H i. *) | |
(* {in G, centralised H} <-> G centralises H. *) | |
(* {in G, normalised H} <-> G normalises H. *) | |
(* <-> forall x, x \in G -> H :^ x = H. *) | |
(* 'N(H) == the normaliser of H. *) | |
(* 'N_G(H) == the normaliser of H in G. *) | |
(* H <| G <=> H is a normal subgroup of G. *) | |
(* 'C(H) == the centraliser of H. *) | |
(* 'C_G(H) == the centraliser of H in G. *) | |
(* gcore H G == the largest subgroup of H normalised by G. *) | |
(* If H is a subgroup of G, this is the largest *) | |
(* normal subgroup of G contained in H). *) | |
(* abelian H <=> H is abelian. *) | |
(* subgroups G == the set of subgroups of G, i.e., the set of all *) | |
(* H : {group gT} such that H \subset G. *) | |
(* In the notation below G is a variable that is bound in P. *) | |
(* [max G | P] <=> G is the largest group such that P holds. *) | |
(* [max H of G | P] <=> H is the largest group G such that P holds. *) | |
(* [max G | P & Q] := [max G | P && Q], likewise [max H of G | P & Q]. *) | |
(* [min G | P] <=> G is the smallest group such that P holds. *) | |
(* [min G | P & Q] := [min G | P && Q], likewise [min H of G | P & Q]. *) | |
(* [min H of G | P] <=> H is the smallest group G such that P holds. *) | |
(* In addition to the generic suffixes described in ssrbool.v and finset.v, *) | |
(* we associate the following suffixes to group operations: *) | |
(* 1 - identity element, as in group1 : 1 \in G. *) | |
(* M - multiplication, as is invMg : (x * y)^-1 = y^-1 * x^-1. *) | |
(* Also nat multiplication, for expgM : x ^+ (m * n) = x ^+ m ^+ n. *) | |
(* D - (nat) addition, for expgD : x ^+ (m + n) = x ^+ m * x ^+ n. *) | |
(* V - inverse, as in mulgV : x * x^-1 = 1. *) | |
(* X - exponentiation, as in conjXg : (x ^+ n) ^ y = (x ^ y) ^+ n. *) | |
(* J - conjugation, as in orderJ : #[x ^ y] = #[x]. *) | |
(* R - commutator, as in conjRg : [~ x, y] ^ z = [~ x ^ z, y ^ z]. *) | |
(* Y - join, as in centY : 'C(G <*> H) = 'C(G) :&: 'C(H). *) | |
(* We sometimes prefix these with an `s' to indicate a set-lifted operation, *) | |
(* e.g., conjsMg : (A * B) :^ x = A :^ x * B :^ x. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Declare Scope group_scope. | |
Declare Scope Group_scope. | |
Delimit Scope group_scope with g. | |
Delimit Scope Group_scope with G. | |
(* This module can be imported to open the scope for group element *) | |
(* operations locally to a file, without exporting the Open to *) | |
(* clients of that file (as Open would do). *) | |
Module GroupScope. | |
Open Scope group_scope. | |
End GroupScope. | |
Import GroupScope. | |
(* These are the operation notations introduced by this file. *) | |
Reserved Notation "[ ~ x1 , x2 , .. , xn ]" (at level 0, | |
format "'[ ' [ ~ x1 , '/' x2 , '/' .. , '/' xn ] ']'"). | |
Reserved Notation "[ 1 gT ]" (at level 0, format "[ 1 gT ]"). | |
Reserved Notation "[ 1 ]" (at level 0, format "[ 1 ]"). | |
Reserved Notation "[ 'subg' G ]" (at level 0, format "[ 'subg' G ]"). | |
Reserved Notation "A ^#" (at level 2, format "A ^#"). | |
Reserved Notation "A :^ x" (at level 35, right associativity). | |
Reserved Notation "x ^: B" (at level 35, right associativity). | |
Reserved Notation "A :^: B" (at level 35, right associativity). | |
Reserved Notation "#| B : A |" (at level 0, B, A at level 99, | |
format "#| B : A |"). | |
Reserved Notation "''N' ( A )" (at level 8, format "''N' ( A )"). | |
Reserved Notation "''N_' G ( A )" (at level 8, G at level 2, | |
format "''N_' G ( A )"). | |
Reserved Notation "A <| B" (at level 70, no associativity). | |
Reserved Notation "A <*> B" (at level 40, left associativity). | |
Reserved Notation "[ ~: A1 , A2 , .. , An ]" (at level 0, | |
format "[ ~: '[' A1 , '/' A2 , '/' .. , '/' An ']' ]"). | |
Reserved Notation "[ 'max' A 'of' G | gP ]" (at level 0, | |
format "[ '[hv' 'max' A 'of' G '/ ' | gP ']' ]"). | |
Reserved Notation "[ 'max' G | gP ]" (at level 0, | |
format "[ '[hv' 'max' G '/ ' | gP ']' ]"). | |
Reserved Notation "[ 'max' A 'of' G | gP & gQ ]" (at level 0, | |
format "[ '[hv' 'max' A 'of' G '/ ' | gP '/ ' & gQ ']' ]"). | |
Reserved Notation "[ 'max' G | gP & gQ ]" (at level 0, | |
format "[ '[hv' 'max' G '/ ' | gP '/ ' & gQ ']' ]"). | |
Reserved Notation "[ 'min' A 'of' G | gP ]" (at level 0, | |
format "[ '[hv' 'min' A 'of' G '/ ' | gP ']' ]"). | |
Reserved Notation "[ 'min' G | gP ]" (at level 0, | |
format "[ '[hv' 'min' G '/ ' | gP ']' ]"). | |
Reserved Notation "[ 'min' A 'of' G | gP & gQ ]" (at level 0, | |
format "[ '[hv' 'min' A 'of' G '/ ' | gP '/ ' & gQ ']' ]"). | |
Reserved Notation "[ 'min' G | gP & gQ ]" (at level 0, | |
format "[ '[hv' 'min' G '/ ' | gP '/ ' & gQ ']' ]"). | |
Module FinGroup. | |
(* We split the group axiomatisation in two. We define a *) | |
(* class of "base groups", which are basically monoids *) | |
(* with an involutive antimorphism, from which we derive *) | |
(* the class of groups proper. This allows use to reuse *) | |
(* much of the group notation and algebraic axioms for *) | |
(* group subsets, by defining a base group class on them. *) | |
(* We use class/mixins here rather than telescopes to *) | |
(* be able to interoperate with the type coercions. *) | |
(* Another potential benefit (not exploited here) would *) | |
(* be to define a class for infinite groups, which could *) | |
(* share all of the algebraic laws. *) | |
Record mixin_of (T : Type) : Type := BaseMixin { | |
mul : T -> T -> T; | |
one : T; | |
inv : T -> T; | |
_ : associative mul; | |
_ : left_id one mul; | |
_ : involutive inv; | |
_ : {morph inv : x y / mul x y >-> mul y x} | |
}. | |
Structure base_type : Type := PackBase { | |
sort : Type; | |
_ : mixin_of sort; | |
_ : Finite.class_of sort | |
}. | |
(* We want to use sort as a coercion class, both to infer *) | |
(* argument scopes properly, and to allow groups and cosets to *) | |
(* coerce to the base group of group subsets. *) | |
(* However, the return type of group operations should NOT be a *) | |
(* coercion class, since this would trump the real (head-normal) *) | |
(* coercion class for concrete group types, thus spoiling the *) | |
(* coercion of A * B to pred_sort in x \in A * B, or rho * tau to *) | |
(* ffun and Funclass in (rho * tau) x, when rho tau : perm T. *) | |
(* Therefore we define an alias of sort for argument types, and *) | |
(* make it the default coercion FinGroup.base_type >-> Sortclass *) | |
(* so that arguments of a functions whose parameters are of type, *) | |
(* say, gT : finGroupType, can be coerced to the coercion class *) | |
(* of arg_sort. Care should be taken, however, to declare the *) | |
(* return type of functions and operators as FinGroup.sort gT *) | |
(* rather than gT, e.g., mulg : gT -> gT -> FinGroup.sort gT. *) | |
(* Note that since we do this here and in quotient.v for all the *) | |
(* basic functions, the inferred return type should generally be *) | |
(* correct. *) | |
Definition arg_sort := sort. | |
Definition mixin T := | |
let: PackBase _ m _ := T return mixin_of (sort T) in m. | |
Definition finClass T := | |
let: PackBase _ _ m := T return Finite.class_of (sort T) in m. | |
Structure type : Type := Pack { | |
base : base_type; | |
_ : left_inverse (one (mixin base)) (inv (mixin base)) (mul (mixin base)) | |
}. | |
(* We only need three axioms to make a true group. *) | |
Section Mixin. | |
Variables (T : Type) (one : T) (mul : T -> T -> T) (inv : T -> T). | |
Hypothesis mulA : associative mul. | |
Hypothesis mul1 : left_id one mul. | |
Hypothesis mulV : left_inverse one inv mul. | |
Notation "1" := one. | |
Infix "*" := mul. | |
Notation "x ^-1" := (inv x). | |
Lemma mk_invgK : involutive inv. | |
Proof. | |
have mulV21 x: x^-1^-1 * 1 = x by rewrite -(mulV x) mulA mulV mul1. | |
by move=> x; rewrite -[_ ^-1]mulV21 -(mul1 1) mulA !mulV21. | |
Qed. | |
Lemma mk_invMg : {morph inv : x y / x * y >-> y * x}. | |
Proof. | |
have mulxV x: x * x^-1 = 1 by rewrite -{1}[x]mk_invgK mulV. | |
move=> x y /=; rewrite -[y^-1 * _]mul1 -(mulV (x * y)) -2!mulA (mulA y). | |
by rewrite mulxV mul1 mulxV -(mulxV (x * y)) mulA mulV mul1. | |
Qed. | |
Definition Mixin := BaseMixin mulA mul1 mk_invgK mk_invMg. | |
End Mixin. | |
Definition pack_base T m := | |
fun c cT & phant_id (Finite.class cT) c => @PackBase T m c. | |
Definition clone_base T := | |
fun bT & sort bT -> T => | |
fun m c (bT' := @PackBase T m c) & phant_id bT' bT => bT'. | |
Definition clone T := | |
fun bT gT & sort bT * sort (base gT) -> T * T => | |
fun m (gT' := @Pack bT m) & phant_id gT' gT => gT'. | |
Section InheritedClasses. | |
Variable bT : base_type. | |
Local Notation T := (arg_sort bT). | |
Local Notation rT := (sort bT). | |
Local Notation class := (finClass bT). | |
Canonical eqType := Equality.Pack class. | |
Canonical choiceType := Choice.Pack class. | |
Canonical countType := Countable.Pack class. | |
Canonical finType := Finite.Pack class. | |
Definition arg_eqType := Eval hnf in [eqType of T]. | |
Definition arg_choiceType := Eval hnf in [choiceType of T]. | |
Definition arg_countType := Eval hnf in [countType of T]. | |
Definition arg_finType := Eval hnf in [finType of T]. | |
End InheritedClasses. | |
Module Import Exports. | |
(* Declaring sort as a Coercion is clearly redundant; it only *) | |
(* serves the purpose of eliding FinGroup.sort in the display of *) | |
(* return types. The warning could be eliminated by using the *) | |
(* functor trick to replace Sortclass by a dummy target. *) | |
Coercion arg_sort : base_type >-> Sortclass. | |
Coercion sort : base_type >-> Sortclass. | |
Coercion mixin : base_type >-> mixin_of. | |
Coercion base : type >-> base_type. | |
Canonical eqType. | |
Canonical choiceType. | |
Canonical countType. | |
Canonical finType. | |
Coercion arg_eqType : base_type >-> Equality.type. | |
Canonical arg_eqType. | |
Coercion arg_choiceType : base_type >-> Choice.type. | |
Canonical arg_choiceType. | |
Coercion arg_countType : base_type >-> Countable.type. | |
Canonical arg_countType. | |
Coercion arg_finType : base_type >-> Finite.type. | |
Canonical arg_finType. | |
Bind Scope group_scope with sort. | |
Bind Scope group_scope with arg_sort. | |
Notation baseFinGroupType := base_type. | |
Notation finGroupType := type. | |
Notation BaseFinGroupType T m := (@pack_base T m _ _ id). | |
Notation FinGroupType := Pack. | |
Notation "[ 'baseFinGroupType' 'of' T ]" := (@clone_base T _ id _ _ id) | |
(at level 0, format "[ 'baseFinGroupType' 'of' T ]") : form_scope. | |
Notation "[ 'finGroupType' 'of' T ]" := (@clone T _ _ id _ id) | |
(at level 0, format "[ 'finGroupType' 'of' T ]") : form_scope. | |
End Exports. | |
End FinGroup. | |
Export FinGroup.Exports. | |
Section ElementOps. | |
Variable T : baseFinGroupType. | |
Notation rT := (FinGroup.sort T). | |
Definition oneg : rT := FinGroup.one T. | |
Definition mulg : T -> T -> rT := FinGroup.mul T. | |
Definition invg : T -> rT := FinGroup.inv T. | |
Definition expgn_rec (x : T) n : rT := iterop n mulg x oneg. | |
End ElementOps. | |
Definition expgn := nosimpl expgn_rec. | |
Notation "1" := (oneg _) : group_scope. | |
Notation "x1 * x2" := (mulg x1 x2) : group_scope. | |
Notation "x ^-1" := (invg x) : group_scope. | |
Notation "x ^+ n" := (expgn x n) : group_scope. | |
Notation "x ^- n" := (x ^+ n)^-1 : group_scope. | |
(* Arguments of conjg are restricted to true groups to avoid an *) | |
(* improper interpretation of A ^ B with A and B sets, namely: *) | |
(* {x^-1 * (y * z) | y \in A, x, z \in B} *) | |
Definition conjg (T : finGroupType) (x y : T) := y^-1 * (x * y). | |
Notation "x1 ^ x2" := (conjg x1 x2) : group_scope. | |
Definition commg (T : finGroupType) (x y : T) := x^-1 * x ^ y. | |
Notation "[ ~ x1 , x2 , .. , xn ]" := (commg .. (commg x1 x2) .. xn) | |
: group_scope. | |
Prenex Implicits mulg invg expgn conjg commg. | |
Notation "\prod_ ( i <- r | P ) F" := | |
(\big[mulg/1]_(i <- r | P%B) F%g) : group_scope. | |
Notation "\prod_ ( i <- r ) F" := | |
(\big[mulg/1]_(i <- r) F%g) : group_scope. | |
Notation "\prod_ ( m <= i < n | P ) F" := | |
(\big[mulg/1]_(m <= i < n | P%B) F%g) : group_scope. | |
Notation "\prod_ ( m <= i < n ) F" := | |
(\big[mulg/1]_(m <= i < n) F%g) : group_scope. | |
Notation "\prod_ ( i | P ) F" := | |
(\big[mulg/1]_(i | P%B) F%g) : group_scope. | |
Notation "\prod_ i F" := | |
(\big[mulg/1]_i F%g) : group_scope. | |
Notation "\prod_ ( i : t | P ) F" := | |
(\big[mulg/1]_(i : t | P%B) F%g) (only parsing) : group_scope. | |
Notation "\prod_ ( i : t ) F" := | |
(\big[mulg/1]_(i : t) F%g) (only parsing) : group_scope. | |
Notation "\prod_ ( i < n | P ) F" := | |
(\big[mulg/1]_(i < n | P%B) F%g) : group_scope. | |
Notation "\prod_ ( i < n ) F" := | |
(\big[mulg/1]_(i < n) F%g) : group_scope. | |
Notation "\prod_ ( i 'in' A | P ) F" := | |
(\big[mulg/1]_(i in A | P%B) F%g) : group_scope. | |
Notation "\prod_ ( i 'in' A ) F" := | |
(\big[mulg/1]_(i in A) F%g) : group_scope. | |
Section PreGroupIdentities. | |
Variable T : baseFinGroupType. | |
Implicit Types x y z : T. | |
Local Notation mulgT := (@mulg T). | |
Lemma mulgA : associative mulgT. Proof. by case: T => ? []. Qed. | |
Lemma mul1g : left_id 1 mulgT. Proof. by case: T => ? []. Qed. | |
Lemma invgK : @involutive T invg. Proof. by case: T => ? []. Qed. | |
Lemma invMg x y : (x * y)^-1 = y^-1 * x^-1. Proof. by case: T x y => ? []. Qed. | |
Lemma invg_inj : @injective T T invg. Proof. exact: can_inj invgK. Qed. | |
Lemma eq_invg_sym x y : (x^-1 == y) = (x == y^-1). | |
Proof. by apply: (inv_eq invgK). Qed. | |
Lemma invg1 : 1^-1 = 1 :> T. | |
Proof. by apply: invg_inj; rewrite -{1}[1^-1]mul1g invMg invgK mul1g. Qed. | |
Lemma eq_invg1 x : (x^-1 == 1) = (x == 1). | |
Proof. by rewrite eq_invg_sym invg1. Qed. | |
Lemma mulg1 : right_id 1 mulgT. | |
Proof. by move=> x; apply: invg_inj; rewrite invMg invg1 mul1g. Qed. | |
Canonical finGroup_law := Monoid.Law mulgA mul1g mulg1. | |
