Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat. | |
From mathcomp Require Import seq path fintype. | |
(******************************************************************************) | |
(* This file develops the theory of finite graphs represented by an "edge" *) | |
(* relation over a finType T; this mainly amounts to the theory of the *) | |
(* transitive closure of such relations. *) | |
(* For g : T -> seq T, e : rel T and f : T -> T we define: *) | |
(* grel g == the adjacency relation y \in g x of the graph g. *) | |
(* rgraph e == the graph (x |-> enum (e x)) of the relation e. *) | |
(* dfs g n v x == the list of points traversed by a depth-first search of *) | |
(* the g, at depth n, starting from x, and avoiding v. *) | |
(* dfs_path g v x y <-> there is a path from x to y in g \ v. *) | |
(* connect e == the reflexive transitive closure of e (computed by dfs). *) | |
(* connect_sym e <-> connect e is symmetric, hence an equivalence relation. *) | |
(* root e x == a representative of connect e x, which is the component *) | |
(* of x in the transitive closure of e. *) | |
(* roots e == the codomain predicate of root e. *) | |
(* n_comp e a == the number of e-connected components of a, when a is *) | |
(* e-closed and connect e is symmetric. *) | |
(* equivalence classes of connect e if connect_sym e holds. *) | |
(* closed e a == the collective predicate a is e-invariant. *) | |
(* closure e a == the e-closure of a (the image of a under connect e). *) | |
(* rel_adjunction h e e' a <-> in the e-closed domain a, h is the left part *) | |
(* of an adjunction from e to another relation e'. *) | |
(* fconnect f == connect (frel f), i.e., "connected under f iteration". *) | |
(* froot f x == root (frel f) x, the root of the orbit of x under f. *) | |
(* froots f == roots (frel f) == orbit representatives for f. *) | |
(* orbit f x == lists the f-orbit of x. *) | |
(* findex f x y == index of y in the f-orbit of x. *) | |
(* order f x == size (cardinal) of the f-orbit of x. *) | |
(* order_set f n == elements of f-order n. *) | |
(* finv f == the inverse of f, if f is injective. *) | |
(* := finv f x := iter (order x).-1 f x. *) | |
(* fcard f a == number of orbits of f in a, provided a is f-invariant *) | |
(* f is one-to-one. *) | |
(* fclosed f a == the collective predicate a is f-invariant. *) | |
(* fclosure f a == the closure of a under f iteration. *) | |
(* fun_adjunction == rel_adjunction (frel f). *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Definition grel (T : eqType) (g : T -> seq T) := [rel x y | y \in g x]. | |
(* Decidable connectivity in finite types. *) | |
Section Connect. | |
Variable T : finType. | |
Section Dfs. | |
Variable g : T -> seq T. | |
Implicit Type v w a : seq T. | |
Fixpoint dfs n v x := | |
if x \in v then v else | |
if n is n'.+1 then foldl (dfs n') (x :: v) (g x) else v. | |
Lemma subset_dfs n v a : v \subset foldl (dfs n) v a. | |
Proof. | |
elim: n a v => [|n IHn]; first by elim=> //= *; rewrite if_same. | |
elim=> //= x a IHa v; apply: subset_trans {IHa}(IHa _); case: ifP => // _. | |
by apply: subset_trans (IHn _ _); apply/subsetP=> y; apply: predU1r. | |
Qed. | |
Inductive dfs_path v x y : Prop := | |
DfsPath p of path (grel g) x p & y = last x p & [disjoint x :: p & v]. | |
Lemma dfs_pathP n x y v : | |
#|T| <= #|v| + n -> y \notin v -> reflect (dfs_path v x y) (y \in dfs n v x). | |
Proof. | |
have dfs_id w z: z \notin w -> dfs_path w z z. | |
by exists [::]; rewrite ?disjoint_has //= orbF. | |
elim: n => [|n IHn] /= in x y v * => le_v'_n not_vy. | |
rewrite addn0 (geq_leqif (subset_leqif_card (subset_predT _))) in le_v'_n. | |
by rewrite predT_subset in not_vy. | |
have [v_x | not_vx] := ifPn. | |
by rewrite (negPf not_vy); right=> [] [p _ _]; rewrite disjoint_has /= v_x. | |
set v1 := x :: v; set a := g x; have sub_dfs := subsetP (subset_dfs n _ _). | |
have [-> | neq_yx] := eqVneq y x. | |
by rewrite sub_dfs ?mem_head //; left; apply: dfs_id. | |
apply: (@equivP (exists2 x1, x1 \in a & dfs_path v1 x1 y)); last first. | |
split=> {IHn} [[x1 a_x1 [p g_p p_y]] | [p /shortenP[]]]. | |
rewrite disjoint_has has_sym /= has_sym /= => /norP[_ not_pv]. | |
by exists (x1 :: p); rewrite /= ?a_x1 // disjoint_has negb_or not_vx. | |
case=> [_ _ _ eq_yx | x1 p1 /=]; first by case/eqP: neq_yx. | |
case/andP=> a_x1 g_p1 /andP[not_p1x _] /subsetP p_p1 p1y not_pv. | |
exists x1 => //; exists p1 => //. | |
rewrite disjoint_sym disjoint_cons not_p1x disjoint_sym. | |
by move: not_pv; rewrite disjoint_cons => /andP[_ /disjointWl->]. | |
have{neq_yx not_vy}: y \notin v1 by apply/norP. | |
have{le_v'_n not_vx}: #|T| <= #|v1| + n by rewrite cardU1 not_vx addSnnS. | |
elim: {x v}a v1 => [|x a IHa] v /= le_v'_n not_vy. | |
by rewrite (negPf not_vy); right=> [] []. | |
set v2 := dfs n v x; have v2v: v \subset v2 := subset_dfs n v [:: x]. | |
have [v2y | not_v2y] := boolP (y \in v2). | |
