Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.98 kB
(******************************************************************************)
(* FILE : definitions.ml *)
(* DESCRIPTION : Using definitions. *)
(* *)
(* READS FILES : <none> *)
(* WRITES FILES : <none> *)
(* *)
(* AUTHOR : R.J.Boulton *)
(* DATE : 6th June 1991 *)
(* *)
(* LAST MODIFIED : R.J.Boulton *)
(* DATE : 3rd August 1992 *)
(* *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *)
(* DATE : 2008 *)
(******************************************************************************)
(*----------------------------------------------------------------------------*)
(* recursive_calls : string -> term -> term list *)
(* *)
(* Function to compute the occurrences of applications of a constant in a *)
(* term. The first argument is the name of the constant. The second argument *)
(* is the term to be examined. If there are no occurrences, an empty list is *)
(* returned. The function assumes that the term does not contain *)
(* abstractions. *)
(*----------------------------------------------------------------------------*)
let rec recursive_calls name tm =
try (let (f,args) = strip_comb tm
in if (try(fst (dest_const f) = name) with Failure _ -> false)
then [tm]
else itlist List.append (map (recursive_calls name) args) [])
with Failure _ -> [];;
(*----------------------------------------------------------------------------*)
(* is_subterm : term -> term -> bool *)
(* *)
(* Function to compute whether one term is a subterm of another. *)
(*----------------------------------------------------------------------------*)
let rec is_subterm subterm tm =
try( if (tm = subterm)
then true
else ((is_subterm subterm (rator tm)) || (is_subterm subterm (rand tm)))
)with Failure _ -> false;;
(*----------------------------------------------------------------------------*)
(* no_new_terms : term -> term -> bool *)
(* *)
(* Function to determine whether all of the arguments of an application *)
(* "f x1 ... xn" are subterms of a term. *)
(*----------------------------------------------------------------------------*)
let no_new_terms app tm =
try
(let args = snd (strip_comb app)
in itlist (fun x y -> x && y) (map (fun arg -> is_subterm arg tm) args) true
) with Failure _ -> failwith "no_new_terms";;
(*----------------------------------------------------------------------------*)
(* hide_fun_call : term -> term -> term *)
(* *)
(* Function to replace occurrences of a particular function call in a term *)
(* with a genvar, so that `no_new_terms' can be used to look for arguments in *)
(* a term less the original call. *)
(*----------------------------------------------------------------------------*)
let hide_fun_call app tm =
let var = genvar (type_of app)
in subst [(var,app)] tm;;
(*----------------------------------------------------------------------------*)
(* is_explicit_value : term -> bool *)
(* *)
(* Function to compute whether a term is an explicit value. An explicit value *)
(* is either T or F or an application of a shell constructor to explicit *)
(* values. A `bottom object' corresponds to an application to no arguments. *)
(* I have also made numeric constants explicit values, since they are *)
(* equivalent to some number of applications of SUC to 0. *)
(*----------------------------------------------------------------------------*)
let is_explicit_value tm =
let rec is_explicit_value' constructors tm =
(is_T tm) || (is_F tm) || ((is_const tm) && (type_of tm = `:num`)) ||
(let (f,args) = strip_comb tm
in (try(mem (fst (dest_const f)) constructors) with Failure _ -> false) &&
(forall (is_explicit_value' constructors) args))
in is_explicit_value' (all_constructors ()) tm;;
(*----------------------------------------------------------------------------*)
(* more_explicit_values : term -> term -> bool *)
(* *)
(* Returns true if and only if a new function call (second argument) has more *)
(* arguments that are explicit values than the old function call (first *)
(* argument). *)
(*----------------------------------------------------------------------------*)
let more_explicit_values old_call new_call =
try
(let (f1,args1) = strip_comb old_call
and (f2,args2) = strip_comb new_call
in if (f1 = f2)
then let n1 = length (filter is_explicit_value args1)
and n2 = length (filter is_explicit_value args2)
in n2 > n1
else failwith "" ) with Failure _ -> failwith "more_explicit_values";;
(*----------------------------------------------------------------------------*)
(* good_properties : term list -> term -> term -> term -> bool *)
(* *)
(* Function to determine whether the recursive calls in the expansion of a *)
(* function call have good properties. The first argument is a list of *)
(* assumptions currently being made. The second argument is the original *)
(* call. The third argument is the (simplified) expansion of the call, and *)
(* the fourth argument is the term currently being processed and which *)
(* contains the function call. *)
(*----------------------------------------------------------------------------*)
(*< Boyer and Moore's heuristic
let good_properties assumps call body_of_call tm =
let rec in_assumps tm assumps =
if (assumps = [])
then false
else if (is_subterm tm (hd assumps))
then true
else in_assumps tm (tl assumps)
in
(let name = fst (dest_const (fst (strip_comb call)))
and body_less_call = hide_fun_call call tm
in let rec_calls = recursive_calls name body_of_call
in let bools = map (fun rc -> (no_new_terms rc body_less_call) ||
(in_assumps rc assumps) ||
(more_explicit_values call rc)) rec_calls
in itlist (fun x y -> x && y) bools true
) with Failure _ -> failwith "good_properties";;
>*)
(* For HOL implementation, the restricted form of definitions allows all *)
(* recursive calls to be considered to have good properties. *)
let good_properties assumps call body_of_call tm = true;;