Lemma expgnE x n : x ^+ n = expgn_rec x n. Proof. by []. Qed. | |
Lemma expg0 x : x ^+ 0 = 1. Proof. by []. Qed. | |
Lemma expg1 x : x ^+ 1 = x. Proof. by []. Qed. | |
Lemma expgS x n : x ^+ n.+1 = x * x ^+ n. | |
Proof. by case: n => //; rewrite mulg1. Qed. | |
Lemma expg1n n : 1 ^+ n = 1 :> T. | |
Proof. by elim: n => // n IHn; rewrite expgS mul1g. Qed. | |
Lemma expgD x n m : x ^+ (n + m) = x ^+ n * x ^+ m. | |
Proof. by elim: n => [|n IHn]; rewrite ?mul1g // !expgS IHn mulgA. Qed. | |
Lemma expgSr x n : x ^+ n.+1 = x ^+ n * x. | |
Proof. by rewrite -addn1 expgD expg1. Qed. | |
Lemma expgM x n m : x ^+ (n * m) = x ^+ n ^+ m. | |
Proof. | |
elim: m => [|m IHm]; first by rewrite muln0 expg0. | |
by rewrite mulnS expgD IHm expgS. | |
Qed. | |
Lemma expgAC x m n : x ^+ m ^+ n = x ^+ n ^+ m. | |
Proof. by rewrite -!expgM mulnC. Qed. | |
Definition commute x y := x * y = y * x. | |
Lemma commute_refl x : commute x x. | |
Proof. by []. Qed. | |
Lemma commute_sym x y : commute x y -> commute y x. | |
Proof. by []. Qed. | |
Lemma commute1 x : commute x 1. | |
Proof. by rewrite /commute mulg1 mul1g. Qed. | |
Lemma commuteM x y z : commute x y -> commute x z -> commute x (y * z). | |
Proof. by move=> cxy cxz; rewrite /commute -mulgA -cxz !mulgA cxy. Qed. | |
Lemma commuteX x y n : commute x y -> commute x (y ^+ n). | |
Proof. | |
by move=> cxy; case: n; [apply: commute1 | elim=> // n; apply: commuteM]. | |
Qed. | |
Lemma commuteX2 x y m n : commute x y -> commute (x ^+ m) (y ^+ n). | |
Proof. by move=> cxy; apply/commuteX/commute_sym/commuteX. Qed. | |
Lemma expgVn x n : x^-1 ^+ n = x ^- n. | |
Proof. by elim: n => [|n IHn]; rewrite ?invg1 // expgSr expgS invMg IHn. Qed. | |
Lemma expgMn x y n : commute x y -> (x * y) ^+ n = x ^+ n * y ^+ n. | |
Proof. | |
move=> cxy; elim: n => [|n IHn]; first by rewrite mulg1. | |
by rewrite !expgS IHn -mulgA (mulgA y) (commuteX _ (commute_sym cxy)) !mulgA. | |
Qed. | |
End PreGroupIdentities. | |
#[global] Hint Resolve commute1 : core. | |
Arguments invg_inj {T} [x1 x2]. | |
Prenex Implicits commute invgK. | |
Section GroupIdentities. | |
Variable T : finGroupType. | |
Implicit Types x y z : T. | |
Local Notation mulgT := (@mulg T). | |
Lemma mulVg : left_inverse 1 invg mulgT. | |
Proof. by case T. Qed. | |
Lemma mulgV : right_inverse 1 invg mulgT. | |
Proof. by move=> x; rewrite -{1}(invgK x) mulVg. Qed. | |
Lemma mulKg : left_loop invg mulgT. | |
Proof. by move=> x y; rewrite mulgA mulVg mul1g. Qed. | |
Lemma mulKVg : rev_left_loop invg mulgT. | |
Proof. by move=> x y; rewrite mulgA mulgV mul1g. Qed. | |
Lemma mulgI : right_injective mulgT. | |
Proof. by move=> x; apply: can_inj (mulKg x). Qed. | |
Lemma mulgK : right_loop invg mulgT. | |
Proof. by move=> x y; rewrite -mulgA mulgV mulg1. Qed. | |
Lemma mulgKV : rev_right_loop invg mulgT. | |
Proof. by move=> x y; rewrite -mulgA mulVg mulg1. Qed. | |
Lemma mulIg : left_injective mulgT. | |
Proof. by move=> x; apply: can_inj (mulgK x). Qed. | |
Lemma eq_invg_mul x y : (x^-1 == y :> T) = (x * y == 1 :> T). | |
Proof. by rewrite -(inj_eq (@mulgI x)) mulgV eq_sym. Qed. | |
Lemma eq_mulgV1 x y : (x == y) = (x * y^-1 == 1 :> T). | |
Proof. by rewrite -(inj_eq invg_inj) eq_invg_mul. Qed. | |
Lemma eq_mulVg1 x y : (x == y) = (x^-1 * y == 1 :> T). | |
Proof. by rewrite -eq_invg_mul invgK. Qed. | |
Lemma commuteV x y : commute x y -> commute x y^-1. | |
Proof. by move=> cxy; apply: (@mulIg y); rewrite mulgKV -mulgA cxy mulKg. Qed. | |
Lemma conjgE x y : x ^ y = y^-1 * (x * y). Proof. by []. Qed. | |
Lemma conjgC x y : x * y = y * x ^ y. | |
Proof. by rewrite mulKVg. Qed. | |
Lemma conjgCV x y : x * y = y ^ x^-1 * x. | |
Proof. by rewrite -mulgA mulgKV invgK. Qed. | |
Lemma conjg1 x : x ^ 1 = x. | |
Proof. by rewrite conjgE commute1 mulKg. Qed. | |
Lemma conj1g x : 1 ^ x = 1. | |
Proof. by rewrite conjgE mul1g mulVg. Qed. | |
Lemma conjMg x y z : (x * y) ^ z = x ^ z * y ^ z. | |
Proof. by rewrite !conjgE !mulgA mulgK. Qed. | |
Lemma conjgM x y z : x ^ (y * z) = (x ^ y) ^ z. | |
Proof. by rewrite !conjgE invMg !mulgA. Qed. | |
Lemma conjVg x y : x^-1 ^ y = (x ^ y)^-1. | |
Proof. by rewrite !conjgE !invMg invgK mulgA. Qed. | |
Lemma conjJg x y z : (x ^ y) ^ z = (x ^ z) ^ y ^ z. | |
Proof. by rewrite 2!conjMg conjVg. Qed. | |
Lemma conjXg x y n : (x ^+ n) ^ y = (x ^ y) ^+ n. | |
Proof. by elim: n => [|n IHn]; rewrite ?conj1g // !expgS conjMg IHn. Qed. | |
Lemma conjgK : @right_loop T T invg conjg. | |
Proof. by move=> y x; rewrite -conjgM mulgV conjg1. Qed. | |
Lemma conjgKV : @rev_right_loop T T invg conjg. | |
Proof. by move=> y x; rewrite -conjgM mulVg conjg1. Qed. | |
Lemma conjg_inj : @left_injective T T T conjg. | |
Proof. by move=> y; apply: can_inj (conjgK y). Qed. | |
Lemma conjg_eq1 x y : (x ^ y == 1) = (x == 1). | |
Proof. by rewrite (canF_eq (conjgK _)) conj1g. Qed. | |
Lemma conjg_prod I r (P : pred I) F z : | |
(\prod_(i <- r | P i) F i) ^ z = \prod_(i <- r | P i) (F i ^ z). | |
Proof. | |
by apply: (big_morph (conjg^~ z)) => [x y|]; rewrite ?conj1g ?conjMg. | |
Qed. | |
Lemma commgEl x y : [~ x, y] = x^-1 * x ^ y. Proof. by []. Qed. | |
Lemma commgEr x y : [~ x, y] = y^-1 ^ x * y. | |
Proof. by rewrite -!mulgA. Qed. | |
Lemma commgC x y : x * y = y * x * [~ x, y]. | |
Proof. by rewrite -mulgA !mulKVg. Qed. | |
Lemma commgCV x y : x * y = [~ x^-1, y^-1] * (y * x). | |
Proof. by rewrite commgEl !mulgA !invgK !mulgKV. Qed. | |
Lemma conjRg x y z : [~ x, y] ^ z = [~ x ^ z, y ^ z]. | |
Proof. by rewrite !conjMg !conjVg. Qed. | |
Lemma invg_comm x y : [~ x, y]^-1 = [~ y, x]. | |
Proof. by rewrite commgEr conjVg invMg invgK. Qed. | |
Lemma commgP x y : reflect (commute x y) ([~ x, y] == 1 :> T). | |
Proof. by rewrite [[~ x, y]]mulgA -invMg -eq_mulVg1 eq_sym; apply: eqP. Qed. | |
Lemma conjg_fixP x y : reflect (x ^ y = x) ([~ x, y] == 1 :> T). | |
Proof. by rewrite -eq_mulVg1 eq_sym; apply: eqP. Qed. | |
Lemma commg1_sym x y : ([~ x, y] == 1 :> T) = ([~ y, x] == 1 :> T). | |
Proof. by rewrite -invg_comm (inv_eq invgK) invg1. Qed. | |
Lemma commg1 x : [~ x, 1] = 1. | |
Proof. exact/eqP/commgP. Qed. | |
Lemma comm1g x : [~ 1, x] = 1. | |
Proof. by rewrite -invg_comm commg1 invg1. Qed. | |
Lemma commgg x : [~ x, x] = 1. | |
Proof. exact/eqP/commgP. Qed. | |
Lemma commgXg x n : [~ x, x ^+ n] = 1. | |
Proof. exact/eqP/commgP/commuteX. Qed. | |
Lemma commgVg x : [~ x, x^-1] = 1. | |
Proof. exact/eqP/commgP/commuteV. Qed. | |
Lemma commgXVg x n : [~ x, x ^- n] = 1. | |
Proof. exact/eqP/commgP/commuteV/commuteX. Qed. | |
(* Other commg identities should slot in here. *) | |
End GroupIdentities. | |
Hint Rewrite mulg1 mul1g invg1 mulVg mulgV (@invgK) mulgK mulgKV | |
invMg mulgA : gsimpl. | |
Ltac gsimpl := autorewrite with gsimpl; try done. | |
Definition gsimp := (mulg1 , mul1g, (invg1, @invgK), (mulgV, mulVg)). | |
Definition gnorm := (gsimp, (mulgK, mulgKV, (mulgA, invMg))). | |
Arguments mulgI [T]. | |
Arguments mulIg [T]. | |
Arguments conjg_inj {T} x [x1 x2]. | |
Arguments commgP {T x y}. | |
Arguments conjg_fixP {T x y}. | |
Section Repr. | |
(* Plucking a set representative. *) | |
Variable gT : baseFinGroupType. | |
Implicit Type A : {set gT}. | |
Definition repr A := if 1 \in A then 1 else odflt 1 [pick x in A]. | |
Lemma mem_repr A x : x \in A -> repr A \in A. | |
Proof. | |
by rewrite /repr; case: ifP => // _; case: pickP => // A0; rewrite [x \in A]A0. | |
Qed. | |
Lemma card_mem_repr A : #|A| > 0 -> repr A \in A. | |
Proof. by rewrite lt0n => /existsP[x]; apply: mem_repr. Qed. | |
Lemma repr_set1 x : repr [set x] = x. | |
Proof. by apply/set1P/card_mem_repr; rewrite cards1. Qed. | |
Lemma repr_set0 : repr set0 = 1. | |
Proof. by rewrite /repr; case: pickP => [x|_] /[!inE]. Qed. | |
End Repr. | |
Arguments mem_repr [gT A]. | |
Section BaseSetMulDef. | |
(* We only assume a baseFinGroupType to allow this construct to be iterated. *) | |
Variable gT : baseFinGroupType. | |
Implicit Types A B : {set gT}. | |
(* Set-lifted group operations. *) | |
Definition set_mulg A B := mulg @2: (A, B). | |
Definition set_invg A := invg @^-1: A. | |
(* The pre-group structure of group subsets. *) | |
Lemma set_mul1g : left_id [set 1] set_mulg. | |
Proof. | |
move=> A; apply/setP=> y; apply/imset2P/idP=> [[_ x /set1P-> Ax ->] | Ay]. | |
by rewrite mul1g. | |
by exists (1 : gT) y; rewrite ?(set11, mul1g). | |
Qed. | |
Lemma set_mulgA : associative set_mulg. | |
Proof. | |
move=> A B C; apply/setP=> y. | |
apply/imset2P/imset2P=> [[x1 z Ax1 /imset2P[x2 x3 Bx2 Cx3 ->] ->]| [z x3]]. | |
by exists (x1 * x2) x3; rewrite ?mulgA //; apply/imset2P; exists x1 x2. | |
case/imset2P=> x1 x2 Ax1 Bx2 -> Cx3 ->. | |
by exists x1 (x2 * x3); rewrite ?mulgA //; apply/imset2P; exists x2 x3. | |
Qed. | |
Lemma set_invgK : involutive set_invg. | |
Proof. by move=> A; apply/setP=> x; rewrite !inE invgK. Qed. | |
Lemma set_invgM : {morph set_invg : A B / set_mulg A B >-> set_mulg B A}. | |
Proof. | |
move=> A B; apply/setP=> z; rewrite inE. | |
apply/imset2P/imset2P=> [[x y Ax By /(canRL invgK)->] | [y x]]. | |
by exists y^-1 x^-1; rewrite ?invMg // inE invgK. | |
by rewrite !inE => By1 Ax1 ->; exists x^-1 y^-1; rewrite ?invMg. | |
Qed. | |
Definition group_set_baseGroupMixin : FinGroup.mixin_of (set_type gT) := | |
FinGroup.BaseMixin set_mulgA set_mul1g set_invgK set_invgM. | |
Canonical group_set_baseGroupType := | |
Eval hnf in BaseFinGroupType (set_type gT) group_set_baseGroupMixin. | |
Canonical group_set_of_baseGroupType := | |
Eval hnf in [baseFinGroupType of {set gT}]. | |
End BaseSetMulDef. | |
(* Time to open the bag of dirty tricks. When we define groups down below *) | |
(* as a subtype of {set gT}, we need them to be able to coerce to sets in *) | |
(* both set-style contexts (x \in G) and monoid-style contexts (G * H), *) | |
(* and we need the coercion function to be EXACTLY the structure *) | |
(* projection in BOTH cases -- otherwise the canonical unification breaks.*) | |
(* Alas, Coq doesn't let us use the same coercion function twice, even *) | |
(* when the targets are convertible. Our workaround (ab)uses the module *) | |
(* system to declare two different identity coercions on an alias class. *) | |
Module GroupSet. | |
Definition sort (gT : baseFinGroupType) := {set gT}. | |
End GroupSet. | |
Identity Coercion GroupSet_of_sort : GroupSet.sort >-> set_of. | |
Module Type GroupSetBaseGroupSig. | |
Definition sort gT := group_set_of_baseGroupType gT : Type. | |
End GroupSetBaseGroupSig. | |
Module MakeGroupSetBaseGroup (Gset_base : GroupSetBaseGroupSig). | |
Identity Coercion of_sort : Gset_base.sort >-> FinGroup.arg_sort. | |
End MakeGroupSetBaseGroup. | |
Module Export GroupSetBaseGroup := MakeGroupSetBaseGroup GroupSet. | |
Canonical group_set_eqType gT := Eval hnf in [eqType of GroupSet.sort gT]. | |
Canonical group_set_choiceType gT := | |
Eval hnf in [choiceType of GroupSet.sort gT]. | |
Canonical group_set_countType gT := Eval hnf in [countType of GroupSet.sort gT]. | |
Canonical group_set_finType gT := Eval hnf in [finType of GroupSet.sort gT]. | |
Section GroupSetMulDef. | |
(* Some of these constructs could be defined on a baseFinGroupType. *) | |
(* We restrict them to proper finGroupType because we only develop *) | |
(* the theory for that case. *) | |
Variable gT : finGroupType. | |
Implicit Types A B : {set gT}. | |
Implicit Type x y : gT. | |
Definition lcoset A x := mulg x @: A. | |
Definition rcoset A x := mulg^~ x @: A. | |
Definition lcosets A B := lcoset A @: B. | |
Definition rcosets A B := rcoset A @: B. | |
Definition indexg B A := #|rcosets A B|. | |
Definition conjugate A x := conjg^~ x @: A. | |
Definition conjugates A B := conjugate A @: B. | |
Definition class x B := conjg x @: B. | |
Definition classes A := class^~ A @: A. | |
Definition class_support A B := conjg @2: (A, B). | |
Definition commg_set A B := commg @2: (A, B). | |
(* These will only be used later, but are defined here so that we can *) | |
(* keep all the Notation together. *) | |
Definition normaliser A := [set x | conjugate A x \subset A]. | |
Definition centraliser A := \bigcap_(x in A) normaliser [set x]. | |
Definition abelian A := A \subset centraliser A. | |
Definition normal A B := (A \subset B) && (B \subset normaliser A). | |
(* "normalised" and "centralise[s|d]" are intended to be used with *) | |
(* the {in ...} form, as in abelian below. *) | |
Definition normalised A := forall x, conjugate A x = A. | |
Definition centralises x A := forall y, y \in A -> commute x y. | |
Definition centralised A := forall x, centralises x A. | |
End GroupSetMulDef. | |
Arguments lcoset _ _%g _%g. | |
Arguments rcoset _ _%g _%g. | |
Arguments rcosets _ _%g _%g. | |
Arguments lcosets _ _%g _%g. | |
Arguments indexg _ _%g _%g. | |
Arguments conjugate _ _%g _%g. | |
Arguments conjugates _ _%g _%g. | |
Arguments class _ _%g _%g. | |
Arguments classes _ _%g. | |
Arguments class_support _ _%g _%g. | |
Arguments commg_set _ _%g _%g. | |
Arguments normaliser _ _%g. | |
Arguments centraliser _ _%g. | |
Arguments abelian _ _%g. | |
Arguments normal _ _%g _%g. | |
Arguments normalised _ _%g. | |
Arguments centralises _ _%g _%g. | |
Arguments centralised _ _%g. | |
Notation "[ 1 gT ]" := (1 : {set gT}) : group_scope. | |
Notation "[ 1 ]" := [1 FinGroup.sort _] : group_scope. | |
Notation "A ^#" := (A :\ 1) : group_scope. | |
Notation "x *: A" := ([set x%g] * A) : group_scope. | |
Notation "A :* x" := (A * [set x%g]) : group_scope. | |
Notation "A :^ x" := (conjugate A x) : group_scope. | |
Notation "x ^: B" := (class x B) : group_scope. | |
Notation "A :^: B" := (conjugates A B) : group_scope. | |
Notation "#| B : A |" := (indexg B A) : group_scope. | |
(* No notation for lcoset and rcoset, which are to be used mostly *) | |
(* in curried form; x *: B and A :* 1 denote singleton products, *) | |
(* so we can use mulgA, mulg1, etc, on, say, A :* 1 * B :* x. *) | |