by rewrite sub_dfs //; left; exists x; [apply: mem_head | apply: IHn]. | |
apply: {IHa}(equivP (IHa _ _ not_v2y)). | |
by rewrite (leq_trans le_v'_n) // leq_add2r subset_leq_card. | |
split=> [] [x1 a_x1 [p g_p p_y not_pv]]. | |
exists x1; [exact: predU1r | exists p => //]. | |
by rewrite disjoint_sym (disjointWl v2v) // disjoint_sym. | |
suffices not_p1v2: [disjoint x1 :: p & v2]. | |
case/predU1P: a_x1 => [def_x1 | ]; last by exists x1; last exists p. | |
case/pred0Pn: not_p1v2; exists x; rewrite /= def_x1 mem_head /=. | |
suffices not_vx: x \notin v by apply/IHn; last apply: dfs_id. | |
by move: not_pv; rewrite disjoint_cons def_x1 => /andP[]. | |
apply: contraR not_v2y => /pred0Pn[x2 /andP[/= p_x2 v2x2]]. | |
case/splitPl: p_x2 p_y g_p not_pv => p0 p2 p0x2. | |
rewrite last_cat cat_path -cat_cons lastI cat_rcons {}p0x2 => p2y /andP[_ g_p2]. | |
rewrite disjoint_cat disjoint_cons => /and3P[{p0}_ not_vx2 not_p2v]. | |
have{not_vx2 v2x2} [p1 g_p1 p1_x2 not_p1v] := IHn _ _ v le_v'_n not_vx2 v2x2. | |
apply/IHn=> //; exists (p1 ++ p2); rewrite ?cat_path ?last_cat -?p1_x2 ?g_p1 //. | |
by rewrite -cat_cons disjoint_cat not_p1v. | |
Qed. | |
Lemma dfsP x y : | |
reflect (exists2 p, path (grel g) x p & y = last x p) (y \in dfs #|T| [::] x). | |
Proof. | |
apply: (iffP (dfs_pathP _ _ _)); rewrite ?card0 // => [] [p]; exists p => //. | |
by rewrite disjoint_sym disjoint0. | |
Qed. | |
End Dfs. | |
Variable e : rel T. | |
Definition rgraph x := enum (e x). | |
Lemma rgraphK : grel rgraph =2 e. | |
Proof. by move=> x y; rewrite /= mem_enum. Qed. | |
Definition connect : rel T := [rel x y | y \in dfs rgraph #|T| [::] x]. | |
Canonical connect_app_pred x := ApplicativePred (connect x). | |
Lemma connectP x y : | |
reflect (exists2 p, path e x p & y = last x p) (connect x y). | |
Proof. | |
apply: (equivP (dfsP _ x y)). | |
by split=> [] [p e_p ->]; exists p => //; rewrite (eq_path rgraphK) in e_p *. | |
Qed. | |
Lemma connect_trans : transitive connect. | |
Proof. | |
move=> x y z /connectP[p e_p ->] /connectP[q e_q ->]; apply/connectP. | |
by exists (p ++ q); rewrite ?cat_path ?e_p ?last_cat. | |
Qed. | |
Lemma connect0 x : connect x x. | |
Proof. by apply/connectP; exists [::]. Qed. | |
Lemma eq_connect0 x y : x = y -> connect x y. | |
Proof. by move->; apply: connect0. Qed. | |
Lemma connect1 x y : e x y -> connect x y. | |
Proof. by move=> e_xy; apply/connectP; exists [:: y]; rewrite /= ?e_xy. Qed. | |
Lemma path_connect x p : path e x p -> subpred (mem (x :: p)) (connect x). | |
Proof. | |
move=> e_p y p_y; case/splitPl: p / p_y e_p => p q <-. | |
by rewrite cat_path => /andP[e_p _]; apply/connectP; exists p. | |
Qed. | |
Lemma connect_cycle p : cycle e p -> {in p &, forall x y, connect x y}. | |
Proof. | |
move=> e_p x y /rot_to[i q rip]; rewrite -(mem_rot i) rip => yqx. | |
have /= : cycle e (x :: q) by rewrite -rip rot_cycle. | |
case/splitPl: yqx => r s lxr; rewrite rcons_cat cat_path => /andP[xr _]. | |
by apply/connectP; exists r. | |
Qed. | |
Definition root x := odflt x (pick (connect x)). | |
Definition roots : pred T := fun x => root x == x. | |
Canonical roots_pred := ApplicativePred roots. | |
Definition n_comp_mem (m_a : mem_pred T) := #|predI roots m_a|. | |
Lemma connect_root x : connect x (root x). | |
Proof. by rewrite /root; case: pickP; rewrite ?connect0. Qed. | |
Definition connect_sym := symmetric connect. | |
Hypothesis sym_e : connect_sym. | |
Lemma same_connect : left_transitive connect. | |
Proof. exact: sym_left_transitive connect_trans. Qed. | |
Lemma same_connect_r : right_transitive connect. | |
Proof. exact: sym_right_transitive connect_trans. Qed. | |
Lemma same_connect1 x y : e x y -> connect x =1 connect y. | |
Proof. by move/connect1; apply: same_connect. Qed. | |
Lemma same_connect1r x y : e x y -> connect^~ x =1 connect^~ y. | |
Proof. by move/connect1; apply: same_connect_r. Qed. | |
Lemma rootP x y : reflect (root x = root y) (connect x y). | |
Proof. | |
apply: (iffP idP) => e_xy. | |
by rewrite /root -(eq_pick (same_connect e_xy)); case: pickP e_xy => // ->. | |
by apply: (connect_trans (connect_root x)); rewrite e_xy sym_e connect_root. | |
Qed. | |
Lemma root_root x : root (root x) = root x. | |
Proof. exact/esym/rootP/connect_root. Qed. | |
Lemma roots_root x : roots (root x). | |
Proof. exact/eqP/root_root. Qed. | |
Lemma root_connect x y : (root x == root y) = connect x y. | |
Proof. exact: sameP eqP (rootP x y). Qed. | |
Definition closed_mem m_a := forall x y, e x y -> in_mem x m_a = in_mem y m_a. | |
Definition closure_mem m_a : pred T := | |
fun x => ~~ disjoint (mem (connect x)) m_a. | |
End Connect. | |
#[global] Hint Resolve connect0 : core. | |
Notation n_comp e a := (n_comp_mem e (mem a)). | |
Notation closed e a := (closed_mem e (mem a)). | |
Notation closure e a := (closure_mem e (mem a)). | |
Prenex Implicits connect root roots. | |
Arguments dfsP {T g x y}. | |
Arguments connectP {T e x y}. | |