(* No notation for the set commutator generator set commg_set. *) | |
Notation "''N' ( A )" := (normaliser A) : group_scope. | |
Notation "''N_' G ( A )" := (G%g :&: 'N(A)) : group_scope. | |
Notation "A <| B" := (normal A B) : group_scope. | |
Notation "''C' ( A )" := (centraliser A) : group_scope. | |
Notation "''C_' G ( A )" := (G%g :&: 'C(A)) : group_scope. | |
Notation "''C_' ( G ) ( A )" := 'C_G(A) (only parsing) : group_scope. | |
Notation "''C' [ x ]" := 'N([set x%g]) : group_scope. | |
Notation "''C_' G [ x ]" := 'N_G([set x%g]) : group_scope. | |
Notation "''C_' ( G ) [ x ]" := 'C_G[x] (only parsing) : group_scope. | |
Prenex Implicits repr lcoset rcoset lcosets rcosets normal. | |
Prenex Implicits conjugate conjugates class classes class_support. | |
Prenex Implicits commg_set normalised centralised abelian. | |
Section BaseSetMulProp. | |
(* Properties of the purely multiplicative structure. *) | |
Variable gT : baseFinGroupType. | |
Implicit Types A B C D : {set gT}. | |
Implicit Type x y z : gT. | |
(* Set product. We already have all the pregroup identities, so we *) | |
(* only need to add the monotonicity rules. *) | |
Lemma mulsgP A B x : | |
reflect (imset2_spec mulg (mem A) (fun _ => mem B) x) (x \in A * B). | |
Proof. exact: imset2P. Qed. | |
Lemma mem_mulg A B x y : x \in A -> y \in B -> x * y \in A * B. | |
Proof. by move=> Ax By; apply/mulsgP; exists x y. Qed. | |
Lemma prodsgP (I : finType) (P : pred I) (A : I -> {set gT}) x : | |
reflect (exists2 c, forall i, P i -> c i \in A i & x = \prod_(i | P i) c i) | |
(x \in \prod_(i | P i) A i). | |
Proof. | |
have [r big_r [Ur mem_r] _] := big_enumP P. | |
pose inA c := all (fun i => c i \in A i); rewrite -big_r; set piAx := x \in _. | |
suffices{big_r} IHr: reflect (exists2 c, inA c r & x = \prod_(i <- r) c i) piAx. | |
apply: (iffP IHr) => -[c inAc ->]; do [exists c; last by rewrite big_r]. | |
by move=> i Pi; rewrite (allP inAc) ?mem_r. | |
by apply/allP=> i; rewrite mem_r => /inAc. | |
elim: {P mem_r}r x @piAx Ur => /= [x _ | i r IHr x /andP[r'i /IHr{}IHr]]. | |
by rewrite unlock; apply: (iffP set1P) => [-> | [] //]; exists (fun=> x). | |
rewrite big_cons; apply: (iffP idP) => [|[c /andP[Aci Ac] ->]]; last first. | |
by rewrite big_cons mem_mulg //; apply/IHr=> //; exists c. | |
case/mulsgP=> c_i _ Ac_i /IHr[c /allP-inAcr ->] ->{x}. | |
exists [eta c with i |-> c_i]; rewrite /= ?big_cons eqxx ?Ac_i. | |
by apply/allP=> j rj; rewrite /= ifN ?(memPn r'i) ?inAcr. | |
by congr (_ * _); apply: eq_big_seq => j rj; rewrite ifN ?(memPn r'i). | |
Qed. | |
Lemma mem_prodg (I : finType) (P : pred I) (A : I -> {set gT}) c : | |
(forall i, P i -> c i \in A i) -> \prod_(i | P i) c i \in \prod_(i | P i) A i. | |
Proof. by move=> Ac; apply/prodsgP; exists c. Qed. | |
Lemma mulSg A B C : A \subset B -> A * C \subset B * C. | |
Proof. exact: imset2Sl. Qed. | |
Lemma mulgS A B C : B \subset C -> A * B \subset A * C. | |
Proof. exact: imset2Sr. Qed. | |
Lemma mulgSS A B C D : A \subset B -> C \subset D -> A * C \subset B * D. | |
Proof. exact: imset2S. Qed. | |
Lemma mulg_subl A B : 1 \in B -> A \subset A * B. | |
Proof. by move=> B1; rewrite -{1}(mulg1 A) mulgS ?sub1set. Qed. | |
Lemma mulg_subr A B : 1 \in A -> B \subset A * B. | |
Proof. by move=> A1; rewrite -{1}(mul1g B) mulSg ?sub1set. Qed. | |
Lemma mulUg A B C : (A :|: B) * C = (A * C) :|: (B * C). | |
Proof. exact: imset2Ul. Qed. | |
Lemma mulgU A B C : A * (B :|: C) = (A * B) :|: (A * C). | |
Proof. exact: imset2Ur. Qed. | |
(* Set (pointwise) inverse. *) | |
Lemma invUg A B : (A :|: B)^-1 = A^-1 :|: B^-1. | |
Proof. exact: preimsetU. Qed. | |
Lemma invIg A B : (A :&: B)^-1 = A^-1 :&: B^-1. | |
Proof. exact: preimsetI. Qed. | |
Lemma invDg A B : (A :\: B)^-1 = A^-1 :\: B^-1. | |
Proof. exact: preimsetD. Qed. | |
Lemma invCg A : (~: A)^-1 = ~: A^-1. | |
Proof. exact: preimsetC. Qed. | |
Lemma invSg A B : (A^-1 \subset B^-1) = (A \subset B). | |
Proof. by rewrite !(sameP setIidPl eqP) -invIg (inj_eq invg_inj). Qed. | |
Lemma mem_invg x A : (x \in A^-1) = (x^-1 \in A). | |
Proof. by rewrite inE. Qed. | |
Lemma memV_invg x A : (x^-1 \in A^-1) = (x \in A). | |
Proof. by rewrite inE invgK. Qed. | |
Lemma card_invg A : #|A^-1| = #|A|. | |
Proof. exact/card_preimset/invg_inj. Qed. | |
(* Product with singletons. *) | |
Lemma set1gE : 1 = [set 1] :> {set gT}. Proof. by []. Qed. | |
Lemma set1gP x : reflect (x = 1) (x \in [1]). | |
Proof. exact: set1P. Qed. | |
Lemma mulg_set1 x y : [set x] :* y = [set x * y]. | |
Proof. by rewrite [_ * _]imset2_set1l imset_set1. Qed. | |
Lemma invg_set1 x : [set x]^-1 = [set x^-1]. | |
Proof. by apply/setP=> y; rewrite !inE inv_eq //; apply: invgK. Qed. | |
End BaseSetMulProp. | |
Arguments set1gP {gT x}. | |
Arguments mulsgP {gT A B x}. | |
Arguments prodsgP {gT I P A x}. | |
Section GroupSetMulProp. | |
(* Constructs that need a finGroupType *) | |
Variable gT : finGroupType. | |
Implicit Types A B C D : {set gT}. | |
Implicit Type x y z : gT. | |
(* Left cosets. *) | |
Lemma lcosetE A x : lcoset A x = x *: A. | |
Proof. by rewrite [_ * _]imset2_set1l. Qed. | |
Lemma card_lcoset A x : #|x *: A| = #|A|. | |
Proof. by rewrite -lcosetE (card_imset _ (mulgI _)). Qed. | |
Lemma mem_lcoset A x y : (y \in x *: A) = (x^-1 * y \in A). | |
Proof. by rewrite -lcosetE [_ x](can_imset_pre _ (mulKg _)) inE. Qed. | |
Lemma lcosetP A x y : reflect (exists2 a, a \in A & y = x * a) (y \in x *: A). | |
Proof. by rewrite -lcosetE; apply: imsetP. Qed. | |
Lemma lcosetsP A B C : | |
reflect (exists2 x, x \in B & C = x *: A) (C \in lcosets A B). | |
Proof. by apply: (iffP imsetP) => [] [x Bx ->]; exists x; rewrite ?lcosetE. Qed. | |
Lemma lcosetM A x y : (x * y) *: A = x *: (y *: A). | |
Proof. by rewrite -mulg_set1 mulgA. Qed. | |
Lemma lcoset1 A : 1 *: A = A. | |
Proof. exact: mul1g. Qed. | |
Lemma lcosetK : left_loop invg (fun x A => x *: A). | |
Proof. by move=> x A; rewrite -lcosetM mulVg mul1g. Qed. | |
Lemma lcosetKV : rev_left_loop invg (fun x A => x *: A). | |
Proof. by move=> x A; rewrite -lcosetM mulgV mul1g. Qed. | |
Lemma lcoset_inj : right_injective (fun x A => x *: A). | |
Proof. by move=> x; apply: can_inj (lcosetK x). Qed. | |
Lemma lcosetS x A B : (x *: A \subset x *: B) = (A \subset B). | |
Proof. | |
apply/idP/idP=> sAB; last exact: mulgS. | |
by rewrite -(lcosetK x A) -(lcosetK x B) mulgS. | |
Qed. | |
Lemma sub_lcoset x A B : (A \subset x *: B) = (x^-1 *: A \subset B). | |
Proof. by rewrite -(lcosetS x^-1) lcosetK. Qed. | |
Lemma sub_lcosetV x A B : (A \subset x^-1 *: B) = (x *: A \subset B). | |
Proof. by rewrite sub_lcoset invgK. Qed. | |
(* Right cosets. *) | |
Lemma rcosetE A x : rcoset A x = A :* x. | |
Proof. by rewrite [_ * _]imset2_set1r. Qed. | |
Lemma card_rcoset A x : #|A :* x| = #|A|. | |
Proof. by rewrite -rcosetE (card_imset _ (mulIg _)). Qed. | |
Lemma mem_rcoset A x y : (y \in A :* x) = (y * x^-1 \in A). | |
Proof. by rewrite -rcosetE [_ x](can_imset_pre A (mulgK _)) inE. Qed. | |
Lemma rcosetP A x y : reflect (exists2 a, a \in A & y = a * x) (y \in A :* x). | |
Proof. by rewrite -rcosetE; apply: imsetP. Qed. | |
Lemma rcosetsP A B C : | |
reflect (exists2 x, x \in B & C = A :* x) (C \in rcosets A B). | |
Proof. by apply: (iffP imsetP) => [] [x Bx ->]; exists x; rewrite ?rcosetE. Qed. | |
Lemma rcosetM A x y : A :* (x * y) = A :* x :* y. | |
Proof. by rewrite -mulg_set1 mulgA. Qed. | |
Lemma rcoset1 A : A :* 1 = A. | |
Proof. exact: mulg1. Qed. | |
Lemma rcosetK : right_loop invg (fun A x => A :* x). | |
Proof. by move=> x A; rewrite -rcosetM mulgV mulg1. Qed. | |
Lemma rcosetKV : rev_right_loop invg (fun A x => A :* x). | |
Proof. by move=> x A; rewrite -rcosetM mulVg mulg1. Qed. | |
Lemma rcoset_inj : left_injective (fun A x => A :* x). | |
Proof. by move=> x; apply: can_inj (rcosetK x). Qed. | |
Lemma rcosetS x A B : (A :* x \subset B :* x) = (A \subset B). | |
Proof. | |
apply/idP/idP=> sAB; last exact: mulSg. | |
by rewrite -(rcosetK x A) -(rcosetK x B) mulSg. | |
Qed. | |
Lemma sub_rcoset x A B : (A \subset B :* x) = (A :* x ^-1 \subset B). | |
Proof. by rewrite -(rcosetS x^-1) rcosetK. Qed. | |
Lemma sub_rcosetV x A B : (A \subset B :* x^-1) = (A :* x \subset B). | |
Proof. by rewrite sub_rcoset invgK. Qed. | |
(* Inverse maps lcosets to rcosets *) | |
Lemma invg_lcosets A B : (lcosets A B)^-1 = rcosets A^-1 B^-1. | |
Proof. | |
rewrite /A^-1/= -![_^-1](can_imset_pre _ invgK) -[RHS]imset_comp -imset_comp. | |
by apply: eq_imset => x /=; rewrite lcosetE rcosetE invMg invg_set1. | |
Qed. | |
(* Conjugates. *) | |
Lemma conjg_preim A x : A :^ x = (conjg^~ x^-1) @^-1: A. | |
Proof. exact: can_imset_pre (conjgK _). Qed. | |
Lemma mem_conjg A x y : (y \in A :^ x) = (y ^ x^-1 \in A). | |
Proof. by rewrite conjg_preim inE. Qed. | |
Lemma mem_conjgV A x y : (y \in A :^ x^-1) = (y ^ x \in A). | |
Proof. by rewrite mem_conjg invgK. Qed. | |
Lemma memJ_conjg A x y : (y ^ x \in A :^ x) = (y \in A). | |
Proof. by rewrite mem_conjg conjgK. Qed. | |
Lemma conjsgE A x : A :^ x = x^-1 *: (A :* x). | |
Proof. by apply/setP=> y; rewrite mem_lcoset mem_rcoset -mulgA mem_conjg. Qed. | |
Lemma conjsg1 A : A :^ 1 = A. | |
Proof. by rewrite conjsgE invg1 mul1g mulg1. Qed. | |
Lemma conjsgM A x y : A :^ (x * y) = (A :^ x) :^ y. | |
Proof. by rewrite !conjsgE invMg -!mulg_set1 !mulgA. Qed. | |
Lemma conjsgK : @right_loop _ gT invg conjugate. | |
Proof. by move=> x A; rewrite -conjsgM mulgV conjsg1. Qed. | |
Lemma conjsgKV : @rev_right_loop _ gT invg conjugate. | |
Proof. by move=> x A; rewrite -conjsgM mulVg conjsg1. Qed. | |
Lemma conjsg_inj : @left_injective _ gT _ conjugate. | |
Proof. by move=> x; apply: can_inj (conjsgK x). Qed. | |
Lemma cardJg A x : #|A :^ x| = #|A|. | |
Proof. by rewrite (card_imset _ (conjg_inj x)). Qed. | |
Lemma conjSg A B x : (A :^ x \subset B :^ x) = (A \subset B). | |
Proof. by rewrite !conjsgE lcosetS rcosetS. Qed. | |
Lemma properJ A B x : (A :^ x \proper B :^ x) = (A \proper B). | |
Proof. by rewrite /proper !conjSg. Qed. | |
Lemma sub_conjg A B x : (A :^ x \subset B) = (A \subset B :^ x^-1). | |
Proof. by rewrite -(conjSg A _ x) conjsgKV. Qed. | |
Lemma sub_conjgV A B x : (A :^ x^-1 \subset B) = (A \subset B :^ x). | |
Proof. by rewrite -(conjSg _ B x) conjsgKV. Qed. | |
Lemma conjg_set1 x y : [set x] :^ y = [set x ^ y]. | |
Proof. by rewrite [_ :^ _]imset_set1. Qed. | |
Lemma conjs1g x : 1 :^ x = 1. | |
Proof. by rewrite conjg_set1 conj1g. Qed. | |
Lemma conjsg_eq1 A x : (A :^ x == 1%g) = (A == 1%g). | |
Proof. by rewrite (canF_eq (conjsgK x)) conjs1g. Qed. | |
Lemma conjsMg A B x : (A * B) :^ x = A :^ x * B :^ x. | |
Proof. by rewrite !conjsgE !mulgA rcosetK. Qed. | |
Lemma conjIg A B x : (A :&: B) :^ x = A :^ x :&: B :^ x. | |
Proof. by rewrite !conjg_preim preimsetI. Qed. | |
Lemma conj0g x : set0 :^ x = set0. | |
Proof. exact: imset0. Qed. | |
Lemma conjTg x : [set: gT] :^ x = [set: gT]. | |
Proof. by rewrite conjg_preim preimsetT. Qed. | |
Lemma bigcapJ I r (P : pred I) (B : I -> {set gT}) x : | |
\bigcap_(i <- r | P i) (B i :^ x) = (\bigcap_(i <- r | P i) B i) :^ x. | |
Proof. | |
by rewrite (big_endo (conjugate^~ x)) => // [B1 B2|]; rewrite (conjTg, conjIg). | |
Qed. | |
Lemma conjUg A B x : (A :|: B) :^ x = A :^ x :|: B :^ x. | |
Proof. by rewrite !conjg_preim preimsetU. Qed. | |
Lemma bigcupJ I r (P : pred I) (B : I -> {set gT}) x : | |
\bigcup_(i <- r | P i) (B i :^ x) = (\bigcup_(i <- r | P i) B i) :^ x. | |
Proof. | |
rewrite (big_endo (conjugate^~ x)) => // [B1 B2|]; first by rewrite conjUg. | |
exact: imset0. | |
Qed. | |
Lemma conjCg A x : (~: A) :^ x = ~: A :^ x. | |
Proof. by rewrite !conjg_preim preimsetC. Qed. | |
Lemma conjDg A B x : (A :\: B) :^ x = A :^ x :\: B :^ x. | |
Proof. by rewrite !setDE !(conjCg, conjIg). Qed. | |
Lemma conjD1g A x : A^# :^ x = (A :^ x)^#. | |
Proof. by rewrite conjDg conjs1g. Qed. | |
(* Classes; not much for now. *) | |
Lemma memJ_class x y A : y \in A -> x ^ y \in x ^: A. | |
Proof. exact: imset_f. Qed. | |
Lemma classS x A B : A \subset B -> x ^: A \subset x ^: B. | |
Proof. exact: imsetS. Qed. | |
Lemma class_set1 x y : x ^: [set y] = [set x ^ y]. | |
Proof. exact: imset_set1. Qed. | |
Lemma class1g x A : x \in A -> 1 ^: A = 1. | |
Proof. | |
move=> Ax; apply/setP=> y. | |
by apply/imsetP/set1P=> [[a Aa]|] ->; last exists x; rewrite ?conj1g. | |
Qed. | |
Lemma classVg x A : x^-1 ^: A = (x ^: A)^-1. | |
Proof. | |
apply/setP=> xy; rewrite inE; apply/imsetP/imsetP=> [] [y Ay def_xy]. | |
by rewrite def_xy conjVg invgK; exists y. | |
by rewrite -[xy]invgK def_xy -conjVg; exists y. | |
Qed. | |
Lemma mem_classes x A : x \in A -> x ^: A \in classes A. | |
Proof. exact: imset_f. Qed. | |
Lemma memJ_class_support A B x y : | |
x \in A -> y \in B -> x ^ y \in class_support A B. | |
Proof. by move=> Ax By; apply: imset2_f. Qed. | |
Lemma class_supportM A B C : | |
class_support A (B * C) = class_support (class_support A B) C. | |
Proof. | |
apply/setP=> x; apply/imset2P/imset2P=> [[a y Aa] | [y c]]. | |
case/mulsgP=> b c Bb Cc -> ->{x y}. | |
by exists (a ^ b) c; rewrite ?(imset2_f, conjgM). | |
case/imset2P=> a b Aa Bb -> Cc ->{x y}. | |
by exists a (b * c); rewrite ?(mem_mulg, conjgM). | |
Qed. | |
Lemma class_support_set1l A x : class_support [set x] A = x ^: A. | |
Proof. exact: imset2_set1l. Qed. | |
Lemma class_support_set1r A x : class_support A [set x] = A :^ x. | |
Proof. exact: imset2_set1r. Qed. | |
Lemma classM x A B : x ^: (A * B) = class_support (x ^: A) B. | |
Proof. by rewrite -!class_support_set1l class_supportM. Qed. | |
Lemma class_lcoset x y A : x ^: (y *: A) = (x ^ y) ^: A. | |
Proof. by rewrite classM class_set1 class_support_set1l. Qed. | |
Lemma class_rcoset x A y : x ^: (A :* y) = (x ^: A) :^ y. | |
Proof. by rewrite -class_support_set1r classM. Qed. | |
(* Conjugate set. *) | |
Lemma conjugatesS A B C : B \subset C -> A :^: B \subset A :^: C. | |
Proof. exact: imsetS. Qed. | |
Lemma conjugates_set1 A x : A :^: [set x] = [set A :^ x]. | |
Proof. exact: imset_set1. Qed. | |
Lemma conjugates_conj A x B : (A :^ x) :^: B = A :^: (x *: B). | |
Proof. | |
rewrite /conjugates [x *: B]imset2_set1l -imset_comp. | |
by apply: eq_imset => y /=; rewrite conjsgM. | |
Qed. | |
(* Class support. *) | |
Lemma class_supportEl A B : class_support A B = \bigcup_(x in A) x ^: B. | |
Proof. exact: curry_imset2l. Qed. | |
Lemma class_supportEr A B : class_support A B = \bigcup_(x in B) A :^ x. | |
Proof. exact: curry_imset2r. Qed. | |
(* Groups (at last!) *) | |
Definition group_set A := (1 \in A) && (A * A \subset A). | |
Lemma group_setP A : | |
reflect (1 \in A /\ {in A & A, forall x y, x * y \in A}) (group_set A). | |
Proof. | |
apply: (iffP andP) => [] [A1 AM]; split=> {A1}//. | |
by move=> x y Ax Ay; apply: (subsetP AM); rewrite mem_mulg. | |
by apply/subsetP=> _ /mulsgP[x y Ax Ay ->]; apply: AM. | |
Qed. | |
Structure group_type : Type := Group { | |
gval :> GroupSet.sort gT; | |
_ : group_set gval | |
}. | |
Definition group_of of phant gT : predArgType := group_type. | |
Local Notation groupT := (group_of (Phant gT)). | |
Identity Coercion type_of_group : group_of >-> group_type. | |
Canonical group_subType := Eval hnf in [subType for gval]. | |
Definition group_eqMixin := Eval hnf in [eqMixin of group_type by <:]. | |
Canonical group_eqType := Eval hnf in EqType group_type group_eqMixin. | |
Definition group_choiceMixin := [choiceMixin of group_type by <:]. | |
Canonical group_choiceType := | |
Eval hnf in ChoiceType group_type group_choiceMixin. | |
Definition group_countMixin := [countMixin of group_type by <:]. | |
Canonical group_countType := Eval hnf in CountType group_type group_countMixin. | |
Canonical group_subCountType := Eval hnf in [subCountType of group_type]. | |
Definition group_finMixin := [finMixin of group_type by <:]. | |
Canonical group_finType := Eval hnf in FinType group_type group_finMixin. | |
Canonical group_subFinType := Eval hnf in [subFinType of group_type]. | |
(* No predType or baseFinGroupType structures, as these would hide the *) | |
(* group-to-set coercion and thus spoil unification. *) | |
Canonical group_of_subType := Eval hnf in [subType of groupT]. | |
Canonical group_of_eqType := Eval hnf in [eqType of groupT]. | |
Canonical group_of_choiceType := Eval hnf in [choiceType of groupT]. | |
Canonical group_of_countType := Eval hnf in [countType of groupT]. | |
Canonical group_of_subCountType := Eval hnf in [subCountType of groupT]. | |
Canonical group_of_finType := Eval hnf in [finType of groupT]. | |
Canonical group_of_subFinType := Eval hnf in [subFinType of groupT]. | |
Definition group (A : {set gT}) gA : groupT := @Group A gA. | |
Definition clone_group G := | |
let: Group _ gP := G return {type of Group for G} -> groupT in fun k => k gP. | |
Lemma group_inj : injective gval. Proof. exact: val_inj. Qed. | |
Lemma groupP (G : groupT) : group_set G. Proof. by case: G. Qed. | |
Lemma congr_group (H K : groupT) : H = K -> H :=: K. | |
Proof. exact: congr1. Qed. | |
Lemma isgroupP A : reflect (exists G : groupT, A = G) (group_set A). | |
Proof. by apply: (iffP idP) => [gA | [[B gB] -> //]]; exists (Group gA). Qed. | |
Lemma group_set_one : group_set 1. | |
Proof. by rewrite /group_set set11 mulg1 subxx. Qed. | |
Canonical one_group := group group_set_one. | |
Canonical set1_group := @group [set 1] group_set_one. | |
Lemma group_setT (phT : phant gT) : group_set (setTfor phT). | |
Proof. by apply/group_setP; split=> [|x y _ _]; rewrite inE. Qed. | |
Canonical setT_group phT := group (group_setT phT). | |
(* These definitions come early so we can establish the Notation. *) | |
Definition generated A := \bigcap_(G : groupT | A \subset G) G. | |
Definition gcore A B := \bigcap_(x in B) A :^ x. | |
Definition joing A B := generated (A :|: B). | |
Definition commutator A B := generated (commg_set A B). | |
Definition cycle x := generated [set x]. | |
Definition order x := #|cycle x|. | |
End GroupSetMulProp. | |
Arguments lcosetP {gT A x y}. | |
Arguments lcosetsP {gT A B C}. | |
Arguments rcosetP {gT A x y}. | |
Arguments rcosetsP {gT A B C}. | |
Arguments group_setP {gT A}. | |
Prenex Implicits group_set mulsgP set1gP. | |
Arguments commutator _ _%g _%g. | |
Arguments joing _ _%g _%g. | |
Arguments generated _ _%g. | |
Notation "{ 'group' gT }" := (group_of (Phant gT)) | |
(at level 0, format "{ 'group' gT }") : type_scope. | |
Notation "[ 'group' 'of' G ]" := (clone_group (@group _ G)) | |
(at level 0, format "[ 'group' 'of' G ]") : form_scope. | |
Bind Scope Group_scope with group_type. | |
Bind Scope Group_scope with group_of. | |
Notation "1" := (one_group _) : Group_scope. | |
Notation "[ 1 gT ]" := (1%G : {group gT}) : Group_scope. | |
Notation "[ 'set' : gT ]" := (setT_group (Phant gT)) : Group_scope. | |
(* Helper notation for defining new groups that need a bespoke finGroupType. *) | |
(* The actual group for such a type (say, my_gT) will be the full group, *) | |
(* i.e., [set: my_gT] or [set: my_gT]%G, but Coq will not recognize *) | |
(* specific notation for these because of the coercions inserted during type *) | |
(* inference, unless they are defined as [set: gsort my_gT] using the *) | |
(* Notation below. *) | |
Notation gsort gT := (FinGroup.arg_sort (FinGroup.base gT%type)) (only parsing). | |
Notation "<< A >>" := (generated A) : group_scope. | |
Notation "<[ x ] >" := (cycle x) : group_scope. | |
Notation "#[ x ]" := (order x) : group_scope. | |
Notation "A <*> B" := (joing A B) : group_scope. | |
Notation "[ ~: A1 , A2 , .. , An ]" := | |
(commutator .. (commutator A1 A2) .. An) : group_scope. | |
Prenex Implicits order cycle gcore. | |
Section GroupProp. | |
Variable gT : finGroupType. | |
Notation sT := {set gT}. | |
Implicit Types A B C D : sT. | |
Implicit Types x y z : gT. | |
Implicit Types G H K : {group gT}. | |
Section OneGroup. | |
Variable G : {group gT}. | |
Lemma valG : val G = G. Proof. by []. Qed. | |
(* Non-triviality. *) | |
Lemma group1 : 1 \in G. Proof. by case/group_setP: (valP G). Qed. | |
#[local] Hint Resolve group1 : core. | |
Lemma group1_contra x : x \notin G -> x != 1. | |
Proof. by apply: contraNneq => ->. Qed. | |
Lemma sub1G : [1 gT] \subset G. Proof. by rewrite sub1set. Qed. | |
Lemma subG1 : (G \subset [1]) = (G :==: 1). | |
Proof. by rewrite eqEsubset sub1G andbT. Qed. | |
Lemma setI1g : 1 :&: G = 1. Proof. exact: (setIidPl sub1G). Qed. | |
Lemma setIg1 : G :&: 1 = 1. Proof. exact: (setIidPr sub1G). Qed. | |
Lemma subG1_contra H : G \subset H -> G :!=: 1 -> H :!=: 1. | |
Proof. by move=> sGH; rewrite -subG1; apply: contraNneq => <-. Qed. | |
Lemma repr_group : repr G = 1. Proof. by rewrite /repr group1. Qed. | |
Lemma cardG_gt0 : 0 < #|G|. | |
Proof. by rewrite lt0n; apply/existsP; exists (1 : gT). Qed. | |
Lemma indexg_gt0 A : 0 < #|G : A|. | |
Proof. | |
rewrite lt0n; apply/existsP; exists A. | |
by rewrite -{2}[A]mulg1 -rcosetE; apply: imset_f. | |
Qed. | |
Lemma trivgP : reflect (G :=: 1) (G \subset [1]). | |
Proof. by rewrite subG1; apply: eqP. Qed. | |
Lemma trivGP : reflect (G = 1%G) (G \subset [1]). | |
Proof. by rewrite subG1; apply: eqP. Qed. | |
Lemma proper1G : ([1] \proper G) = (G :!=: 1). | |
Proof. by rewrite properEneq sub1G andbT eq_sym. Qed. | |
Lemma trivgPn : reflect (exists2 x, x \in G & x != 1) (G :!=: 1). | |
Proof. | |
rewrite -subG1. | |
by apply: (iffP subsetPn) => [] [x Gx x1]; exists x; rewrite ?inE in x1 *. | |
Qed. | |
Lemma trivg_card_le1 : (G :==: 1) = (#|G| <= 1). | |
Proof. by rewrite eq_sym eqEcard cards1 sub1G. Qed. | |
Lemma trivg_card1 : (G :==: 1) = (#|G| == 1%N). | |
Proof. by rewrite trivg_card_le1 eqn_leq cardG_gt0 andbT. Qed. | |
Lemma cardG_gt1 : (#|G| > 1) = (G :!=: 1). | |
Proof. by rewrite trivg_card_le1 ltnNge. Qed. | |
Lemma card_le1_trivg : #|G| <= 1 -> G :=: 1. | |
Proof. by rewrite -trivg_card_le1; move/eqP. Qed. | |
Lemma card1_trivg : #|G| = 1%N -> G :=: 1. | |
Proof. by move=> G1; rewrite card_le1_trivg ?G1. Qed. | |
(* Inclusion and product. *) | |
Lemma mulG_subl A : A \subset A * G. | |
Proof. exact: mulg_subl group1. Qed. | |
Lemma mulG_subr A : A \subset G * A. | |
Proof. exact: mulg_subr group1. Qed. | |
Lemma mulGid : G * G = G. | |
Proof. | |
by apply/eqP; rewrite eqEsubset mulG_subr andbT; case/andP: (valP G). | |
Qed. | |
Lemma mulGS A B : (G * A \subset G * B) = (A \subset G * B). | |
Proof. | |
apply/idP/idP; first exact: subset_trans (mulG_subr A). | |
by move/(mulgS G); rewrite mulgA mulGid. | |
Qed. | |
Lemma mulSG A B : (A * G \subset B * G) = (A \subset B * G). | |
Proof. | |
apply/idP/idP; first exact: subset_trans (mulG_subl A). | |
by move/(mulSg G); rewrite -mulgA mulGid. | |
Qed. | |
Lemma mul_subG A B : A \subset G -> B \subset G -> A * B \subset G. | |
Proof. by move=> sAG sBG; rewrite -mulGid mulgSS. Qed. | |
(* Membership lemmas *) | |
Lemma groupM x y : x \in G -> y \in G -> x * y \in G. | |
Proof. by case/group_setP: (valP G) x y. Qed. | |
Lemma groupX x n : x \in G -> x ^+ n \in G. | |
Proof. by move=> Gx; elim: n => [|n IHn]; rewrite ?group1 // expgS groupM. Qed. | |
Lemma groupVr x : x \in G -> x^-1 \in G. | |
Proof. | |
move=> Gx; rewrite -(mul1g x^-1) -mem_rcoset ((G :* x =P G) _) //. | |
by rewrite eqEcard card_rcoset leqnn mul_subG ?sub1set. | |
Qed. | |
Lemma groupVl x : x^-1 \in G -> x \in G. | |
Proof. by move/groupVr; rewrite invgK. Qed. | |
Lemma groupV x : (x^-1 \in G) = (x \in G). | |
Proof. by apply/idP/idP; [apply: groupVl | apply: groupVr]. Qed. | |
Lemma groupMl x y : x \in G -> (x * y \in G) = (y \in G). | |
Proof. | |
move=> Gx; apply/idP/idP=> [Gxy|]; last exact: groupM. | |
by rewrite -(mulKg x y) groupM ?groupVr. | |
Qed. | |
Lemma groupMr x y : x \in G -> (y * x \in G) = (y \in G). | |
Proof. by move=> Gx; rewrite -[_ \in G]groupV invMg groupMl groupV. Qed. | |
Definition in_group := (group1, groupV, (groupMl, groupX)). | |
Lemma groupJ x y : x \in G -> y \in G -> x ^ y \in G. | |
Proof. by move=> Gx Gy; rewrite !in_group. Qed. | |
Lemma groupJr x y : y \in G -> (x ^ y \in G) = (x \in G). | |
Proof. by move=> Gy; rewrite groupMl (groupMr, groupV). Qed. | |
Lemma groupR x y : x \in G -> y \in G -> [~ x, y] \in G. | |
Proof. by move=> Gx Gy; rewrite !in_group. Qed. | |
Lemma group_prod I r (P : pred I) F : | |
(forall i, P i -> F i \in G) -> \prod_(i <- r | P i) F i \in G. | |
Proof. by move=> G_P; elim/big_ind: _ => //; apply: groupM. Qed. | |
(* Inverse is an anti-morphism. *) | |
Lemma invGid : G^-1 = G. Proof. by apply/setP=> x; rewrite inE groupV. Qed. | |
Lemma inv_subG A : (A^-1 \subset G) = (A \subset G). | |
Proof. by rewrite -{1}invGid invSg. Qed. | |
Lemma invg_lcoset x : (x *: G)^-1 = G :* x^-1. | |
Proof. by rewrite invMg invGid invg_set1. Qed. | |
Lemma invg_rcoset x : (G :* x)^-1 = x^-1 *: G. | |
Proof. by rewrite invMg invGid invg_set1. Qed. | |
Lemma memV_lcosetV x y : (y^-1 \in x^-1 *: G) = (y \in G :* x). | |
Proof. by rewrite -invg_rcoset memV_invg. Qed. | |
Lemma memV_rcosetV x y : (y^-1 \in G :* x^-1) = (y \in x *: G). | |
Proof. by rewrite -invg_lcoset memV_invg. Qed. | |
(* Product idempotence *) | |
Lemma mulSgGid A x : x \in A -> A \subset G -> A * G = G. | |
Proof. | |
move=> Ax sAG; apply/eqP; rewrite eqEsubset -{2}mulGid mulSg //=. | |
apply/subsetP=> y Gy; rewrite -(mulKVg x y) mem_mulg // groupMr // groupV. | |
exact: (subsetP sAG). | |
Qed. | |
Lemma mulGSgid A x : x \in A -> A \subset G -> G * A = G. | |
Proof. | |
rewrite -memV_invg -invSg invGid => Ax sAG. | |
by apply: invg_inj; rewrite invMg invGid (mulSgGid Ax). | |
Qed. | |
(* Left cosets *) | |
Lemma lcoset_refl x : x \in x *: G. | |
Proof. by rewrite mem_lcoset mulVg group1. Qed. | |
Lemma lcoset_sym x y : (x \in y *: G) = (y \in x *: G). | |
Proof. by rewrite !mem_lcoset -groupV invMg invgK. Qed. | |
Lemma lcoset_eqP {x y} : reflect (x *: G = y *: G) (x \in y *: G). | |
Proof. | |
suffices <-: (x *: G == y *: G) = (x \in y *: G) by apply: eqP. | |
by rewrite eqEsubset !mulSG !sub1set lcoset_sym andbb. | |
Qed. | |
Lemma lcoset_transl x y z : x \in y *: G -> (x \in z *: G) = (y \in z *: G). | |
Proof. by move=> Gyx; rewrite -2!(lcoset_sym z) (lcoset_eqP Gyx). Qed. | |
Lemma lcoset_trans x y z : x \in y *: G -> y \in z *: G -> x \in z *: G. | |
Proof. by move/lcoset_transl->. Qed. | |
Lemma lcoset_id x : x \in G -> x *: G = G. | |
Proof. by move=> Gx; rewrite (lcoset_eqP (_ : x \in 1 *: G)) mul1g. Qed. | |
(* Right cosets, with an elimination form for repr. *) | |
Lemma rcoset_refl x : x \in G :* x. | |
Proof. by rewrite mem_rcoset mulgV group1. Qed. | |
Lemma rcoset_sym x y : (x \in G :* y) = (y \in G :* x). | |
Proof. by rewrite -!memV_lcosetV lcoset_sym. Qed. | |
Lemma rcoset_eqP {x y} : reflect (G :* x = G :* y) (x \in G :* y). | |
Proof. | |
suffices <-: (G :* x == G :* y) = (x \in G :* y) by apply: eqP. | |
by rewrite eqEsubset !mulGS !sub1set rcoset_sym andbb. | |
Qed. | |
Lemma rcoset_transl x y z : x \in G :* y -> (x \in G :* z) = (y \in G :* z). | |
Proof. by move=> Gyx; rewrite -2!(rcoset_sym z) (rcoset_eqP Gyx). Qed. | |
Lemma rcoset_trans x y z : x \in G :* y -> y \in G :* z -> x \in G :* z. | |
Proof. by move/rcoset_transl->. Qed. | |
Lemma rcoset_id x : x \in G -> G :* x = G. | |
Proof. by move=> Gx; rewrite (rcoset_eqP (_ : x \in G :* 1)) mulg1. Qed. | |
(* Elimination form. *) | |
Variant rcoset_repr_spec x : gT -> Type := | |
RcosetReprSpec g : g \in G -> rcoset_repr_spec x (g * x). | |
Lemma mem_repr_rcoset x : repr (G :* x) \in G :* x. | |
Proof. exact: mem_repr (rcoset_refl x). Qed. | |
(* This form sometimes fails because ssreflect 1.1 delegates matching to the *) | |
(* (weaker) primitive Coq algorithm for general (co)inductive type families. *) | |
Lemma repr_rcosetP x : rcoset_repr_spec x (repr (G :* x)). | |
Proof. | |
by rewrite -[repr _](mulgKV x); split; rewrite -mem_rcoset mem_repr_rcoset. | |
Qed. | |