Arguments rootP [T e] _ {x y}. | |
Notation fconnect f := (connect (coerced_frel f)). | |
Notation froot f := (root (coerced_frel f)). | |
Notation froots f := (roots (coerced_frel f)). | |
Notation fcard_mem f := (n_comp_mem (coerced_frel f)). | |
Notation fcard f a := (fcard_mem f (mem a)). | |
Notation fclosed f a := (closed (coerced_frel f) a). | |
Notation fclosure f a := (closure (coerced_frel f) a). | |
Section EqConnect. | |
Variable T : finType. | |
Implicit Types (e : rel T) (a : {pred T}). | |
Lemma connect_sub e e' : | |
subrel e (connect e') -> subrel (connect e) (connect e'). | |
Proof. | |
move=> e'e x _ /connectP[p e_p ->]; elim: p x e_p => //= y p IHp x /andP[exy]. | |
by move/IHp; apply: connect_trans; apply: e'e. | |
Qed. | |
Lemma relU_sym e e' : | |
connect_sym e -> connect_sym e' -> connect_sym (relU e e'). | |
Proof. | |
move=> sym_e sym_e'; apply: symmetric_from_pre => x _ /connectP[p e_p ->]. | |
elim: p x e_p => //= y p IHp x /andP[e_xy /IHp{IHp}/connect_trans]; apply. | |
case/orP: e_xy => /connect1; rewrite (sym_e, sym_e'); | |
by apply: connect_sub y x => x y e_xy; rewrite connect1 //= e_xy ?orbT. | |
Qed. | |
Lemma eq_connect e e' : e =2 e' -> connect e =2 connect e'. | |
Proof. | |
move=> eq_e x y; apply/connectP/connectP=> [] [p e_p ->]; | |
by exists p; rewrite // (eq_path eq_e) in e_p *. | |
Qed. | |
Lemma eq_n_comp e e' : connect e =2 connect e' -> n_comp_mem e =1 n_comp_mem e'. | |
Proof. | |
move=> eq_e [a]; apply: eq_card => x /=. | |
by rewrite !inE /= /roots /root /= (eq_pick (eq_e x)). | |
Qed. | |
Lemma eq_n_comp_r {e} a a' : a =i a' -> n_comp e a = n_comp e a'. | |
Proof. by move=> eq_a; apply: eq_card => x; rewrite inE /= eq_a. Qed. | |
Lemma n_compC a e : n_comp e T = n_comp e a + n_comp e [predC a]. | |
Proof. | |
rewrite /n_comp_mem (eq_card (fun _ => andbT _)) -(cardID a); congr (_ + _). | |
by apply: eq_card => x; rewrite !inE andbC. | |
Qed. | |
Lemma eq_root e e' : e =2 e' -> root e =1 root e'. | |
Proof. by move=> eq_e x; rewrite /root (eq_pick (eq_connect eq_e x)). Qed. | |
Lemma eq_roots e e' : e =2 e' -> roots e =1 roots e'. | |
Proof. by move=> eq_e x; rewrite /roots (eq_root eq_e). Qed. | |
Lemma connect_rev e : connect [rel x y | e y x] =2 [rel x y | connect e y x]. | |
Proof. | |
suff crev e': subrel (connect [rel x y | e' y x]) [rel x y | connect e' y x]. | |
by move=> x y; apply/idP/idP; apply: crev. | |
move=> x y /connectP[p e_p p_y]; apply/connectP. | |
exists (rev (belast x p)); first by rewrite p_y rev_path. | |
by rewrite -(last_cons x) -rev_rcons p_y -lastI rev_cons last_rcons. | |
Qed. | |
Lemma sym_connect_sym e : symmetric e -> connect_sym e. | |
Proof. by move=> sym_e x y; rewrite (eq_connect sym_e) connect_rev. Qed. | |
End EqConnect. | |
Section Closure. | |
Variables (T : finType) (e : rel T). | |
Hypothesis sym_e : connect_sym e. | |
Implicit Type a : {pred T}. | |
Lemma same_connect_rev : connect e =2 connect [rel x y | e y x]. | |
Proof. by move=> x y; rewrite sym_e connect_rev. Qed. | |
Lemma intro_closed a : (forall x y, e x y -> x \in a -> y \in a) -> closed e a. | |
Proof. | |
move=> cl_a x y e_xy; apply/idP/idP=> [|a_y]; first exact: cl_a. | |
have{x e_xy} /connectP[p e_p ->]: connect e y x by rewrite sym_e connect1. | |
by elim: p y a_y e_p => //= y p IHp x a_x /andP[/cl_a/(_ a_x)]; apply: IHp. | |
Qed. | |
Lemma closed_connect a : | |
closed e a -> forall x y, connect e x y -> (x \in a) = (y \in a). | |
Proof. | |
move=> cl_a x _ /connectP[p e_p ->]. | |
by elim: p x e_p => //= y p IHp x /andP[/cl_a->]; apply: IHp. | |
Qed. | |
Lemma connect_closed x : closed e (connect e x). | |
Proof. by move=> y z /connect1/same_connect_r; apply. Qed. | |
Lemma predC_closed a : closed e a -> closed e [predC a]. | |
Proof. by move=> cl_a x y /cl_a /[!inE] ->. Qed. | |
Lemma closure_closed a : closed e (closure e a). | |
Proof. | |
apply: intro_closed => x y /connect1 e_xy; congr (~~ _). | |
by apply: eq_disjoint; apply: same_connect. | |
Qed. | |
Lemma mem_closure a : {subset a <= closure e a}. | |
Proof. by move=> x a_x; apply/existsP; exists x; rewrite !inE connect0. Qed. | |
Lemma subset_closure a : a \subset closure e a. | |
Proof. by apply/subsetP; apply: mem_closure. Qed. | |
Lemma n_comp_closure2 x y : | |
n_comp e (closure e (pred2 x y)) = (~~ connect e x y).+1. | |
Proof. | |
rewrite -(root_connect sym_e) -card2; apply: eq_card => z. | |
apply/idP/idP=> [/andP[/eqP {2}<- /pred0Pn[t /andP[/= ezt exyt]]] |]. | |
by case/pred2P: exyt => <-; rewrite (rootP sym_e ezt) !inE eqxx ?orbT. | |
by case/pred2P=> ->; rewrite !inE roots_root //; apply/existsP; | |
[exists x | exists y]; rewrite !inE eqxx ?orbT sym_e connect_root. | |
Qed. | |
Lemma n_comp_connect x : n_comp e (connect e x) = 1. | |
Proof. | |
rewrite -(card1 (root e x)); apply: eq_card => y. | |
apply/andP/eqP => [[/eqP r_y /rootP-> //] | ->] /=. | |
by rewrite inE connect_root roots_root. | |
Qed. | |