Lemma rcoset_repr x : G :* (repr (G :* x)) = G :* x. | |
Proof. exact/rcoset_eqP/mem_repr_rcoset. Qed. | |
(* Coset spaces. *) | |
Lemma mem_rcosets A x : (G :* x \in rcosets G A) = (x \in G * A). | |
Proof. | |
apply/rcosetsP/mulsgP=> [[a Aa /rcoset_eqP/rcosetP[g]] | ]; first by exists g a. | |
by case=> g a Gg Aa ->{x}; exists a; rewrite // rcosetM rcoset_id. | |
Qed. | |
Lemma mem_lcosets A x : (x *: G \in lcosets G A) = (x \in A * G). | |
Proof. | |
rewrite -[LHS]memV_invg invg_lcoset invg_lcosets. | |
by rewrite -[RHS]memV_invg invMg invGid mem_rcosets. | |
Qed. | |
(* Conjugates. *) | |
Lemma group_setJ A x : group_set (A :^ x) = group_set A. | |
Proof. by rewrite /group_set mem_conjg conj1g -conjsMg conjSg. Qed. | |
Lemma group_set_conjG x : group_set (G :^ x). | |
Proof. by rewrite group_setJ groupP. Qed. | |
Canonical conjG_group x := group (group_set_conjG x). | |
Lemma conjGid : {in G, normalised G}. | |
Proof. by move=> x Gx; apply/setP=> y; rewrite mem_conjg groupJr ?groupV. Qed. | |
Lemma conj_subG x A : x \in G -> A \subset G -> A :^ x \subset G. | |
Proof. by move=> Gx sAG; rewrite -(conjGid Gx) conjSg. Qed. | |
(* Classes *) | |
Lemma class1G : 1 ^: G = 1. Proof. exact: class1g group1. Qed. | |
Lemma classes1 : [1] \in classes G. Proof. by rewrite -class1G mem_classes. Qed. | |
Lemma classGidl x y : y \in G -> (x ^ y) ^: G = x ^: G. | |
Proof. by move=> Gy; rewrite -class_lcoset lcoset_id. Qed. | |
Lemma classGidr x : {in G, normalised (x ^: G)}. | |
Proof. by move=> y Gy /=; rewrite -class_rcoset rcoset_id. Qed. | |
Lemma class_refl x : x \in x ^: G. | |
Proof. by apply/imsetP; exists 1; rewrite ?conjg1. Qed. | |
#[local] Hint Resolve class_refl : core. | |
Lemma class_eqP x y : reflect (x ^: G = y ^: G) (x \in y ^: G). | |
Proof. | |
by apply: (iffP idP) => [/imsetP[z Gz ->] | <-]; rewrite ?class_refl ?classGidl. | |
Qed. | |
Lemma class_sym x y : (x \in y ^: G) = (y \in x ^: G). | |
Proof. by apply/idP/idP=> /class_eqP->. Qed. | |
Lemma class_transl x y z : x \in y ^: G -> (x \in z ^: G) = (y \in z ^: G). | |
Proof. by rewrite -!(class_sym z) => /class_eqP->. Qed. | |
Lemma class_trans x y z : x \in y ^: G -> y \in z ^: G -> x \in z ^: G. | |
Proof. by move/class_transl->. Qed. | |
Lemma repr_class x : {y | y \in G & repr (x ^: G) = x ^ y}. | |
Proof. | |
set z := repr _; have: #|[set y in G | z == x ^ y]| > 0. | |
have: z \in x ^: G by apply: (mem_repr x). | |
by case/imsetP=> y Gy ->; rewrite (cardD1 y) inE Gy eqxx. | |
by move/card_mem_repr; move: (repr _) => y /setIdP[Gy /eqP]; exists y. | |
Qed. | |
Lemma classG_eq1 x : (x ^: G == 1) = (x == 1). | |
Proof. | |
apply/eqP/eqP=> [xG1 | ->]; last exact: class1G. | |
by have:= class_refl x; rewrite xG1 => /set1P. | |
Qed. | |
Lemma class_subG x A : x \in G -> A \subset G -> x ^: A \subset G. | |
Proof. | |
move=> Gx sAG; apply/subsetP=> _ /imsetP[y Ay ->]. | |
by rewrite groupJ // (subsetP sAG). | |
Qed. | |
Lemma repr_classesP xG : | |
reflect (repr xG \in G /\ xG = repr xG ^: G) (xG \in classes G). | |
Proof. | |
apply: (iffP imsetP) => [[x Gx ->] | []]; last by exists (repr xG). | |
by have [y Gy ->] := repr_class x; rewrite classGidl ?groupJ. | |
Qed. | |
Lemma mem_repr_classes xG : xG \in classes G -> repr xG \in xG. | |
Proof. by case/repr_classesP=> _ {2}->; apply: class_refl. Qed. | |
Lemma classes_gt0 : 0 < #|classes G|. | |
Proof. by rewrite (cardsD1 1) classes1. Qed. | |
Lemma classes_gt1 : (#|classes G| > 1) = (G :!=: 1). | |
Proof. | |
rewrite (cardsD1 1) classes1 ltnS lt0n cards_eq0. | |
apply/set0Pn/trivgPn=> [[xG /setD1P[nt_xG]] | [x Gx ntx]]. | |
by case/imsetP=> x Gx def_xG; rewrite def_xG classG_eq1 in nt_xG; exists x. | |
by exists (x ^: G); rewrite !inE classG_eq1 ntx; apply: imset_f. | |
Qed. | |
Lemma mem_class_support A x : x \in A -> x \in class_support A G. | |
Proof. by move=> Ax; rewrite -[x]conjg1 memJ_class_support. Qed. | |
Lemma class_supportGidl A x : | |
x \in G -> class_support (A :^ x) G = class_support A G. | |
Proof. | |
by move=> Gx; rewrite -class_support_set1r -class_supportM lcoset_id. | |
Qed. | |
Lemma class_supportGidr A : {in G, normalised (class_support A G)}. | |
Proof. | |
by move=> x Gx /=; rewrite -class_support_set1r -class_supportM rcoset_id. | |
Qed. | |
Lemma class_support_subG A : A \subset G -> class_support A G \subset G. | |
Proof. | |
by move=> sAG; rewrite class_supportEr; apply/bigcupsP=> x Gx; apply: conj_subG. | |
Qed. | |
Lemma sub_class_support A : A \subset class_support A G. | |
Proof. by rewrite class_supportEr (bigcup_max 1) ?conjsg1. Qed. | |
Lemma class_support_id : class_support G G = G. | |
Proof. | |
by apply/eqP; rewrite eqEsubset sub_class_support class_support_subG. | |
Qed. | |
Lemma class_supportD1 A : (class_support A G)^# = cover (A^# :^: G). | |
Proof. | |
rewrite cover_imset class_supportEr setDE big_distrl /=. | |
by apply: eq_bigr => x _; rewrite -setDE conjD1g. | |
Qed. | |
(* Subgroup Type construction. *) | |
(* We only expect to use this for abstract groups, so we don't project *) | |
(* the argument to a set. *) | |
Inductive subg_of : predArgType := Subg x & x \in G. | |
Definition sgval u := let: Subg x _ := u in x. | |
Canonical subg_subType := Eval hnf in [subType for sgval]. | |
Definition subg_eqMixin := Eval hnf in [eqMixin of subg_of by <:]. | |
Canonical subg_eqType := Eval hnf in EqType subg_of subg_eqMixin. | |
Definition subg_choiceMixin := [choiceMixin of subg_of by <:]. | |
Canonical subg_choiceType := Eval hnf in ChoiceType subg_of subg_choiceMixin. | |
Definition subg_countMixin := [countMixin of subg_of by <:]. | |
Canonical subg_countType := Eval hnf in CountType subg_of subg_countMixin. | |
Canonical subg_subCountType := Eval hnf in [subCountType of subg_of]. | |
Definition subg_finMixin := [finMixin of subg_of by <:]. | |
Canonical subg_finType := Eval hnf in FinType subg_of subg_finMixin. | |
Canonical subg_subFinType := Eval hnf in [subFinType of subg_of]. | |
Lemma subgP u : sgval u \in G. | |
Proof. exact: valP. Qed. | |
Lemma subg_inj : injective sgval. | |
Proof. exact: val_inj. Qed. | |
Lemma congr_subg u v : u = v -> sgval u = sgval v. | |
Proof. exact: congr1. Qed. | |
Definition subg_one := Subg group1. | |
Definition subg_inv u := Subg (groupVr (subgP u)). | |
Definition subg_mul u v := Subg (groupM (subgP u) (subgP v)). | |
Lemma subg_oneP : left_id subg_one subg_mul. | |
Proof. by move=> u; apply: val_inj; apply: mul1g. Qed. | |
Lemma subg_invP : left_inverse subg_one subg_inv subg_mul. | |
Proof. by move=> u; apply: val_inj; apply: mulVg. Qed. | |
Lemma subg_mulP : associative subg_mul. | |
Proof. by move=> u v w; apply: val_inj; apply: mulgA. Qed. | |
Definition subFinGroupMixin := FinGroup.Mixin subg_mulP subg_oneP subg_invP. | |
Canonical subBaseFinGroupType := | |
Eval hnf in BaseFinGroupType subg_of subFinGroupMixin. | |
Canonical subFinGroupType := FinGroupType subg_invP. | |
Lemma sgvalM : {in setT &, {morph sgval : x y / x * y}}. Proof. by []. Qed. | |
Lemma valgM : {in setT &, {morph val : x y / (x : subg_of) * y >-> x * y}}. | |
Proof. by []. Qed. | |
Definition subg : gT -> subg_of := insubd (1 : subg_of). | |
Lemma subgK x : x \in G -> val (subg x) = x. | |
Proof. by move=> Gx; rewrite insubdK. Qed. | |
Lemma sgvalK : cancel sgval subg. | |
Proof. by case=> x Gx; apply: val_inj; apply: subgK. Qed. | |
Lemma subg_default x : (x \in G) = false -> val (subg x) = 1. | |
Proof. by move=> Gx; rewrite val_insubd Gx. Qed. | |
Lemma subgM : {in G &, {morph subg : x y / x * y}}. | |
Proof. by move=> x y Gx Gy; apply: val_inj; rewrite /= !subgK ?groupM. Qed. | |
End OneGroup. | |
#[local] Hint Resolve group1 : core. | |
Lemma groupD1_inj G H : G^# = H^# -> G :=: H. | |
Proof. by move/(congr1 (setU 1)); rewrite !setD1K. Qed. | |
Lemma invMG G H : (G * H)^-1 = H * G. | |
Proof. by rewrite invMg !invGid. Qed. | |
Lemma mulSGid G H : H \subset G -> H * G = G. | |
Proof. exact: mulSgGid (group1 H). Qed. | |
Lemma mulGSid G H : H \subset G -> G * H = G. | |
Proof. exact: mulGSgid (group1 H). Qed. | |
Lemma mulGidPl G H : reflect (G * H = G) (H \subset G). | |
Proof. by apply: (iffP idP) => [|<-]; [apply: mulGSid | apply: mulG_subr]. Qed. | |
Lemma mulGidPr G H : reflect (G * H = H) (G \subset H). | |
Proof. by apply: (iffP idP) => [|<-]; [apply: mulSGid | apply: mulG_subl]. Qed. | |
Lemma comm_group_setP G H : reflect (commute G H) (group_set (G * H)). | |
Proof. | |
rewrite /group_set (subsetP (mulG_subl _ _)) ?group1 // andbC. | |
have <-: #|G * H| <= #|H * G| by rewrite -invMG card_invg. | |
by rewrite -mulgA mulGS mulgA mulSG -eqEcard eq_sym; apply: eqP. | |
Qed. | |
Lemma card_lcosets G H : #|lcosets H G| = #|G : H|. | |
Proof. by rewrite -card_invg invg_lcosets !invGid. Qed. | |
(* Group Modularity equations *) | |
Lemma group_modl A B G : A \subset G -> A * (B :&: G) = A * B :&: G. | |
Proof. | |
move=> sAG; apply/eqP; rewrite eqEsubset subsetI mulgS ?subsetIl //. | |
rewrite -{2}mulGid mulgSS ?subsetIr //. | |
apply/subsetP => _ /setIP[/mulsgP[a b Aa Bb ->] Gab]. | |
by rewrite mem_mulg // inE Bb -(groupMl _ (subsetP sAG _ Aa)). | |
Qed. | |
Lemma group_modr A B G : B \subset G -> (G :&: A) * B = G :&: A * B. | |
Proof. | |
move=> sBG; apply: invg_inj; rewrite !(invMg, invIg) invGid !(setIC G). | |
by rewrite group_modl // -invGid invSg. | |
Qed. | |
End GroupProp. | |
#[global] Hint Extern 0 (is_true (1%g \in _)) => apply: group1 : core. | |
#[global] Hint Extern 0 (is_true (0 < #|_|)) => apply: cardG_gt0 : core. | |
#[global] Hint Extern 0 (is_true (0 < #|_ : _|)) => apply: indexg_gt0 : core. | |
Notation "G :^ x" := (conjG_group G x) : Group_scope. | |
Notation "[ 'subg' G ]" := (subg_of G) : type_scope. | |
Notation "[ 'subg' G ]" := [set: subg_of G] : group_scope. | |
Notation "[ 'subg' G ]" := [set: subg_of G]%G : Group_scope. | |
Prenex Implicits subg sgval subg_of. | |
Bind Scope group_scope with subg_of. | |
Arguments subgK {gT G}. | |
Arguments sgvalK {gT G}. | |
Arguments subg_inj {gT G} [u1 u2] eq_u12 : rename. | |
Arguments trivgP {gT G}. | |
Arguments trivGP {gT G}. | |
Arguments lcoset_eqP {gT G x y}. | |
Arguments rcoset_eqP {gT G x y}. | |
Arguments mulGidPl {gT G H}. | |
Arguments mulGidPr {gT G H}. | |
Arguments comm_group_setP {gT G H}. | |
Arguments class_eqP {gT G x y}. | |
Arguments repr_classesP {gT G xG}. | |
Section GroupInter. | |
Variable gT : finGroupType. | |
Implicit Types A B : {set gT}. | |
Implicit Types G H : {group gT}. | |
Lemma group_setI G H : group_set (G :&: H). | |
Proof. | |
apply/group_setP; split=> [|x y]; rewrite !inE ?group1 //. | |
by case/andP=> Gx Hx; rewrite !groupMl. | |
Qed. | |
Canonical setI_group G H := group (group_setI G H). | |
Section Nary. | |
Variables (I : finType) (P : pred I) (F : I -> {group gT}). | |
Lemma group_set_bigcap : group_set (\bigcap_(i | P i) F i). | |
Proof. | |
by elim/big_rec: _ => [|i G _ gG]; rewrite -1?(insubdK 1%G gG) groupP. | |
Qed. | |
Canonical bigcap_group := group group_set_bigcap. | |
End Nary. | |
Canonical generated_group A : {group _} := Eval hnf in [group of <<A>>]. | |
Canonical gcore_group G A : {group _} := Eval hnf in [group of gcore G A]. | |
Canonical commutator_group A B : {group _} := Eval hnf in [group of [~: A, B]]. | |
Canonical joing_group A B : {group _} := Eval hnf in [group of A <*> B]. | |
Canonical cycle_group x : {group _} := Eval hnf in [group of <[x]>]. | |
Definition joinG G H := joing_group G H. | |
Definition subgroups A := [set G : {group gT} | G \subset A]. | |
Lemma order_gt0 (x : gT) : 0 < #[x]. | |
Proof. exact: cardG_gt0. Qed. | |
End GroupInter. | |
#[global] Hint Resolve order_gt0 : core. | |
Arguments generated_group _ _%g. | |
Arguments joing_group _ _%g _%g. | |
Arguments subgroups _ _%g. | |
Notation "G :&: H" := (setI_group G H) : Group_scope. | |
Notation "<< A >>" := (generated_group A) : Group_scope. | |
Notation "<[ x ] >" := (cycle_group x) : Group_scope. | |
Notation "[ ~: A1 , A2 , .. , An ]" := | |
(commutator_group .. (commutator_group A1 A2) .. An) : Group_scope. | |
Notation "A <*> B" := (joing_group A B) : Group_scope. | |
Notation "G * H" := (joinG G H) : Group_scope. | |
Prenex Implicits joinG subgroups. | |
Notation "\prod_ ( i <- r | P ) F" := | |
(\big[joinG/1%G]_(i <- r | P%B) F%G) : Group_scope. | |
Notation "\prod_ ( i <- r ) F" := | |
(\big[joinG/1%G]_(i <- r) F%G) : Group_scope. | |
Notation "\prod_ ( m <= i < n | P ) F" := | |
(\big[joinG/1%G]_(m <= i < n | P%B) F%G) : Group_scope. | |
Notation "\prod_ ( m <= i < n ) F" := | |
(\big[joinG/1%G]_(m <= i < n) F%G) : Group_scope. | |
Notation "\prod_ ( i | P ) F" := | |
(\big[joinG/1%G]_(i | P%B) F%G) : Group_scope. | |
Notation "\prod_ i F" := | |
(\big[joinG/1%G]_i F%G) : Group_scope. | |
Notation "\prod_ ( i : t | P ) F" := | |
(\big[joinG/1%G]_(i : t | P%B) F%G) (only parsing) : Group_scope. | |
Notation "\prod_ ( i : t ) F" := | |
(\big[joinG/1%G]_(i : t) F%G) (only parsing) : Group_scope. | |
Notation "\prod_ ( i < n | P ) F" := | |
(\big[joinG/1%G]_(i < n | P%B) F%G) : Group_scope. | |
Notation "\prod_ ( i < n ) F" := | |
(\big[joinG/1%G]_(i < n) F%G) : Group_scope. | |
Notation "\prod_ ( i 'in' A | P ) F" := | |
(\big[joinG/1%G]_(i in A | P%B) F%G) : Group_scope. | |
Notation "\prod_ ( i 'in' A ) F" := | |
(\big[joinG/1%G]_(i in A) F%G) : Group_scope. | |
Section Lagrange. | |
Variable gT : finGroupType. | |
Implicit Types G H K : {group gT}. | |
Lemma LagrangeI G H : (#|G :&: H| * #|G : H|)%N = #|G|. | |
Proof. | |
rewrite -[#|G|]sum1_card (partition_big_imset (rcoset H)) /=. | |
rewrite mulnC -sum_nat_const; apply: eq_bigr => _ /rcosetsP[x Gx ->]. | |
rewrite -(card_rcoset _ x) -sum1_card; apply: eq_bigl => y. | |
by rewrite rcosetE (sameP eqP rcoset_eqP) group_modr (sub1set, inE). | |
Qed. | |
Lemma divgI G H : #|G| %/ #|G :&: H| = #|G : H|. | |
Proof. by rewrite -(LagrangeI G H) mulKn ?cardG_gt0. Qed. | |
Lemma divg_index G H : #|G| %/ #|G : H| = #|G :&: H|. | |
Proof. by rewrite -(LagrangeI G H) mulnK. Qed. | |
Lemma dvdn_indexg G H : #|G : H| %| #|G|. | |
Proof. by rewrite -(LagrangeI G H) dvdn_mull. Qed. | |
Theorem Lagrange G H : H \subset G -> (#|H| * #|G : H|)%N = #|G|. | |
Proof. by move/setIidPr=> sHG; rewrite -{1}sHG LagrangeI. Qed. | |
Lemma cardSg G H : H \subset G -> #|H| %| #|G|. | |
Proof. by move/Lagrange <-; rewrite dvdn_mulr. Qed. | |
Lemma lognSg p G H : G \subset H -> logn p #|G| <= logn p #|H|. | |
Proof. by move=> sGH; rewrite dvdn_leq_log ?cardSg. Qed. | |
Lemma piSg G H : G \subset H -> {subset \pi(gval G) <= \pi(gval H)}. | |
Proof. | |
move=> sGH p; rewrite !mem_primes !cardG_gt0 => /and3P[-> _ pG]. | |
exact: dvdn_trans (cardSg sGH). | |
Qed. | |
Lemma divgS G H : H \subset G -> #|G| %/ #|H| = #|G : H|. | |
Proof. by move/Lagrange <-; rewrite mulKn. Qed. | |
Lemma divg_indexS G H : H \subset G -> #|G| %/ #|G : H| = #|H|. | |
Proof. by move/Lagrange <-; rewrite mulnK. Qed. | |
Lemma coprimeSg G H p : H \subset G -> coprime #|G| p -> coprime #|H| p. | |
Proof. by move=> sHG; apply: coprime_dvdl (cardSg sHG). Qed. | |
Lemma coprimegS G H p : H \subset G -> coprime p #|G| -> coprime p #|H|. | |
Proof. by move=> sHG; apply: coprime_dvdr (cardSg sHG). Qed. | |
Lemma indexJg G H x : #|G :^ x : H :^ x| = #|G : H|. | |
Proof. by rewrite -!divgI -conjIg !cardJg. Qed. | |
Lemma indexgg G : #|G : G| = 1%N. | |
Proof. by rewrite -divgS // divnn cardG_gt0. Qed. | |
Lemma rcosets_id G : rcosets G G = [set G : {set gT}]. | |
Proof. | |
apply/esym/eqP; rewrite eqEcard sub1set [#|_|]indexgg cards1 andbT. | |
by apply/rcosetsP; exists 1; rewrite ?mulg1. | |
Qed. | |
Lemma Lagrange_index G H K : | |
H \subset G -> K \subset H -> (#|G : H| * #|H : K|)%N = #|G : K|. | |
Proof. | |
move=> sHG sKH; apply/eqP; rewrite mulnC -(eqn_pmul2l (cardG_gt0 K)). | |
by rewrite mulnA !Lagrange // (subset_trans sKH). | |
Qed. | |
Lemma indexgI G H : #|G : G :&: H| = #|G : H|. | |
Proof. by rewrite -divgI divgS ?subsetIl. Qed. | |
Lemma indexgS G H K : H \subset K -> #|G : K| %| #|G : H|. | |
Proof. | |
move=> sHK; rewrite -(@dvdn_pmul2l #|G :&: K|) ?cardG_gt0 // LagrangeI. | |
by rewrite -(Lagrange (setIS G sHK)) mulnAC LagrangeI dvdn_mulr. | |
Qed. | |
Lemma indexSg G H K : H \subset K -> K \subset G -> #|K : H| %| #|G : H|. | |
Proof. | |
move=> sHK sKG; rewrite -(@dvdn_pmul2l #|H|) ?cardG_gt0 //. | |
by rewrite !Lagrange ?(cardSg, subset_trans sHK). | |
Qed. | |
Lemma indexg_eq1 G H : (#|G : H| == 1%N) = (G \subset H). | |
Proof. | |
rewrite eqn_leq -(leq_pmul2l (cardG_gt0 (G :&: H))) LagrangeI muln1. | |
by rewrite indexg_gt0 andbT (sameP setIidPl eqP) eqEcard subsetIl. | |
Qed. | |
Lemma indexg_gt1 G H : (#|G : H| > 1) = ~~ (G \subset H). | |
Proof. by rewrite -indexg_eq1 eqn_leq indexg_gt0 andbT -ltnNge. Qed. | |
Lemma index1g G H : H \subset G -> #|G : H| = 1%N -> H :=: G. | |
Proof. by move=> sHG iHG; apply/eqP; rewrite eqEsubset sHG -indexg_eq1 iHG. Qed. | |
Lemma indexg1 G : #|G : 1| = #|G|. | |
Proof. by rewrite -divgS ?sub1G // cards1 divn1. Qed. | |
Lemma indexMg G A : #|G * A : G| = #|A : G|. | |
Proof. | |
apply/eq_card/setP/eqP; rewrite eqEsubset andbC imsetS ?mulG_subr //. | |
by apply/subsetP=> _ /rcosetsP[x GAx ->]; rewrite mem_rcosets. | |
Qed. | |
Lemma rcosets_partition_mul G H : partition (rcosets H G) (H * G). | |
Proof. | |
set HG := H * G; have sGHG: {subset G <= HG} by apply/subsetP/mulG_subr. | |
have defHx x: x \in HG -> [set y in HG | rcoset H x == rcoset H y] = H :* x. | |
move=> HGx; apply/setP=> y; rewrite inE !rcosetE (sameP eqP rcoset_eqP). | |
by rewrite rcoset_sym; apply/andb_idl/subsetP; rewrite mulGS sub1set. | |
have:= preim_partitionP (rcoset H) HG; congr (partition _ _); apply/setP=> Hx. | |
apply/imsetP/idP=> [[x HGx ->] | ]; first by rewrite defHx // mem_rcosets. | |
by case/rcosetsP=> x /sGHG-HGx ->; exists x; rewrite ?defHx. | |
Qed. | |
Lemma rcosets_partition G H : H \subset G -> partition (rcosets H G) G. | |
Proof. by move=> sHG; have:= rcosets_partition_mul G H; rewrite mulSGid. Qed. | |
Lemma LagrangeMl G H : (#|G| * #|H : G|)%N = #|G * H|. | |
Proof. | |
rewrite mulnC -(card_uniform_partition _ (rcosets_partition_mul H G)) //. | |
by move=> _ /rcosetsP[x Hx ->]; rewrite card_rcoset. | |
Qed. | |
Lemma LagrangeMr G H : (#|G : H| * #|H|)%N = #|G * H|. | |
Proof. by rewrite mulnC LagrangeMl -card_invg invMg !invGid. Qed. | |
Lemma mul_cardG G H : (#|G| * #|H| = #|G * H|%g * #|G :&: H|)%N. | |
Proof. by rewrite -LagrangeMr -(LagrangeI G H) -mulnA mulnC. Qed. | |
Lemma dvdn_cardMg G H : #|G * H| %| #|G| * #|H|. | |
Proof. by rewrite mul_cardG dvdn_mulr. Qed. | |
Lemma cardMg_divn G H : #|G * H| = (#|G| * #|H|) %/ #|G :&: H|. | |
Proof. by rewrite mul_cardG mulnK ?cardG_gt0. Qed. | |
Lemma cardIg_divn G H : #|G :&: H| = (#|G| * #|H|) %/ #|G * H|. | |
Proof. by rewrite mul_cardG mulKn // (cardD1 (1 * 1)) mem_mulg. Qed. | |
Lemma TI_cardMg G H : G :&: H = 1 -> #|G * H| = (#|G| * #|H|)%N. | |
Proof. by move=> tiGH; rewrite mul_cardG tiGH cards1 muln1. Qed. | |
Lemma cardMg_TI G H : #|G| * #|H| <= #|G * H| -> G :&: H = 1. | |
Proof. | |
move=> leGH; apply: card_le1_trivg. | |
rewrite -(@leq_pmul2l #|G * H|); first by rewrite -mul_cardG muln1. | |
by apply: leq_trans leGH; rewrite muln_gt0 !cardG_gt0. | |
Qed. | |
Lemma coprime_TIg G H : coprime #|G| #|H| -> G :&: H = 1. | |
Proof. | |
move=> coGH; apply/eqP; rewrite trivg_card1 -dvdn1 -{}(eqnP coGH). | |
by rewrite dvdn_gcd /= {2}setIC !cardSg ?subsetIl. | |
Qed. | |
Lemma prime_TIg G H : prime #|G| -> ~~ (G \subset H) -> G :&: H = 1. | |
Proof. | |
case/primeP=> _ /(_ _ (cardSg (subsetIl G H))). | |
rewrite (sameP setIidPl eqP) eqEcard subsetIl => /pred2P[/card1_trivg|] //= ->. | |
by case/negP. | |
Qed. | |
Lemma prime_meetG G H : prime #|G| -> G :&: H != 1 -> G \subset H. | |
Proof. by move=> prG; apply: contraR; move/prime_TIg->. Qed. | |
Lemma coprime_cardMg G H : coprime #|G| #|H| -> #|G * H| = (#|G| * #|H|)%N. | |
Proof. by move=> coGH; rewrite TI_cardMg ?coprime_TIg. Qed. | |
Lemma coprime_index_mulG G H K : | |
H \subset G -> K \subset G -> coprime #|G : H| #|G : K| -> H * K = G. | |
Proof. | |
move=> sHG sKG co_iG_HK; apply/eqP; rewrite eqEcard mul_subG //=. | |
rewrite -(@leq_pmul2r #|H :&: K|) ?cardG_gt0 // -mul_cardG. | |
rewrite -(Lagrange sHG) -(LagrangeI K H) mulnAC setIC -mulnA. | |
rewrite !leq_pmul2l ?cardG_gt0 // dvdn_leq // -(Gauss_dvdr _ co_iG_HK). | |
by rewrite -(indexgI K) Lagrange_index ?indexgS ?subsetIl ?subsetIr. | |
Qed. | |
End Lagrange. | |
Section GeneratedGroup. | |
Variable gT : finGroupType. | |
Implicit Types x y z : gT. | |
Implicit Types A B C D : {set gT}. | |
Implicit Types G H K : {group gT}. | |
Lemma subset_gen A : A \subset <<A>>. | |
Proof. exact/bigcapsP. Qed. | |
Lemma sub_gen A B : A \subset B -> A \subset <<B>>. | |
Proof. by move/subset_trans=> -> //; apply: subset_gen. Qed. | |
Lemma mem_gen x A : x \in A -> x \in <<A>>. | |
Proof. exact: subsetP (subset_gen A) x. Qed. | |
Lemma generatedP x A : reflect (forall G, A \subset G -> x \in G) (x \in <<A>>). | |
Proof. exact: bigcapP. Qed. | |
Lemma gen_subG A G : (<<A>> \subset G) = (A \subset G). | |
Proof. | |
apply/idP/idP=> [|sAG]; first exact: subset_trans (subset_gen A). | |
by apply/subsetP=> x /generatedP; apply. | |
Qed. | |
Lemma genGid G : <<G>> = G. | |
Proof. by apply/eqP; rewrite eqEsubset gen_subG subset_gen andbT. Qed. | |
Lemma genGidG G : <<G>>%G = G. | |
Proof. by apply: val_inj; apply: genGid. Qed. | |
Lemma gen_set_id A : group_set A -> <<A>> = A. | |
Proof. by move=> gA; apply: (genGid (group gA)). Qed. | |
Lemma genS A B : A \subset B -> <<A>> \subset <<B>>. | |
Proof. by move=> sAB; rewrite gen_subG sub_gen. Qed. | |
Lemma gen0 : <<set0>> = 1 :> {set gT}. | |
Proof. by apply/eqP; rewrite eqEsubset sub1G gen_subG sub0set. Qed. | |
Lemma gen_expgs A : {n | <<A>> = (1 |: A) ^+ n}. | |
Proof. | |
set B := (1 |: A); pose N := #|gT|. | |
have BsubG n : B ^+ n \subset <<A>>. | |
by elim: n => [|n IHn]; rewrite ?expgS ?mul_subG ?subUset ?sub1G ?subset_gen. | |
have B_1 n : 1 \in B ^+ n. | |
by elim: n => [|n IHn]; rewrite ?set11 // expgS mulUg mul1g inE IHn. | |
case: (pickP (fun i : 'I_N => B ^+ i.+1 \subset B ^+ i)) => [n fixBn | no_fix]. | |
exists n; apply/eqP; rewrite eqEsubset BsubG andbT. | |
rewrite -[B ^+ n]gen_set_id ?genS ?subsetUr //. | |
by apply: subset_trans fixBn; rewrite expgS mulUg subsetU ?mulg_subl ?orbT. | |
rewrite /group_set B_1 /=. | |
elim: {2}(n : nat) => [|m IHm]; first by rewrite mulg1. | |
by apply: subset_trans fixBn; rewrite !expgSr mulgA mulSg. | |
suffices: N < #|B ^+ N| by rewrite ltnNge max_card. | |
have [] := ubnPgeq N; elim=> [|n IHn] lt_nN; first by rewrite cards1. | |
apply: leq_ltn_trans (IHn (ltnW lt_nN)) (proper_card _). | |
by rewrite /proper (no_fix (Ordinal lt_nN)) expgS mulUg mul1g subsetUl. | |
Qed. | |
Lemma gen_prodgP A x : | |
reflect (exists n, exists2 c, forall i : 'I_n, c i \in A & x = \prod_i c i) | |
(x \in <<A>>). | |
Proof. | |
apply: (iffP idP) => [|[n [c Ac ->]]]; last first. | |
by apply: group_prod => i _; rewrite mem_gen ?Ac. | |
have [n ->] := gen_expgs A; rewrite /expgn /expgn_rec Monoid.iteropE /=. | |
rewrite -[n]card_ord -big_const => /prodsgP[/= c Ac def_x]. | |
have{Ac def_x} ->: x = \prod_(i | c i \in A) c i. | |
rewrite big_mkcond {x}def_x; apply: eq_bigr => i _. | |
by case/setU1P: (Ac i isT) => -> //; rewrite if_same. | |
have [e <- [_ /= mem_e] _] := big_enumP [preim c of A]. | |
pose t := in_tuple e; rewrite -[e]/(val t) big_tuple. | |
by exists (size e), (c \o tnth t) => // i; rewrite -mem_e mem_tnth. | |
Qed. | |
Lemma genD A B : A \subset <<A :\: B>> -> <<A :\: B>> = <<A>>. | |
Proof. | |
by move=> sAB; apply/eqP; rewrite eqEsubset genS (subsetDl, gen_subG). | |
Qed. | |
Lemma genV A : <<A^-1>> = <<A>>. | |
Proof. | |
apply/eqP; rewrite eqEsubset !gen_subG -!(invSg _ <<_>>) invgK. | |
by rewrite !invGid !subset_gen. | |
Qed. | |
Lemma genJ A z : <<A :^z>> = <<A>> :^ z. | |
Proof. | |
by apply/eqP; rewrite eqEsubset sub_conjg !gen_subG conjSg -?sub_conjg !sub_gen. | |
Qed. | |
Lemma conjYg A B z : (A <*> B) :^z = A :^ z <*> B :^ z. | |
Proof. by rewrite -genJ conjUg. Qed. | |
Lemma genD1 A x : x \in <<A :\ x>> -> <<A :\ x>> = <<A>>. | |
Proof. | |
move=> gA'x; apply/eqP; rewrite eqEsubset genS; last by rewrite subsetDl. | |
rewrite gen_subG; apply/subsetP=> y Ay. | |
by case: (y =P x) => [-> //|]; move/eqP=> nyx; rewrite mem_gen // !inE nyx. | |
Qed. | |
Lemma genD1id A : <<A^#>> = <<A>>. | |
Proof. by rewrite genD1 ?group1. Qed. | |
Notation joingT := (@joing gT) (only parsing). | |
Notation joinGT := (@joinG gT) (only parsing). | |
Lemma joingE A B : A <*> B = <<A :|: B>>. Proof. by []. Qed. | |
Lemma joinGE G H : (G * H)%G = (G <*> H)%G. Proof. by []. Qed. | |
Lemma joingC : commutative joingT. | |
Proof. by move=> A B; rewrite /joing setUC. Qed. | |
Lemma joing_idr A B : A <*> <<B>> = A <*> B. | |
Proof. | |
apply/eqP; rewrite eqEsubset gen_subG subUset gen_subG /=. | |
by rewrite -subUset subset_gen genS // setUS // subset_gen. | |
Qed. | |
Lemma joing_idl A B : <<A>> <*> B = A <*> B. | |
Proof. by rewrite -!(joingC B) joing_idr. Qed. | |
Lemma joing_subl A B : A \subset A <*> B. | |
Proof. by rewrite sub_gen ?subsetUl. Qed. | |
Lemma joing_subr A B : B \subset A <*> B. | |
Proof. by rewrite sub_gen ?subsetUr. Qed. | |
Lemma join_subG A B G : (A <*> B \subset G) = (A \subset G) && (B \subset G). | |
Proof. by rewrite gen_subG subUset. Qed. | |
Lemma joing_idPl G A : reflect (G <*> A = G) (A \subset G). | |
Proof. | |
apply: (iffP idP) => [sHG | <-]; last by rewrite joing_subr. | |
by rewrite joingE (setUidPl sHG) genGid. | |
Qed. | |
Lemma joing_idPr A G : reflect (A <*> G = G) (A \subset G). | |
Proof. by rewrite joingC; apply: joing_idPl. Qed. | |
Lemma joing_subP A B G : | |
reflect (A \subset G /\ B \subset G) (A <*> B \subset G). | |
Proof. by rewrite join_subG; apply: andP. Qed. | |
Lemma joing_sub A B C : A <*> B = C -> A \subset C /\ B \subset C. | |
Proof. by move <-; apply/joing_subP. Qed. | |
Lemma genDU A B C : A \subset C -> <<C :\: A>> = <<B>> -> <<A :|: B>> = <<C>>. | |
Proof. | |
move=> sAC; rewrite -joingE -joing_idr => <- {B}; rewrite joing_idr. | |
by congr <<_>>; rewrite setDE setUIr setUCr setIT; apply/setUidPr. | |
Qed. | |
Lemma joingA : associative joingT. | |
Proof. by move=> A B C; rewrite joing_idl joing_idr /joing setUA. Qed. | |
Lemma joing1G G : 1 <*> G = G. | |
Proof. by rewrite -gen0 joing_idl /joing set0U genGid. Qed. | |
Lemma joingG1 G : G <*> 1 = G. | |
Proof. by rewrite joingC joing1G. Qed. | |
Lemma genM_join G H : <<G * H>> = G <*> H. | |
Proof. | |
apply/eqP; rewrite eqEsubset gen_subG /= -{1}[G <*> H]mulGid. | |
rewrite genS; last by rewrite subUset mulG_subl mulG_subr. | |
by rewrite mulgSS ?(sub_gen, subsetUl, subsetUr). | |
Qed. | |
Lemma mulG_subG G H K : (G * H \subset K) = (G \subset K) && (H \subset K). | |
Proof. by rewrite -gen_subG genM_join join_subG. Qed. | |
Lemma mulGsubP K H G : reflect (K \subset G /\ H \subset G) (K * H \subset G). | |
Proof. by rewrite mulG_subG; apply: andP. Qed. | |
Lemma mulG_sub K H A : K * H = A -> K \subset A /\ H \subset A. | |
Proof. by move <-; rewrite mulG_subl mulG_subr. Qed. | |
Lemma trivMg G H : (G * H == 1) = (G :==: 1) && (H :==: 1). | |
Proof. | |
by rewrite !eqEsubset -{2}[1]mulGid mulgSS ?sub1G // !andbT mulG_subG. | |
Qed. | |
Lemma comm_joingE G H : commute G H -> G <*> H = G * H. | |
Proof. | |
by move/comm_group_setP=> gGH; rewrite -genM_join; apply: (genGid (group gGH)). | |
Qed. | |
Lemma joinGC : commutative joinGT. | |
Proof. by move=> G H; apply: val_inj; apply: joingC. Qed. | |
Lemma joinGA : associative joinGT. | |
Proof. by move=> G H K; apply: val_inj; apply: joingA. Qed. | |
Lemma join1G : left_id 1%G joinGT. | |
Proof. by move=> G; apply: val_inj; apply: joing1G. Qed. | |