End Closure. | |
Section Orbit. | |
Variables (T : finType) (f : T -> T). | |
Definition order x := #|fconnect f x|. | |
Definition orbit x := traject f x (order x). | |
Definition findex x y := index y (orbit x). | |
Definition finv x := iter (order x).-1 f x. | |
Lemma fconnect_iter n x : fconnect f x (iter n f x). | |
Proof. | |
apply/connectP. | |
by exists (traject f (f x) n); [apply: fpath_traject | rewrite last_traject]. | |
Qed. | |
Lemma fconnect1 x : fconnect f x (f x). | |
Proof. exact: (fconnect_iter 1). Qed. | |
Lemma fconnect_finv x : fconnect f x (finv x). | |
Proof. exact: fconnect_iter. Qed. | |
Lemma orderSpred x : (order x).-1.+1 = order x. | |
Proof. by rewrite /order (cardD1 x) [_ x _]connect0. Qed. | |
Lemma size_orbit x : size (orbit x) = order x. | |
Proof. exact: size_traject. Qed. | |
Lemma looping_order x : looping f x (order x). | |
Proof. | |
apply: contraFT (ltnn (order x)); rewrite -looping_uniq => /card_uniqP. | |
rewrite size_traject => <-; apply: subset_leq_card. | |
by apply/subsetP=> _ /trajectP[i _ ->]; apply: fconnect_iter. | |
Qed. | |
Lemma fconnect_orbit x y : fconnect f x y = (y \in orbit x). | |
Proof. | |
apply/idP/idP=> [/connectP[_ /fpathP[m ->] ->] | /trajectP[i _ ->]]. | |
by rewrite last_traject; apply/loopingP/looping_order. | |
exact: fconnect_iter. | |
Qed. | |
Lemma in_orbit x : x \in orbit x. Proof. by rewrite -fconnect_orbit. Qed. | |
Hint Resolve in_orbit : core. | |
Lemma order_gt0 x : order x > 0. Proof. by rewrite -orderSpred. Qed. | |
Hint Resolve order_gt0 : core. | |
Lemma orbit_uniq x : uniq (orbit x). | |
Proof. | |
rewrite /orbit -orderSpred looping_uniq; set n := (order x).-1. | |
apply: contraFN (ltnn n) => /trajectP[i lt_i_n eq_fnx_fix]. | |
rewrite orderSpred -(size_traject f x n). | |
apply: (leq_trans (subset_leq_card _) (card_size _)); apply/subsetP=> z. | |
rewrite inE fconnect_orbit => /trajectP[j le_jn ->{z}]. | |
rewrite -orderSpred -/n ltnS leq_eqVlt in le_jn. | |
by apply/trajectP; case/predU1P: le_jn => [->|]; [exists i | exists j]. | |
Qed. | |
Lemma findex_max x y : fconnect f x y -> findex x y < order x. | |
Proof. by rewrite [_ y]fconnect_orbit -index_mem size_orbit. Qed. | |
Lemma findex_iter x i : i < order x -> findex x (iter i f x) = i. | |
Proof. | |
move=> lt_ix; rewrite -(nth_traject f lt_ix) /findex index_uniq ?orbit_uniq //. | |
by rewrite size_orbit. | |
Qed. | |
Lemma iter_findex x y : fconnect f x y -> iter (findex x y) f x = y. | |
Proof. | |
rewrite [_ y]fconnect_orbit => fxy; pose i := index y (orbit x). | |
have lt_ix: i < order x by rewrite -size_orbit index_mem. | |
by rewrite -(nth_traject f lt_ix) nth_index. | |
Qed. | |
Lemma findex0 x : findex x x = 0. | |
Proof. by rewrite /findex /orbit -orderSpred /= eqxx. Qed. | |
Lemma findex_eq0 x y : (findex x y == 0) = (x == y). | |
Proof. by rewrite /findex /orbit -orderSpred /=; case: (x == y). Qed. | |
Lemma fconnect_invariant (T' : eqType) (k : T -> T') : | |
invariant f k =1 xpredT -> forall x y, fconnect f x y -> k x = k y. | |
Proof. | |
move=> eq_k_f x y /iter_findex <-; elim: {y}(findex x y) => //= n ->. | |
by rewrite (eqP (eq_k_f _)). | |
Qed. | |
Lemma mem_orbit x : {homo f : y / y \in orbit x}. | |
Proof. | |
by move=> y; rewrite -!fconnect_orbit => /connect_trans->//; apply: fconnect1. | |
Qed. | |
Lemma image_orbit x : {subset image f (orbit x) <= orbit x}. | |
Proof. | |
by move=> _ /mapP[y yin ->]; apply: mem_orbit; rewrite ?mem_enum in yin. | |
Qed. | |
Section orbit_in. | |
Variable S : {pred T}. | |
Hypothesis f_in : {homo f : x / x \in S}. | |
Hypothesis injf : {in S &, injective f}. | |
Lemma finv_in : {homo finv : x / x \in S}. | |
Proof. by move=> x xS; rewrite iter_in. Qed. | |
Lemma f_finv_in : {in S, cancel finv f}. | |
Proof. | |
move=> x xS; move: (looping_order x) (orbit_uniq x). | |
rewrite /looping /orbit -orderSpred looping_uniq /= /looping; set n := _.-1. | |
case/predU1P=> // /trajectP[i lt_i_n]; rewrite -iterSr. | |
by move=> /injf ->; rewrite ?(iter_in _ f_in) //; case/trajectP; exists i. | |
Qed. | |
Lemma finv_f_in : {in S, cancel f finv}. | |
Proof. by move=> x xS; apply/injf; rewrite ?iter_in ?f_finv_in ?f_in. Qed. | |
Lemma finv_inj_in : {in S &, injective finv}. | |
Proof. by move=> x y xS yS q; rewrite -(f_finv_in xS) q f_finv_in. Qed. | |
Lemma fconnect_sym_in : {in S &, forall x y, fconnect f x y = fconnect f y x}. | |
Proof. | |
suff Sf : {in S &, forall x y, fconnect f x y -> fconnect f y x}. | |
by move=> *; apply/idP/idP=> /Sf->. | |
move=> x _ xS _ /connectP [p f_p ->]; elim: p => //= y p IHp in x xS f_p *. | |
case/andP: f_p => /eqP <- /(IHp _ (f_in xS)) /connect_trans -> //. | |
by apply: (connect_trans (fconnect_finv _)); rewrite finv_f_in. | |
Qed. | |
Lemma iter_order_in : {in S, forall x, iter (order x) f x = x}. | |
Proof. by move=> x xS; rewrite -orderSpred iterS; apply: f_finv_in. Qed. | |
Lemma iter_finv_in n : | |