Lemma joinG1 : right_id 1%G joinGT. | |
Proof. by move=> G; apply: val_inj; apply: joingG1. Qed. | |
Canonical joinG_law := Monoid.Law joinGA join1G joinG1. | |
Canonical joinG_abelaw := Monoid.ComLaw joinGC. | |
Lemma bigprodGEgen I r (P : pred I) (F : I -> {set gT}) : | |
(\prod_(i <- r | P i) <<F i>>)%G :=: << \bigcup_(i <- r | P i) F i >>. | |
Proof. | |
elim/big_rec2: _ => /= [|i A _ _ ->]; first by rewrite gen0. | |
by rewrite joing_idl joing_idr. | |
Qed. | |
Lemma bigprodGE I r (P : pred I) (F : I -> {group gT}) : | |
(\prod_(i <- r | P i) F i)%G :=: << \bigcup_(i <- r | P i) F i >>. | |
Proof. | |
rewrite -bigprodGEgen /=; apply: congr_group. | |
by apply: eq_bigr => i _; rewrite genGidG. | |
Qed. | |
Lemma mem_commg A B x y : x \in A -> y \in B -> [~ x, y] \in [~: A, B]. | |
Proof. by move=> Ax By; rewrite mem_gen ?imset2_f. Qed. | |
Lemma commSg A B C : A \subset B -> [~: A, C] \subset [~: B, C]. | |
Proof. by move=> sAC; rewrite genS ?imset2S. Qed. | |
Lemma commgS A B C : B \subset C -> [~: A, B] \subset [~: A, C]. | |
Proof. by move=> sBC; rewrite genS ?imset2S. Qed. | |
Lemma commgSS A B C D : | |
A \subset B -> C \subset D -> [~: A, C] \subset [~: B, D]. | |
Proof. by move=> sAB sCD; rewrite genS ?imset2S. Qed. | |
Lemma der1_subG G : [~: G, G] \subset G. | |
Proof. | |
by rewrite gen_subG; apply/subsetP=> _ /imset2P[x y Gx Gy ->]; apply: groupR. | |
Qed. | |
Lemma comm_subG A B G : A \subset G -> B \subset G -> [~: A, B] \subset G. | |
Proof. | |
by move=> sAG sBG; apply: subset_trans (der1_subG G); apply: commgSS. | |
Qed. | |
Lemma commGC A B : [~: A, B] = [~: B, A]. | |
Proof. | |
rewrite -[[~: A, B]]genV; congr <<_>>; apply/setP=> z; rewrite inE. | |
by apply/imset2P/imset2P=> [] [x y Ax Ay]; last rewrite -{1}(invgK z); | |
rewrite -invg_comm => /invg_inj->; exists y x. | |
Qed. | |
Lemma conjsRg A B x : [~: A, B] :^ x = [~: A :^ x, B :^ x]. | |
Proof. | |
wlog suffices: A B x / [~: A, B] :^ x \subset [~: A :^ x, B :^ x]. | |
move=> subJ; apply/eqP; rewrite eqEsubset subJ /= -sub_conjgV. | |
by rewrite -{2}(conjsgK x A) -{2}(conjsgK x B). | |
rewrite -genJ gen_subG; apply/subsetP=> _ /imsetP[_ /imset2P[y z Ay Bz ->] ->]. | |
by rewrite conjRg mem_commg ?memJ_conjg. | |
Qed. | |
End GeneratedGroup. | |
Arguments gen_prodgP {gT A x}. | |
Arguments joing_idPl {gT G A}. | |
Arguments joing_idPr {gT A G}. | |
Arguments mulGsubP {gT K H G}. | |
Arguments joing_subP {gT A B G}. | |
Section Cycles. | |
(* Elementary properties of cycles and order, needed in perm.v. *) | |
(* More advanced results on the structure of cyclic groups will *) | |
(* be given in cyclic.v. *) | |
Variable gT : finGroupType. | |
Implicit Types x y : gT. | |
Implicit Types G : {group gT}. | |
Import Monoid.Theory. | |
Lemma cycle1 : <[1]> = [1 gT]. | |
Proof. exact: genGid. Qed. | |
Lemma order1 : #[1 : gT] = 1%N. | |
Proof. by rewrite /order cycle1 cards1. Qed. | |
Lemma cycle_id x : x \in <[x]>. | |
Proof. by rewrite mem_gen // set11. Qed. | |
Lemma mem_cycle x i : x ^+ i \in <[x]>. | |
Proof. by rewrite groupX // cycle_id. Qed. | |
Lemma cycle_subG x G : (<[x]> \subset G) = (x \in G). | |
Proof. by rewrite gen_subG sub1set. Qed. | |
Lemma cycle_eq1 x : (<[x]> == 1) = (x == 1). | |
Proof. by rewrite eqEsubset sub1G andbT cycle_subG inE. Qed. | |
Lemma orderE x : #[x] = #|<[x]>|. Proof. by []. Qed. | |
Lemma order_eq1 x : (#[x] == 1%N) = (x == 1). | |
Proof. by rewrite -trivg_card1 cycle_eq1. Qed. | |
Lemma order_gt1 x : (#[x] > 1) = (x != 1). | |
Proof. by rewrite ltnNge -trivg_card_le1 cycle_eq1. Qed. | |
Lemma cycle_traject x : <[x]> =i traject (mulg x) 1 #[x]. | |
Proof. | |
set t := _ 1; apply: fsym; apply/subset_cardP; last first. | |
by apply/subsetP=> _ /trajectP[i _ ->]; rewrite -iteropE mem_cycle. | |
rewrite (card_uniqP _) ?size_traject //; case def_n: #[_] => // [n]. | |
rewrite looping_uniq; apply: contraL (card_size (t n)) => /loopingP t_xi. | |
rewrite -ltnNge size_traject -def_n ?subset_leq_card //. | |
rewrite -(eq_subset_r (in_set _)) {}/t; set G := finset _. | |
rewrite -[x]mulg1 -[G]gen_set_id ?genS ?sub1set ?inE ?(t_xi 1%N)//. | |
apply/group_setP; split=> [|y z]; rewrite !inE ?(t_xi 0) //. | |
by do 2!case/trajectP=> ? _ ->; rewrite -!iteropE -expgD [x ^+ _]iteropE. | |
Qed. | |
Lemma cycle2g x : #[x] = 2 -> <[x]> = [set 1; x]. | |
Proof. by move=> ox; apply/setP=> y; rewrite cycle_traject ox !inE mulg1. Qed. | |
Lemma cyclePmin x y : y \in <[x]> -> {i | i < #[x] & y = x ^+ i}. | |
Proof. | |
rewrite cycle_traject; set tx := traject _ _ #[x] => tx_y; pose i := index y tx. | |
have lt_i_x : i < #[x] by rewrite -index_mem size_traject in tx_y. | |
by exists i; rewrite // [x ^+ i]iteropE /= -(nth_traject _ lt_i_x) nth_index. | |
Qed. | |
Lemma cycleP x y : reflect (exists i, y = x ^+ i) (y \in <[x]>). | |
Proof. | |
by apply: (iffP idP) => [/cyclePmin[i _]|[i ->]]; [exists i | apply: mem_cycle]. | |
Qed. | |
Lemma expg_order x : x ^+ #[x] = 1. | |
Proof. | |
have: uniq (traject (mulg x) 1 #[x]). | |
by apply/card_uniqP; rewrite size_traject -(eq_card (cycle_traject x)). | |
case/cyclePmin: (mem_cycle x #[x]) => [] [//|i] ltix. | |
rewrite -(subnKC ltix) addSnnS /= expgD; move: (_ - _) => j x_j1. | |
case/andP=> /trajectP[]; exists j; first exact: leq_addl. | |
by apply: (mulgI (x ^+ i.+1)); rewrite -iterSr iterS -iteropE -expgS mulg1. | |
Qed. | |
Lemma expg_mod p k x : x ^+ p = 1 -> x ^+ (k %% p) = x ^+ k. | |
Proof. | |
move=> xp. | |
by rewrite {2}(divn_eq k p) expgD mulnC expgM xp expg1n mul1g. | |
Qed. | |
Lemma expg_mod_order x i : x ^+ (i %% #[x]) = x ^+ i. | |
Proof. by rewrite expg_mod // expg_order. Qed. | |
Lemma invg_expg x : x^-1 = x ^+ #[x].-1. | |
Proof. by apply/eqP; rewrite eq_invg_mul -expgS prednK ?expg_order. Qed. | |
Lemma invg2id x : #[x] = 2 -> x^-1 = x. | |
Proof. by move=> ox; rewrite invg_expg ox. Qed. | |
Lemma cycleX x i : <[x ^+ i]> \subset <[x]>. | |
Proof. by rewrite cycle_subG; apply: mem_cycle. Qed. | |
Lemma cycleV x : <[x^-1]> = <[x]>. | |
Proof. | |
by apply/eqP; rewrite eq_sym eqEsubset !cycle_subG groupV -groupV !cycle_id. | |
Qed. | |
Lemma orderV x : #[x^-1] = #[x]. | |
Proof. by rewrite /order cycleV. Qed. | |
Lemma cycleJ x y : <[x ^ y]> = <[x]> :^ y. | |
Proof. by rewrite -genJ conjg_set1. Qed. | |
Lemma orderJ x y : #[x ^ y] = #[x]. | |
Proof. by rewrite /order cycleJ cardJg. Qed. | |
End Cycles. | |
Section Normaliser. | |
Variable gT : finGroupType. | |
Implicit Types x y z : gT. | |
Implicit Types A B C D : {set gT}. | |
Implicit Type G H K : {group gT}. | |
Lemma normP x A : reflect (A :^ x = A) (x \in 'N(A)). | |
Proof. | |
suffices ->: (x \in 'N(A)) = (A :^ x == A) by apply: eqP. | |
by rewrite eqEcard cardJg leqnn andbT inE. | |
Qed. | |
Arguments normP {x A}. | |
Lemma group_set_normaliser A : group_set 'N(A). | |
Proof. | |
apply/group_setP; split=> [|x y Nx Ny]; rewrite inE ?conjsg1 //. | |
by rewrite conjsgM !(normP _). | |
Qed. | |
Canonical normaliser_group A := group (group_set_normaliser A). | |
Lemma normsP A B : reflect {in A, normalised B} (A \subset 'N(B)). | |
Proof. | |
apply: (iffP subsetP) => nBA x Ax; last by rewrite inE nBA //. | |
by apply/normP; apply: nBA. | |
Qed. | |
Arguments normsP {A B}. | |
Lemma memJ_norm x y A : x \in 'N(A) -> (y ^ x \in A) = (y \in A). | |
Proof. by move=> Nx; rewrite -{1}(normP Nx) memJ_conjg. Qed. | |
Lemma norms_cycle x y : (<[y]> \subset 'N(<[x]>)) = (x ^ y \in <[x]>). | |
Proof. by rewrite cycle_subG inE -cycleJ cycle_subG. Qed. | |
Lemma norm1 : 'N(1) = setT :> {set gT}. | |
Proof. by apply/setP=> x; rewrite !inE conjs1g subxx. Qed. | |
Lemma norms1 A : A \subset 'N(1). | |
Proof. by rewrite norm1 subsetT. Qed. | |
Lemma normCs A : 'N(~: A) = 'N(A). | |
Proof. by apply/setP=> x; rewrite -groupV !inE conjCg setCS sub_conjg. Qed. | |
Lemma normG G : G \subset 'N(G). | |
Proof. by apply/normsP; apply: conjGid. Qed. | |
Lemma normT : 'N([set: gT]) = [set: gT]. | |
Proof. by apply/eqP; rewrite -subTset normG. Qed. | |
Lemma normsG A G : A \subset G -> A \subset 'N(G). | |
Proof. by move=> sAG; apply: subset_trans (normG G). Qed. | |
Lemma normC A B : A \subset 'N(B) -> commute A B. | |
Proof. | |
move/subsetP=> nBA; apply/setP=> u. | |
apply/mulsgP/mulsgP=> [[x y Ax By] | [y x By Ax]] -> {u}. | |
by exists (y ^ x^-1) x; rewrite -?conjgCV // memJ_norm // groupV nBA. | |
by exists x (y ^ x); rewrite -?conjgC // memJ_norm // nBA. | |
Qed. | |
Lemma norm_joinEl G H : G \subset 'N(H) -> G <*> H = G * H. | |
Proof. by move/normC/comm_joingE. Qed. | |
Lemma norm_joinEr G H : H \subset 'N(G) -> G <*> H = G * H. | |
Proof. by move/normC=> cHG; apply: comm_joingE. Qed. | |
Lemma norm_rlcoset G x : x \in 'N(G) -> G :* x = x *: G. | |
Proof. by rewrite -sub1set => /normC. Qed. | |
Lemma rcoset_mul G x y : x \in 'N(G) -> (G :* x) * (G :* y) = G :* (x * y). | |
Proof. | |
move/norm_rlcoset=> GxxG. | |
by rewrite mulgA -(mulgA _ _ G) -GxxG mulgA mulGid -mulgA mulg_set1. | |
Qed. | |
Lemma normJ A x : 'N(A :^ x) = 'N(A) :^ x. | |
Proof. | |
by apply/setP=> y; rewrite mem_conjg !inE -conjsgM conjgCV conjsgM conjSg. | |
Qed. | |
Lemma norm_conj_norm x A B : | |
x \in 'N(A) -> (A \subset 'N(B :^ x)) = (A \subset 'N(B)). | |
Proof. by move=> Nx; rewrite normJ -sub_conjgV (normP _) ?groupV. Qed. | |
Lemma norm_gen A : 'N(A) \subset 'N(<<A>>). | |
Proof. by apply/normsP=> x Nx; rewrite -genJ (normP Nx). Qed. | |
Lemma class_norm x G : G \subset 'N(x ^: G). | |
Proof. by apply/normsP=> y; apply: classGidr. Qed. | |
Lemma class_normal x G : x \in G -> x ^: G <| G. | |
Proof. by move=> Gx; rewrite /normal class_norm class_subG. Qed. | |
Lemma class_sub_norm G A x : G \subset 'N(A) -> (x ^: G \subset A) = (x \in A). | |
Proof. | |
move=> nAG; apply/subsetP/idP=> [-> // | Ax xy]; first exact: class_refl. | |
by case/imsetP=> y Gy ->; rewrite memJ_norm ?(subsetP nAG). | |
Qed. | |
Lemma class_support_norm A G : G \subset 'N(class_support A G). | |
Proof. by apply/normsP; apply: class_supportGidr. Qed. | |
Lemma class_support_sub_norm A B G : | |
A \subset G -> B \subset 'N(G) -> class_support A B \subset G. | |
Proof. | |
move=> sAG nGB; rewrite class_supportEr. | |
by apply/bigcupsP=> x Bx; rewrite -(normsP nGB x Bx) conjSg. | |
Qed. | |
Section norm_trans. | |
Variables (A B C D : {set gT}). | |
Hypotheses (nBA : A \subset 'N(B)) (nCA : A \subset 'N(C)). | |
Lemma norms_gen : A \subset 'N(<<B>>). | |
Proof. exact: subset_trans nBA (norm_gen B). Qed. | |
Lemma norms_norm : A \subset 'N('N(B)). | |
Proof. by apply/normsP=> x Ax; rewrite -normJ (normsP nBA). Qed. | |
Lemma normsI : A \subset 'N(B :&: C). | |
Proof. by apply/normsP=> x Ax; rewrite conjIg !(normsP _ x Ax). Qed. | |
Lemma normsU : A \subset 'N(B :|: C). | |
Proof. by apply/normsP=> x Ax; rewrite conjUg !(normsP _ x Ax). Qed. | |
Lemma normsIs : B \subset 'N(D) -> A :&: B \subset 'N(C :&: D). | |
Proof. | |
move/normsP=> nDB; apply/normsP=> x; case/setIP=> Ax Bx. | |
by rewrite conjIg (normsP nCA) ?nDB. | |
Qed. | |
Lemma normsD : A \subset 'N(B :\: C). | |
Proof. by apply/normsP=> x Ax; rewrite conjDg !(normsP _ x Ax). Qed. | |
Lemma normsM : A \subset 'N(B * C). | |
Proof. by apply/normsP=> x Ax; rewrite conjsMg !(normsP _ x Ax). Qed. | |
Lemma normsY : A \subset 'N(B <*> C). | |
Proof. by apply/normsP=> x Ax; rewrite -genJ conjUg !(normsP _ x Ax). Qed. | |
Lemma normsR : A \subset 'N([~: B, C]). | |
Proof. by apply/normsP=> x Ax; rewrite conjsRg !(normsP _ x Ax). Qed. | |
Lemma norms_class_support : A \subset 'N(class_support B C). | |
Proof. | |
apply/subsetP=> x Ax; rewrite inE sub_conjg class_supportEr. | |
apply/bigcupsP=> y Cy; rewrite -sub_conjg -conjsgM conjgC conjsgM. | |
by rewrite (normsP nBA) // bigcup_sup ?memJ_norm ?(subsetP nCA). | |
Qed. | |
End norm_trans. | |
Lemma normsIG A B G : A \subset 'N(B) -> A :&: G \subset 'N(B :&: G). | |
Proof. by move/normsIs->; rewrite ?normG. Qed. | |
Lemma normsGI A B G : A \subset 'N(B) -> G :&: A \subset 'N(G :&: B). | |
Proof. by move=> nBA; rewrite !(setIC G) normsIG. Qed. | |
Lemma norms_bigcap I r (P : pred I) A (B_ : I -> {set gT}) : | |
A \subset \bigcap_(i <- r | P i) 'N(B_ i) -> | |
A \subset 'N(\bigcap_(i <- r | P i) B_ i). | |
Proof. | |
elim/big_rec2: _ => [|i B N _ IH /subsetIP[nBiA /IH]]; last exact: normsI. | |
by rewrite normT. | |
Qed. | |
Lemma norms_bigcup I r (P : pred I) A (B_ : I -> {set gT}) : | |
A \subset \bigcap_(i <- r | P i) 'N(B_ i) -> | |
A \subset 'N(\bigcup_(i <- r | P i) B_ i). | |
Proof. | |
move=> nBA; rewrite -normCs setC_bigcup norms_bigcap //. | |
by rewrite (eq_bigr _ (fun _ _ => normCs _)). | |
Qed. | |
Lemma normsD1 A B : A \subset 'N(B) -> A \subset 'N(B^#). | |
Proof. by move/normsD->; rewrite ?norms1. Qed. | |
Lemma normD1 A : 'N(A^#) = 'N(A). | |
Proof. | |
apply/eqP; rewrite eqEsubset normsD1 //. | |
rewrite -{2}(setID A 1) setIC normsU //; apply/normsP=> x _; apply/setP=> y. | |
by rewrite conjIg conjs1g !inE mem_conjg; case: eqP => // ->; rewrite conj1g. | |
Qed. | |
Lemma normalP A B : reflect (A \subset B /\ {in B, normalised A}) (A <| B). | |
Proof. by apply: (iffP andP)=> [] [sAB]; move/normsP. Qed. | |
Lemma normal_sub A B : A <| B -> A \subset B. | |
Proof. by case/andP. Qed. | |
Lemma normal_norm A B : A <| B -> B \subset 'N(A). | |
Proof. by case/andP. Qed. | |
Lemma normalS G H K : K \subset H -> H \subset G -> K <| G -> K <| H. | |
Proof. | |
by move=> sKH sHG /andP[_ nKG]; rewrite /(K <| _) sKH (subset_trans sHG). | |
Qed. | |
Lemma normal1 G : 1 <| G. | |
Proof. by rewrite /normal sub1set group1 norms1. Qed. | |
Lemma normal_refl G : G <| G. | |
Proof. by rewrite /(G <| _) normG subxx. Qed. | |
Lemma normalG G : G <| 'N(G). | |
Proof. by rewrite /(G <| _) normG subxx. Qed. | |
Lemma normalSG G H : H \subset G -> H <| 'N_G(H). | |
Proof. by move=> sHG; rewrite /normal subsetI sHG normG subsetIr. Qed. | |
Lemma normalJ A B x : (A :^ x <| B :^ x) = (A <| B). | |