{in S, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}. | |
Proof. | |
move=> x xS; rewrite -[x in LHS]iter_order_in => // /subnKC {1}<-. | |
move: (_ - n) => m; rewrite iterD; elim: n => // n {2}<-. | |
by rewrite iterSr /= finv_f_in // -iterD iter_in. | |
Qed. | |
Lemma cycle_orbit_in : {in S, forall x, (fcycle f) (orbit x)}. | |
Proof. | |
move=> x xS; rewrite /orbit -orderSpred (cycle_path x) /= last_traject. | |
by rewrite -/(finv x) fpath_traject f_finv_in ?eqxx. | |
Qed. | |
Lemma fpath_finv_in p x : | |
(x \in S) && (fpath finv x p) = | |
(last x p \in S) && (fpath f (last x p) (rev (belast x p))). | |
Proof. | |
elim: p x => //= y p IHp x; rewrite rev_cons rcons_path. | |
transitivity [&& y \in S, f y == x & fpath finv y p]. | |
apply/and3P/and3P => -[xS /eqP<- fxp]; split; | |
by rewrite ?f_finv_in ?finv_f_in ?finv_in ?f_in. | |
rewrite andbCA {}IHp !andbA [RHS]andbC -andbA; congr [&& _, _ & _]. | |
by case: p => //= z p; rewrite rev_cons last_rcons. | |
Qed. | |
Lemma fpath_finv_f_in p : {in S, forall x, | |
fpath finv x p -> fpath f (last x p) (rev (belast x p))}. | |
Proof. by move=> x xS /(conj xS)/andP; rewrite fpath_finv_in => /andP[]. Qed. | |
Lemma fpath_f_finv_in p x : last x p \in S -> | |
fpath f (last x p) (rev (belast x p)) -> fpath finv x p. | |
Proof. by move=> lS /(conj lS)/andP; rewrite -fpath_finv_in => /andP[]. Qed. | |
End orbit_in. | |
Lemma injectivePcycle x : | |
reflect {in orbit x &, injective f} (fcycle f (orbit x)). | |
Proof. | |
apply: (iffP idP) => [/inj_cycle//|/cycle_orbit_in]. | |
by apply; [apply: mem_orbit|apply: in_orbit]. | |
Qed. | |
Section orbit_inj. | |
Hypothesis injf : injective f. | |
Lemma f_finv : cancel finv f. Proof. exact: (in1T (f_finv_in _ (in2W _))). Qed. | |
Lemma finv_f : cancel f finv. Proof. exact: (in1T (finv_f_in _ (in2W _))). Qed. | |
Lemma finv_bij : bijective finv. | |
Proof. by exists f; [apply: f_finv|apply: finv_f]. Qed. | |
Lemma finv_inj : injective finv. Proof. exact: (can_inj f_finv). Qed. | |
Lemma fconnect_sym x y : fconnect f x y = fconnect f y x. | |
Proof. exact: (in2T (fconnect_sym_in _ (in2W _))). Qed. | |
Let symf := fconnect_sym. | |
Lemma iter_order x : iter (order x) f x = x. | |
Proof. exact: (in1T (iter_order_in _ (in2W _))). Qed. | |
Lemma iter_finv n x : n <= order x -> iter n finv x = iter (order x - n) f x. | |
Proof. exact: (in1T (@iter_finv_in _ _ (in2W _) _)). Qed. | |
Lemma cycle_orbit x : fcycle f (orbit x). | |
Proof. exact: (in1T (cycle_orbit_in _ (in2W _))). Qed. | |
Lemma fpath_finv x p : fpath finv x p = fpath f (last x p) (rev (belast x p)). | |
Proof. exact: (@fpath_finv_in T _ (in2W _)). Qed. | |
Lemma same_fconnect_finv : fconnect finv =2 fconnect f. | |
Proof. | |
move=> x y; rewrite (same_connect_rev symf); apply: {x y}eq_connect => x y /=. | |
by rewrite (canF_eq finv_f) eq_sym. | |
Qed. | |
Lemma fcard_finv : fcard_mem finv =1 fcard_mem f. | |
Proof. exact: eq_n_comp same_fconnect_finv. Qed. | |
Definition order_set n : pred T := [pred x | order x == n]. | |
Lemma fcard_order_set n (a : {pred T}) : | |
a \subset order_set n -> fclosed f a -> fcard f a * n = #|a|. | |
Proof. | |
move=> a_n cl_a; rewrite /n_comp_mem; set b := [predI froots f & a]. | |
suff <-: #|preim (froot f) b| = #|b| * n. | |
apply: eq_card => x; rewrite !inE (roots_root fconnect_sym). | |
exact/esym/(closed_connect cl_a)/connect_root. | |
have{cl_a a_n} (x): b x -> froot f x = x /\ order x = n. | |
by case/andP=> /eqP-> /(subsetP a_n)/eqnP->. | |
elim: {a b}#|b| {1 3 4}b (eqxx #|b|) => [|m IHm] b def_m f_b. | |
by rewrite eq_card0 // => x; apply: (pred0P def_m). | |
have [x b_x | b0] := pickP b; last by rewrite (eq_card0 b0) in def_m. | |
have [r_x ox_n] := f_b x b_x; rewrite (cardD1 x) [x \in b]b_x eqSS in def_m. | |
rewrite mulSn -{1}ox_n -(IHm _ def_m) => [|_ /andP[_ /f_b //]]. | |
rewrite -(cardID (fconnect f x)); congr (_ + _); apply: eq_card => y. | |
by apply: andb_idl => /= fxy; rewrite !inE -(rootP symf fxy) r_x. | |
by congr (~~ _ && _); rewrite /= /in_mem /= symf -(root_connect symf) r_x. | |
Qed. | |
Lemma fclosed1 (a : {pred T}) : | |
fclosed f a -> forall x, (x \in a) = (f x \in a). | |
Proof. by move=> cl_a x; apply: cl_a (eqxx _). Qed. | |
Lemma same_fconnect1 x : fconnect f x =1 fconnect f (f x). | |
Proof. by apply: same_connect1 => /=. Qed. | |
Lemma same_fconnect1_r x y : fconnect f x y = fconnect f x (f y). | |
Proof. by apply: same_connect1r x => /=. Qed. | |
Lemma fcard_gt0P (a : {pred T}) : | |
fclosed f a -> reflect (exists x, x \in a) (0 < fcard f a). | |
Proof. | |
move=> clfA; apply: (iffP card_gt0P) => [[x /andP[]]|[x xA]]; first by exists x. | |
exists (froot f x); rewrite inE roots_root /=; last exact: fconnect_sym. | |
by rewrite -(closed_connect clfA (connect_root _ x)). | |
Qed. | |
Lemma fcard_gt1P (A : {pred T}) : | |
fclosed f A -> | |
reflect (exists2 x, x \in A & exists2 y, y \in A & ~~ fconnect f x y) | |
(1 < fcard f A). | |
Proof. | |
move=> clAf; apply: (iffP card_gt1P) => [|[x xA [y yA not_xfy]]]. | |
move=> [x [y [/andP [/= rfx xA] /andP[/= rfy yA] xDy]]]. | |
by exists x; try exists y; rewrite // -root_connect // (eqP rfx) (eqP rfy). | |
exists (froot f x), (froot f y); rewrite !inE !roots_root ?root_connect //=. | |
by split => //; rewrite -(closed_connect clAf (connect_root _ _)). | |
Qed. | |
End orbit_inj. | |
Hint Resolve orbit_uniq : core. | |
Section fcycle_p. | |
Variables (p : seq T) (f_p : fcycle f p). | |
Section mem_cycle. | |
Variable (Up : uniq p) (x : T) (p_x : x \in p). | |
(* fconnect_cycle does not dependent on Up *) | |
Lemma fconnect_cycle y : fconnect f x y = (y \in p). | |
Proof. | |
have [i q def_p] := rot_to p_x; rewrite -(mem_rot i p) def_p. | |
have{i def_p} /andP[/eqP q_x f_q]: (f (last x q) == x) && fpath f x q. | |
by have:= f_p; rewrite -(rot_cycle i) def_p (cycle_path x). | |
apply/idP/idP=> [/connectP[_ /fpathP[j ->] ->] | ]; last exact: path_connect. | |
case/fpathP: f_q q_x => n ->; rewrite !last_traject -iterS => def_x. | |
by apply: (@loopingP _ f x n.+1); rewrite /looping def_x /= mem_head. | |
Qed. | |
(* order_le_cycle does not dependent on Up *) | |
Lemma order_le_cycle : order x <= size p. | |
Proof. | |
apply: leq_trans (card_size _); apply/subset_leq_card/subsetP=> y. | |
by rewrite !(fconnect_cycle, inE) ?eqxx. | |
Qed. | |
Lemma order_cycle : order x = size p. | |
Proof. by rewrite -(card_uniqP Up); apply: (eq_card fconnect_cycle). Qed. | |
Lemma orbitE : orbit x = rot (index x p) p. | |
Proof. | |
set i := index _ _; rewrite /orbit order_cycle -(size_rot i) rot_index// -/i. | |
set q := _ ++ _; suffices /fpathP[j ->]: fpath f x q by rewrite /= size_traject. | |
by move: f_p; rewrite -(rot_cycle i) rot_index// (cycle_path x); case/andP. | |
Qed. | |
Lemma orbit_rot_cycle : {i : nat | orbit x = rot i p}. | |
Proof. by rewrite orbitE; exists (index x p). Qed. | |
End mem_cycle. | |
Let f_inj := inj_cycle f_p. | |
Let homo_f := mem_fcycle f_p. | |
Lemma finv_cycle : {homo finv : x / x \in p}. Proof. exact: finv_in. Qed. | |
Lemma f_finv_cycle : {in p, cancel finv f}. Proof. exact: f_finv_in. Qed. | |
Lemma finv_f_cycle : {in p, cancel f finv}. Proof. exact: finv_f_in. Qed. | |
Lemma finv_inj_cycle : {in p &, injective finv}. Proof. exact: finv_inj_in. Qed. | |
Lemma iter_finv_cycle n : | |
{in p, forall x, n <= order x -> iter n finv x = iter (order x - n) f x}. | |
Proof. exact: iter_finv_in. Qed. | |
Lemma cycle_orbit_cycle : {in p, forall x, fcycle f (orbit x)}. | |
Proof. exact: cycle_orbit_in. Qed. | |
Lemma fpath_finv_cycle q x : (x \in p) && (fpath finv x q) = | |
(last x q \in p) && fpath f (last x q) (rev (belast x q)). | |
Proof. exact: fpath_finv_in. Qed. | |
Lemma fpath_finv_f_cycle q : {in p, forall x, | |
fpath finv x q -> fpath f (last x q) (rev (belast x q))}. | |
Proof. exact: fpath_finv_f_in. Qed. | |
Lemma fpath_f_finv_cycle q x : last x q \in p -> | |
fpath f (last x q) (rev (belast x q)) -> fpath finv x q. | |
Proof. exact: fpath_f_finv_in. Qed. | |
Lemma prevE x : x \in p -> prev p x = finv x. | |
Proof. | |
move=> x_p; have /eqP/(congr1 finv) := prev_cycle f_p x_p. | |
by rewrite finv_f_cycle// mem_prev. | |
Qed. | |
End fcycle_p. | |
Section fcycle_cons. | |
Variables (x : T) (p : seq T) (f_p : fcycle f (x :: p)). | |
Lemma fcycle_rconsE : rcons (x :: p) x = traject f x (size p).+2. | |
Proof. by rewrite rcons_cons; have /fpathE-> := f_p; rewrite size_rcons. Qed. | |
Lemma fcycle_consE : x :: p = traject f x (size p).+1. | |
Proof. by have := fcycle_rconsE; rewrite trajectSr => /rcons_inj[/= <-]. Qed. | |
Lemma fcycle_consEflatten : exists k, x :: p = flatten (nseq k.+1 (orbit x)). | |
Proof. | |
move: f_p; rewrite fcycle_consE; elim/ltn_ind: (size p) => n IHn t_cycle. | |
have := order_le_cycle t_cycle (mem_head _ _); rewrite size_traject. | |
case: ltngtP => [||<-] //; last by exists 0; rewrite /= cats0. | |
rewrite ltnS => n_ge _; have := t_cycle. | |
rewrite -(subnKC n_ge) -addnS trajectD. | |
rewrite (iter_order_in (mem_fcycle f_p) (inj_cycle f_p)) ?mem_head//. | |
set m := (_ - _) => cycle_cat. | |
have [||k->] := IHn m; last by exists k.+1. | |
by rewrite ltn_subrL (leq_trans _ n_ge) ?order_gt0. | |
move: cycle_cat; rewrite -orderSpred/= rcons_cat rcons_cons -cat_rcons. | |
by rewrite cat_path last_rcons => /andP[]. | |
Qed. | |
Lemma undup_cycle_cons : undup (x :: p) = orbit x. | |
Proof. | |
by have [n {1}->] := fcycle_consEflatten; rewrite undup_flatten_nseq ?undup_id. | |
Qed. | |
End fcycle_cons. | |
Section fcycle_undup. | |
Variable (p : seq T) (f_p : fcycle f p). | |
Lemma fcycleEflatten : exists k, p = flatten (nseq k (undup p)). | |
Proof. | |
case: p f_p => [//|x q] f_q; first by exists 0. | |
have [k {1}->] := @fcycle_consEflatten x q f_q. | |
by exists k.+1; rewrite undup_cycle_cons. | |
Qed. | |
Lemma fcycle_undup : fcycle f (undup p). | |
Proof. | |