Proof. by rewrite /normal normJ !conjSg. Qed. | |
Lemma normalM G A B : A <| G -> B <| G -> A * B <| G. | |
Proof. | |
by case/andP=> sAG nAG /andP[sBG nBG]; rewrite /normal mul_subG ?normsM. | |
Qed. | |
Lemma normalY G A B : A <| G -> B <| G -> A <*> B <| G. | |
Proof. | |
by case/andP=> sAG ? /andP[sBG ?]; rewrite /normal join_subG sAG sBG ?normsY. | |
Qed. | |
Lemma normalYl G H : (H <| H <*> G) = (G \subset 'N(H)). | |
Proof. by rewrite /normal joing_subl join_subG normG. Qed. | |
Lemma normalYr G H : (H <| G <*> H) = (G \subset 'N(H)). | |
Proof. by rewrite joingC normalYl. Qed. | |
Lemma normalI G A B : A <| G -> B <| G -> A :&: B <| G. | |
Proof. | |
by case/andP=> sAG nAG /andP[_ nBG]; rewrite /normal subIset ?sAG // normsI. | |
Qed. | |
Lemma norm_normalI G A : G \subset 'N(A) -> G :&: A <| G. | |
Proof. by move=> nAG; rewrite /normal subsetIl normsI ?normG. Qed. | |
Lemma normalGI G H A : H \subset G -> A <| G -> H :&: A <| H. | |
Proof. | |
by move=> sHG /andP[_ nAG]; apply: norm_normalI (subset_trans sHG nAG). | |
Qed. | |
Lemma normal_subnorm G H : (H <| 'N_G(H)) = (H \subset G). | |
Proof. by rewrite /normal subsetIr subsetI normG !andbT. Qed. | |
Lemma normalD1 A G : (A^# <| G) = (A <| G). | |
Proof. by rewrite /normal normD1 subDset (setUidPr (sub1G G)). Qed. | |
Lemma gcore_sub A G : gcore A G \subset A. | |
Proof. by rewrite (bigcap_min 1) ?conjsg1. Qed. | |
Lemma gcore_norm A G : G \subset 'N(gcore A G). | |
Proof. | |
apply/subsetP=> x Gx; rewrite inE; apply/bigcapsP=> y Gy. | |
by rewrite sub_conjg -conjsgM bigcap_inf ?groupM ?groupV. | |
Qed. | |
Lemma gcore_normal A G : A \subset G -> gcore A G <| G. | |
Proof. | |
by move=> sAG; rewrite /normal gcore_norm (subset_trans (gcore_sub A G)). | |
Qed. | |
Lemma gcore_max A B G : B \subset A -> G \subset 'N(B) -> B \subset gcore A G. | |
Proof. | |
move=> sBA nBG; apply/bigcapsP=> y Gy. | |
by rewrite -sub_conjgV (normsP nBG) ?groupV. | |
Qed. | |
Lemma sub_gcore A B G : | |
G \subset 'N(B) -> (B \subset gcore A G) = (B \subset A). | |
Proof. | |
move=> nBG; apply/idP/idP=> [sBAG | sBA]; last exact: gcore_max. | |
exact: subset_trans (gcore_sub A G). | |
Qed. | |
(* An elementary proof that subgroups of index 2 are normal; it is almost as *) | |
(* short as the "advanced" proof using group actions; besides, the fact that *) | |
(* the coset is equal to the complement is used in extremal.v. *) | |
Lemma rcoset_index2 G H x : | |
H \subset G -> #|G : H| = 2 -> x \in G :\: H -> H :* x = G :\: H. | |
Proof. | |
move=> sHG indexHG => /setDP[Gx notHx]; apply/eqP. | |
rewrite eqEcard -(leq_add2l #|G :&: H|) cardsID -(LagrangeI G H) indexHG muln2. | |
rewrite (setIidPr sHG) card_rcoset addnn leqnn andbT. | |
apply/subsetP=> _ /rcosetP[y Hy ->]; apply/setDP. | |
by rewrite !groupMl // (subsetP sHG). | |
Qed. | |
Lemma index2_normal G H : H \subset G -> #|G : H| = 2 -> H <| G. | |
Proof. | |
move=> sHG indexHG; rewrite /normal sHG; apply/subsetP=> x Gx. | |
case Hx: (x \in H); first by rewrite inE conjGid. | |
rewrite inE conjsgE mulgA -sub_rcosetV -invg_rcoset. | |
by rewrite !(rcoset_index2 sHG) ?inE ?groupV ?Hx // invDg !invGid. | |
Qed. | |
Lemma cent1P x y : reflect (commute x y) (x \in 'C[y]). | |
Proof. | |
rewrite inE conjg_set1 sub1set inE (sameP eqP conjg_fixP)commg1_sym. | |
exact: commgP. | |
Qed. | |
Lemma cent1id x : x \in 'C[x]. Proof. exact/cent1P. Qed. | |
Lemma cent1E x y : (x \in 'C[y]) = (x * y == y * x). | |
Proof. by rewrite (sameP (cent1P x y) eqP). Qed. | |
Lemma cent1C x y : (x \in 'C[y]) = (y \in 'C[x]). | |
Proof. by rewrite !cent1E eq_sym. Qed. | |
Canonical centraliser_group A : {group _} := Eval hnf in [group of 'C(A)]. | |
Lemma cent_set1 x : 'C([set x]) = 'C[x]. | |
Proof. by apply: big_pred1 => y /=; rewrite inE. Qed. | |
Lemma cent1J x y : 'C[x ^ y] = 'C[x] :^ y. | |
Proof. by rewrite -conjg_set1 normJ. Qed. | |
Lemma centP A x : reflect (centralises x A) (x \in 'C(A)). | |
Proof. by apply: (iffP bigcapP) => cxA y /cxA/cent1P. Qed. | |
Lemma centsP A B : reflect {in A, centralised B} (A \subset 'C(B)). | |
Proof. by apply: (iffP subsetP) => cAB x /cAB/centP. Qed. | |
Lemma centsC A B : (A \subset 'C(B)) = (B \subset 'C(A)). | |
Proof. by apply/centsP/centsP=> cAB x ? y ?; rewrite /commute -cAB. Qed. | |
Lemma cents1 A : A \subset 'C(1). | |
Proof. by rewrite centsC sub1G. Qed. | |
Lemma cent1T : 'C(1) = setT :> {set gT}. | |
Proof. by apply/eqP; rewrite -subTset cents1. Qed. | |
Lemma cent11T : 'C[1] = setT :> {set gT}. | |
Proof. by rewrite -cent_set1 cent1T. Qed. | |
Lemma cent_sub A : 'C(A) \subset 'N(A). | |
Proof. | |
apply/subsetP=> x /centP cAx; rewrite inE. | |
by apply/subsetP=> _ /imsetP[y Ay ->]; rewrite /conjg -cAx ?mulKg. | |
Qed. | |
Lemma cents_norm A B : A \subset 'C(B) -> A \subset 'N(B). | |
Proof. by move=> cAB; apply: subset_trans (cent_sub B). Qed. | |
Lemma centC A B : A \subset 'C(B) -> commute A B. | |
Proof. by move=> cAB; apply: normC (cents_norm cAB). Qed. | |
Lemma cent_joinEl G H : G \subset 'C(H) -> G <*> H = G * H. | |
Proof. by move=> cGH; apply: norm_joinEl (cents_norm cGH). Qed. | |
Lemma cent_joinEr G H : H \subset 'C(G) -> G <*> H = G * H. | |
Proof. by move=> cGH; apply: norm_joinEr (cents_norm cGH). Qed. | |
Lemma centJ A x : 'C(A :^ x) = 'C(A) :^ x. | |
Proof. | |
apply/setP=> y; rewrite mem_conjg; apply/centP/centP=> cAy z Az. | |
by apply: (conjg_inj x); rewrite 2!conjMg conjgKV cAy ?memJ_conjg. | |
by apply: (conjg_inj x^-1); rewrite 2!conjMg cAy -?mem_conjg. | |
Qed. | |
Lemma cent_norm A : 'N(A) \subset 'N('C(A)). | |
Proof. by apply/normsP=> x nCx; rewrite -centJ (normP nCx). Qed. | |
Lemma norms_cent A B : A \subset 'N(B) -> A \subset 'N('C(B)). | |
Proof. by move=> nBA; apply: subset_trans nBA (cent_norm B). Qed. | |
Lemma cent_normal A : 'C(A) <| 'N(A). | |
Proof. by rewrite /(_ <| _) cent_sub cent_norm. Qed. | |
Lemma centS A B : B \subset A -> 'C(A) \subset 'C(B). | |
Proof. by move=> sAB; rewrite centsC (subset_trans sAB) 1?centsC. Qed. | |
Lemma centsS A B C : A \subset B -> C \subset 'C(B) -> C \subset 'C(A). | |
Proof. by move=> sAB cCB; apply: subset_trans cCB (centS sAB). Qed. | |
Lemma centSS A B C D : | |
A \subset C -> B \subset D -> C \subset 'C(D) -> A \subset 'C(B). | |
Proof. by move=> sAC sBD cCD; apply: subset_trans (centsS sBD cCD). Qed. | |
Lemma centI A B : 'C(A) <*> 'C(B) \subset 'C(A :&: B). | |
Proof. by rewrite gen_subG subUset !centS ?(subsetIl, subsetIr). Qed. | |
Lemma centU A B : 'C(A :|: B) = 'C(A) :&: 'C(B). | |
Proof. | |
apply/eqP; rewrite eqEsubset subsetI 2?centS ?(subsetUl, subsetUr) //=. | |
by rewrite centsC subUset -centsC subsetIl -centsC subsetIr. | |
Qed. | |
Lemma cent_gen A : 'C(<<A>>) = 'C(A). | |
Proof. by apply/setP=> x; rewrite -!sub1set centsC gen_subG centsC. Qed. | |
Lemma cent_cycle x : 'C(<[x]>) = 'C[x]. | |
Proof. by rewrite cent_gen cent_set1. Qed. | |
Lemma sub_cent1 A x : (A \subset 'C[x]) = (x \in 'C(A)). | |
Proof. by rewrite -cent_cycle centsC cycle_subG. Qed. | |
Lemma cents_cycle x y : commute x y -> <[x]> \subset 'C(<[y]>). | |
Proof. by move=> cxy; rewrite cent_cycle cycle_subG; apply/cent1P. Qed. | |
Lemma cycle_abelian x : abelian <[x]>. | |
Proof. exact: cents_cycle. Qed. | |
Lemma centY A B : 'C(A <*> B) = 'C(A) :&: 'C(B). | |
Proof. by rewrite cent_gen centU. Qed. | |
Lemma centM G H : 'C(G * H) = 'C(G) :&: 'C(H). | |
Proof. by rewrite -cent_gen genM_join centY. Qed. | |
Lemma cent_classP x G : reflect (x ^: G = [set x]) (x \in 'C(G)). | |
Proof. | |
apply: (iffP (centP _ _)) => [Cx | Cx1 y Gy]. | |
apply/eqP; rewrite eqEsubset sub1set class_refl andbT. | |
by apply/subsetP=> _ /imsetP[y Gy ->]; rewrite inE conjgE Cx ?mulKg. | |
by apply/commgP/conjg_fixP/set1P; rewrite -Cx1; apply/imsetP; exists y. | |
Qed. | |
Lemma commG1P A B : reflect ([~: A, B] = 1) (A \subset 'C(B)). | |
Proof. | |
apply: (iffP (centsP A B)) => [cAB | cAB1 x Ax y By]. | |
apply/trivgP; rewrite gen_subG; apply/subsetP=> _ /imset2P[x y Ax Ay ->]. | |
by rewrite inE; apply/commgP; apply: cAB. | |
by apply/commgP; rewrite -in_set1 -[[set 1]]cAB1 mem_commg. | |
Qed. | |
Lemma abelianE A : abelian A = (A \subset 'C(A)). Proof. by []. Qed. | |
Lemma abelian1 : abelian [1 gT]. Proof. exact: sub1G. Qed. | |
Lemma abelianS A B : A \subset B -> abelian B -> abelian A. | |
Proof. by move=> sAB; apply: centSS. Qed. | |
Lemma abelianJ A x : abelian (A :^ x) = abelian A. | |
Proof. by rewrite /abelian centJ conjSg. Qed. | |
Lemma abelian_gen A : abelian <<A>> = abelian A. | |
Proof. by rewrite /abelian cent_gen gen_subG. Qed. | |
Lemma abelianY A B : | |
abelian (A <*> B) = [&& abelian A, abelian B & B \subset 'C(A)]. | |
Proof. | |
rewrite /abelian join_subG /= centY !subsetI -!andbA; congr (_ && _). | |
by rewrite centsC andbA andbb andbC. | |
Qed. | |
Lemma abelianM G H : | |
abelian (G * H) = [&& abelian G, abelian H & H \subset 'C(G)]. | |
Proof. by rewrite -abelian_gen genM_join abelianY. Qed. | |
Section SubAbelian. | |
Variable A B C : {set gT}. | |
Hypothesis cAA : abelian A. | |
Lemma sub_abelian_cent : C \subset A -> A \subset 'C(C). | |
Proof. by move=> sCA; rewrite centsC (subset_trans sCA). Qed. | |
Lemma sub_abelian_cent2 : B \subset A -> C \subset A -> B \subset 'C(C). | |
Proof. by move=> sBA; move/sub_abelian_cent; apply: subset_trans. Qed. | |
Lemma sub_abelian_norm : C \subset A -> A \subset 'N(C). | |
Proof. by move=> sCA; rewrite cents_norm ?sub_abelian_cent. Qed. | |
Lemma sub_abelian_normal : (C \subset A) = (C <| A). | |
Proof. | |
by rewrite /normal; case sHG: (C \subset A); rewrite // sub_abelian_norm. | |
Qed. | |
End SubAbelian. | |
End Normaliser. | |
Arguments normP {gT x A}. | |
Arguments centP {gT A x}. | |
Arguments normsP {gT A B}. | |
Arguments cent1P {gT x y}. | |
Arguments normalP {gT A B}. | |
Arguments centsP {gT A B}. | |
Arguments commG1P {gT A B}. | |
Arguments normaliser_group _ _%g. | |
Arguments centraliser_group _ _%g. | |
Notation "''N' ( A )" := (normaliser_group A) : Group_scope. | |
Notation "''C' ( A )" := (centraliser_group A) : Group_scope. | |
Notation "''C' [ x ]" := (normaliser_group [set x%g]) : Group_scope. | |
Notation "''N_' G ( A )" := (setI_group G 'N(A)) : Group_scope. | |
Notation "''C_' G ( A )" := (setI_group G 'C(A)) : Group_scope. | |
Notation "''C_' ( G ) ( A )" := (setI_group G 'C(A)) | |
(only parsing) : Group_scope. | |
Notation "''C_' G [ x ]" := (setI_group G 'C[x]) : Group_scope. | |
Notation "''C_' ( G ) [ x ]" := (setI_group G 'C[x]) | |
(only parsing) : Group_scope. | |
#[global] Hint Extern 0 (is_true (_ \subset _)) => apply: normG : core. | |
#[global] Hint Extern 0 (is_true (_ <| _)) => apply: normal_refl : core. | |
Section MinMaxGroup. | |
Variable gT : finGroupType. | |
Implicit Types gP : pred {group gT}. | |
Definition maxgroup A gP := maxset (fun A => group_set A && gP <<A>>%G) A. | |
Definition mingroup A gP := minset (fun A => group_set A && gP <<A>>%G) A. | |
Variable gP : pred {group gT}. | |
Arguments gP _%G. | |
Lemma ex_maxgroup : (exists G, gP G) -> {G : {group gT} | maxgroup G gP}. | |
Proof. | |
move=> exP; have [A maxA]: {A | maxgroup A gP}. | |
apply: ex_maxset; case: exP => G gPG. | |
by exists (G : {set gT}); rewrite groupP genGidG. | |
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (maxsetp maxA). | |
Qed. | |
Lemma ex_mingroup : (exists G, gP G) -> {G : {group gT} | mingroup G gP}. | |
Proof. | |
move=> exP; have [A minA]: {A | mingroup A gP}. | |
apply: ex_minset; case: exP => G gPG. | |
by exists (G : {set gT}); rewrite groupP genGidG. | |
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (minsetp minA). | |
Qed. | |
Variable G : {group gT}. | |
Lemma mingroupP : | |
reflect (gP G /\ forall H, gP H -> H \subset G -> H :=: G) (mingroup G gP). | |
Proof. | |
apply: (iffP minsetP); rewrite /= groupP genGidG /= => [] [-> minG]. | |
by split=> // H gPH sGH; apply: minG; rewrite // groupP genGidG. | |
by split=> // A; case/andP=> gA gPA; rewrite -(gen_set_id gA); apply: minG. | |
Qed. | |
Lemma maxgroupP : | |
reflect (gP G /\ forall H, gP H -> G \subset H -> H :=: G) (maxgroup G gP). | |
Proof. | |
apply: (iffP maxsetP); rewrite /= groupP genGidG /= => [] [-> maxG]. | |
by split=> // H gPH sGH; apply: maxG; rewrite // groupP genGidG. | |
by split=> // A; case/andP=> gA gPA; rewrite -(gen_set_id gA); apply: maxG. | |
Qed. | |
Lemma maxgroupp : maxgroup G gP -> gP G. Proof. by case/maxgroupP. Qed. | |
Lemma mingroupp : mingroup G gP -> gP G. Proof. by case/mingroupP. Qed. | |
Hypothesis gPG : gP G. | |
Lemma maxgroup_exists : {H : {group gT} | maxgroup H gP & G \subset H}. | |
Proof. | |
have [A maxA sGA]: {A | maxgroup A gP & G \subset A}. | |
by apply: maxset_exists; rewrite groupP genGidG. | |
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (maxsetp maxA). | |
Qed. | |
Lemma mingroup_exists : {H : {group gT} | mingroup H gP & H \subset G}. | |
Proof. | |
have [A maxA sGA]: {A | mingroup A gP & A \subset G}. | |
by apply: minset_exists; rewrite groupP genGidG. | |
by exists <<A>>%G; rewrite /= gen_set_id; case/andP: (minsetp maxA). | |
Qed. | |
End MinMaxGroup. | |
Arguments mingroup {gT} A%g gP. | |
Arguments maxgroup {gT} A%g gP. | |
Arguments mingroupP {gT gP G}. | |
Arguments maxgroupP {gT gP G}. | |
Notation "[ 'max' A 'of' G | gP ]" := | |
(maxgroup A (fun G : {group _} => gP)) : group_scope. | |
Notation "[ 'max' G | gP ]" := [max gval G of G | gP] : group_scope. | |
Notation "[ 'max' A 'of' G | gP & gQ ]" := | |
[max A of G | gP && gQ] : group_scope. | |
Notation "[ 'max' G | gP & gQ ]" := [max G | gP && gQ] : group_scope. | |
Notation "[ 'min' A 'of' G | gP ]" := | |
(mingroup A (fun G : {group _} => gP)) : group_scope. | |
Notation "[ 'min' G | gP ]" := [min gval G of G | gP] : group_scope. | |
Notation "[ 'min' A 'of' G | gP & gQ ]" := | |
[min A of G | gP && gQ] : group_scope. | |
Notation "[ 'min' G | gP & gQ ]" := [min G | gP && gQ] : group_scope. | |