case: p f_p => [//|x q] f_q; rewrite undup_cycle_cons//. | |
by rewrite (cycle_orbit_in (mem_fcycle f_q) (inj_cycle f_q)) ?mem_head. | |
Qed. | |
Let p_undup_uniq := undup_uniq p. | |
Let f_inj := inj_cycle f_p. | |
Let homo_f := mem_fcycle f_p. | |
Lemma in_orbit_cycle : {in p &, forall x, orbit x =i p}. | |
Proof. | |
by move=> x y xp yp; rewrite (orbitE fcycle_undup)// ?mem_rot ?mem_undup. | |
Qed. | |
Lemma eq_order_cycle : {in p &, forall x y, order y = order x}. | |
Proof. by move=> x y xp yp; rewrite !(order_cycle fcycle_undup) ?mem_undup. Qed. | |
Lemma iter_order_cycle : {in p &, forall x y, iter (order x) f y = y}. | |
Proof. | |
by move=> x y xp yp; rewrite (eq_order_cycle yp) ?(iter_order_in homo_f f_inj). | |
Qed. | |
End fcycle_undup. | |
Section fconnect. | |
Lemma fconnect_eqVf x y : fconnect f x y = (x == y) || fconnect f (f x) y. | |
Proof. | |
apply/idP/idP => [/iter_findex <-|/predU1P [<-|] //]; last first. | |
exact/connect_trans/fconnect1. | |
by case: findex => [|i]; rewrite ?eqxx// iterSr fconnect_iter orbT. | |
Qed. | |
(*****************************************************************************) | |
(* Lemma orbitPcycle is of type "The Following Are Equivalent", which means *) | |
(* all four statements are equivalent to each other. In order to use it, one *) | |
(* has to apply it to the natural numbers corresponding to the line, e.g. *) | |
(* `orbitPcycle 0 2 : fcycle f (orbit x) <-> exists k, iter k.+1 f x = x`. *) | |
(* examples of this are in order_id_cycle and fconnnect_f. *) | |
(* One may also use lemma all_iffLR to get a one sided implication, as in *) | |
(* orderPcycle. *) | |
(*****************************************************************************) | |
Lemma orbitPcycle {x} : [<-> | |
(* 0 *) fcycle f (orbit x); | |
(* 1 *) order (f x) = order x; | |
(* 2 *) x \in fconnect f (f x); | |
(* 3 *) exists k, iter k.+1 f x = x; | |
(* 4 *) iter (order x) f x = x; | |
(* 5 *) {in orbit x &, injective f}]. | |
Proof. | |
tfae=> [xorbit_cycle|||[k fkx]|fx y z|/injectivePcycle//]. | |
- by apply: eq_order_cycle xorbit_cycle _ _ _ _; rewrite ?mem_orbit. | |
- move=> /subset_cardP/(_ _)->; rewrite ?inE//; apply/subsetP=> y. | |
by apply: connect_trans; apply: fconnect1. | |
- by exists (findex (f x) x); rewrite // iterSr iter_findex. | |
- apply: (@iter_order_cycle (traject f x k.+1)); rewrite /= ?mem_head//. | |
by apply/fpathP; exists k.+1; rewrite trajectSr -iterSr fkx. | |
- rewrite -!fconnect_orbit => /iter_findex <- /iter_findex <-. | |
move/(congr1 (iter (order x).-1 f)). | |
by rewrite -!iterSr !orderSpred -!iterD ![order _ + _]addnC !iterD fx. | |
Qed. | |
Lemma order_id_cycle x : fcycle f (orbit x) -> order (f x) = order x. | |
Proof. by move/(orbitPcycle 0 1). Qed. | |
Inductive order_spec_cycle x : bool -> Type := | |
| OrderStepCycle of fcycle f (orbit x) & order x = order (f x) : | |
order_spec_cycle x true | |
| OrderStepNoCycle of ~~ fcycle f (orbit x) & order x = (order (f x)).+1 : | |
order_spec_cycle x false. | |
Lemma orderPcycle x : order_spec_cycle x (fcycle f (orbit x)). | |
Proof. | |
have [xcycle|Ncycle] := boolP (fcycle f (orbit x)); constructor => //. | |
by rewrite order_id_cycle. | |
rewrite /order (eq_card (_ : _ =1 [predU1 x & fconnect f (f x)])). | |
by rewrite cardU1 inE (contraNN (all_iffLR orbitPcycle 2 0)). | |
by move=> y; rewrite !inE fconnect_eqVf eq_sym. | |
Qed. | |
Lemma fconnect_f x : fconnect f (f x) x = fcycle f (orbit x). | |
Proof. by apply/idP/idP => /(orbitPcycle 0 2). Qed. | |
Lemma fconnect_findex x y : | |
fconnect f x y -> y != x -> findex x y = (findex (f x) y).+1. | |
Proof. | |
rewrite /findex fconnect_orbit /orbit -orderSpred /= inE => /orP [-> //|]. | |
rewrite eq_sym; move=> yin /negPf->; have [_ eq_o|_ ->//] := orderPcycle x. | |
by rewrite -(orderSpred (f x)) trajectSr -cats1 index_cat -eq_o yin. | |
Qed. | |
End fconnect. | |
End Orbit. | |
#[global] Hint Resolve in_orbit mem_orbit order_gt0 orbit_uniq : core. | |
Prenex Implicits order orbit findex finv order_set. | |
Arguments orbitPcycle {T f x}. | |
Section FconnectId. | |
Variable T : finType. | |
Lemma fconnect_id (x : T) : fconnect id x =1 xpred1 x. | |
Proof. by move=> y; rewrite (@fconnect_cycle _ _ [:: x]) //= ?inE ?eqxx. Qed. | |
Lemma order_id (x : T) : order id x = 1. | |
Proof. by rewrite /order (eq_card (fconnect_id x)) card1. Qed. | |
Lemma orbit_id (x : T) : orbit id x = [:: x]. | |
Proof. by rewrite /orbit order_id. Qed. | |
Lemma froots_id (x : T) : froots id x. | |
Proof. by rewrite /roots -fconnect_id connect_root. Qed. | |
Lemma froot_id (x : T) : froot id x = x. | |
Proof. by apply/eqP; apply: froots_id. Qed. | |
Lemma fcard_id (a : {pred T}) : fcard id a = #|a|. | |
Proof. by apply: eq_card => x; rewrite inE froots_id. Qed. | |
End FconnectId. | |
Section FconnectEq. | |
Variables (T : finType) (f f' : T -> T). | |
Lemma finv_eq_can : cancel f f' -> finv f =1 f'. | |
Proof. | |
move=> fK; have inj_f := can_inj fK. | |
by apply: bij_can_eq fK; [apply: injF_bij | apply: finv_f]. | |
Qed. | |
Hypothesis eq_f : f =1 f'. | |
Let eq_rf := eq_frel eq_f. | |
Lemma eq_fconnect : fconnect f =2 fconnect f'. | |
Proof. exact: eq_connect eq_rf. Qed. | |
Lemma eq_fcard : fcard_mem f =1 fcard_mem f'. | |
Proof. exact: eq_n_comp eq_fconnect. Qed. | |
Lemma eq_finv : finv f =1 finv f'. | |
Proof. | |
by move=> x; rewrite /finv /order (eq_card (eq_fconnect x)) (eq_iter eq_f). | |
Qed. | |
Lemma eq_froot : froot f =1 froot f'. | |
Proof. exact: eq_root eq_rf. Qed. | |
Lemma eq_froots : froots f =1 froots f'. | |
Proof. exact: eq_roots eq_rf. Qed. | |
End FconnectEq. | |
Section FinvEq. | |
Variables (T : finType) (f : T -> T). | |
Hypothesis injf : injective f. | |
Lemma finv_inv : finv (finv f) =1 f. | |
Proof. exact: (finv_eq_can (f_finv injf)). Qed. | |
Lemma order_finv : order (finv f) =1 order f. | |
Proof. by move=> x; apply: eq_card (same_fconnect_finv injf x). Qed. | |
Lemma order_set_finv n : order_set (finv f) n =i order_set f n. | |
Proof. by move=> x; rewrite !inE order_finv. Qed. | |
End FinvEq. | |
Section RelAdjunction. | |
Variables (T T' : finType) (h : T' -> T) (e : rel T) (e' : rel T'). | |
Hypotheses (sym_e : connect_sym e) (sym_e' : connect_sym e'). | |
Record rel_adjunction_mem m_a := RelAdjunction { | |
rel_unit x : in_mem x m_a -> {x' : T' | connect e x (h x')}; | |
rel_functor x' y' : | |
in_mem (h x') m_a -> connect e' x' y' = connect e (h x') (h y') | |
}. | |
Variable a : {pred T}. | |
Hypothesis cl_a : closed e a. | |
Local Notation rel_adjunction := (rel_adjunction_mem (mem a)). | |
Lemma intro_adjunction (h' : forall x, x \in a -> T') : | |
(forall x a_x, | |
[/\ connect e x (h (h' x a_x)) | |
& forall y a_y, e x y -> connect e' (h' x a_x) (h' y a_y)]) -> | |
(forall x' a_x, | |
[/\ connect e' x' (h' (h x') a_x) | |
& forall y', e' x' y' -> connect e (h x') (h y')]) -> | |
rel_adjunction. | |
Proof. | |
move=> Aee' Ae'e; split=> [y a_y | x' z' a_x]. | |
by exists (h' y a_y); case/Aee': (a_y). | |
apply/idP/idP=> [/connectP[p e'p ->{z'}] | /connectP[p e_p p_z']]. | |
elim: p x' a_x e'p => //= y' p IHp x' a_x. | |
case: (Ae'e x' a_x) => _ Ae'x /andP[/Ae'x e_xy /IHp e_yz] {Ae'x}. | |
by apply: connect_trans (e_yz _); rewrite // -(closed_connect cl_a e_xy). | |
case: (Ae'e x' a_x) => /connect_trans-> //. | |
elim: p {x'}(h x') p_z' a_x e_p => /= [|y p IHp] x p_z' a_x. | |
by rewrite -p_z' in a_x *; case: (Ae'e _ a_x); rewrite sym_e'. | |
case/andP=> e_xy /(IHp _ p_z') e'yz; have a_y: y \in a by rewrite -(cl_a e_xy). | |
by apply: connect_trans (e'yz a_y); case: (Aee' _ a_x) => _ ->. | |
Qed. | |
Lemma strict_adjunction : | |
injective h -> a \subset codom h -> rel_base h e e' [predC a] -> | |
rel_adjunction. | |
Proof. | |
move=> /= injh h_a a_ee'; pose h' x Hx := iinv (subsetP h_a x Hx). | |
apply: (@intro_adjunction h') => [x a_x | x' a_x]. | |
rewrite f_iinv connect0; split=> // y a_y e_xy. | |
by rewrite connect1 // -a_ee' !f_iinv ?negbK. | |
rewrite [h' _ _]iinv_f //; split=> // y' e'xy. | |
by rewrite connect1 // a_ee' ?negbK. | |
Qed. | |
Let ccl_a := closed_connect cl_a. | |
Lemma adjunction_closed : rel_adjunction -> closed e' [preim h of a]. | |
Proof. | |
case=> _ Ae'e; apply: intro_closed => // x' y' /connect1 e'xy a_x. | |
by rewrite Ae'e // in e'xy; rewrite !inE -(ccl_a e'xy). | |
Qed. | |
Lemma adjunction_n_comp : | |
rel_adjunction -> n_comp e a = n_comp e' [preim h of a]. | |
Proof. | |
case=> Aee' Ae'e. | |
have inj_h: {in predI (roots e') [preim h of a] &, injective (root e \o h)}. | |
move=> x' y' /andP[/eqP r_x' /= a_x'] /andP[/eqP r_y' _] /(rootP sym_e). | |
by rewrite -Ae'e // => /(rootP sym_e'); rewrite r_x' r_y'. | |
rewrite /n_comp_mem -(card_in_image inj_h); apply: eq_card => x. | |
apply/andP/imageP=> [[/eqP rx a_x] | [x' /andP[/eqP r_x' a_x'] ->]]; last first. | |
by rewrite /= -(ccl_a (connect_root _ _)) roots_root. | |
have [y' e_xy]:= Aee' x a_x; pose x' := root e' y'. | |
have ay': h y' \in a by rewrite -(ccl_a e_xy). | |
have e_yx: connect e (h y') (h x') by rewrite -Ae'e ?connect_root. | |
exists x'; first by rewrite inE /= -(ccl_a e_yx) ?roots_root. | |
by rewrite /= -(rootP sym_e e_yx) -(rootP sym_e e_xy). | |
Qed. | |
End RelAdjunction. | |
Notation rel_adjunction h e e' a := (rel_adjunction_mem h e e' (mem a)). | |
Notation "@ 'rel_adjunction' T T' h e e' a" := | |
(@rel_adjunction_mem T T' h e e' (mem a)) | |
(at level 10, T, T', h, e, e', a at level 8, only parsing) : type_scope. | |
Notation fun_adjunction h f f' a := (rel_adjunction h (frel f) (frel f') a). | |
Notation "@ 'fun_adjunction' T T' h f f' a" := | |
(@rel_adjunction T T' h (frel f) (frel f') a) | |
(at level 10, T, T', h, f, f', a at level 8, only parsing) : type_scope. | |
Arguments intro_adjunction [T T' h e e'] _ [a]. | |
Arguments adjunction_n_comp [T T'] h [e e'] _ _ [a]. | |
Unset Implicit Arguments. | |