Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : definitions.ml *) | |
(* DESCRIPTION : Using definitions. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 6th June 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 3rd August 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : 2008 *) | |
(******************************************************************************) | |
(*----------------------------------------------------------------------------*) | |
(* recursive_calls : string -> term -> term list *) | |
(* *) | |
(* Function to compute the occurrences of applications of a constant in a *) | |
(* term. The first argument is the name of the constant. The second argument *) | |
(* is the term to be examined. If there are no occurrences, an empty list is *) | |
(* returned. The function assumes that the term does not contain *) | |
(* abstractions. *) | |
(*----------------------------------------------------------------------------*) | |
let rec recursive_calls name tm = | |
try (let (f,args) = strip_comb tm | |
in if (try(fst (dest_const f) = name) with Failure _ -> false) | |
then [tm] | |
else itlist List.append (map (recursive_calls name) args) []) | |
with Failure _ -> [];; | |
(*----------------------------------------------------------------------------*) | |
(* is_subterm : term -> term -> bool *) | |
(* *) | |
(* Function to compute whether one term is a subterm of another. *) | |
(*----------------------------------------------------------------------------*) | |
let rec is_subterm subterm tm = | |
try( if (tm = subterm) | |
then true | |
else ((is_subterm subterm (rator tm)) || (is_subterm subterm (rand tm))) | |
)with Failure _ -> false;; | |
(*----------------------------------------------------------------------------*) | |
(* no_new_terms : term -> term -> bool *) | |
(* *) | |
(* Function to determine whether all of the arguments of an application *) | |
(* "f x1 ... xn" are subterms of a term. *) | |
(*----------------------------------------------------------------------------*) | |
let no_new_terms app tm = | |
try | |
(let args = snd (strip_comb app) | |
in itlist (fun x y -> x && y) (map (fun arg -> is_subterm arg tm) args) true | |
) with Failure _ -> failwith "no_new_terms";; | |
(*----------------------------------------------------------------------------*) | |
(* hide_fun_call : term -> term -> term *) | |
(* *) | |
(* Function to replace occurrences of a particular function call in a term *) | |
(* with a genvar, so that `no_new_terms' can be used to look for arguments in *) | |
(* a term less the original call. *) | |
(*----------------------------------------------------------------------------*) | |
let hide_fun_call app tm = | |
let var = genvar (type_of app) | |
in subst [(var,app)] tm;; | |
(*----------------------------------------------------------------------------*) | |
(* is_explicit_value : term -> bool *) | |
(* *) | |
(* Function to compute whether a term is an explicit value. An explicit value *) | |
(* is either T or F or an application of a shell constructor to explicit *) | |
(* values. A `bottom object' corresponds to an application to no arguments. *) | |
(* I have also made numeric constants explicit values, since they are *) | |
(* equivalent to some number of applications of SUC to 0. *) | |
(*----------------------------------------------------------------------------*) | |
let is_explicit_value tm = | |
let rec is_explicit_value' constructors tm = | |
(is_T tm) || (is_F tm) || ((is_const tm) && (type_of tm = `:num`)) || | |
(let (f,args) = strip_comb tm | |
in (try(mem (fst (dest_const f)) constructors) with Failure _ -> false) && | |
(forall (is_explicit_value' constructors) args)) | |
in is_explicit_value' (all_constructors ()) tm;; | |
(*----------------------------------------------------------------------------*) | |
(* more_explicit_values : term -> term -> bool *) | |
(* *) | |
(* Returns true if and only if a new function call (second argument) has more *) | |
(* arguments that are explicit values than the old function call (first *) | |
(* argument). *) | |
(*----------------------------------------------------------------------------*) | |
let more_explicit_values old_call new_call = | |
try | |
(let (f1,args1) = strip_comb old_call | |
and (f2,args2) = strip_comb new_call | |
in if (f1 = f2) | |
then let n1 = length (filter is_explicit_value args1) | |
and n2 = length (filter is_explicit_value args2) | |
in n2 > n1 | |
else failwith "" ) with Failure _ -> failwith "more_explicit_values";; | |
(*----------------------------------------------------------------------------*) | |
(* good_properties : term list -> term -> term -> term -> bool *) | |
(* *) | |
(* Function to determine whether the recursive calls in the expansion of a *) | |
(* function call have good properties. The first argument is a list of *) | |
(* assumptions currently being made. The second argument is the original *) | |
(* call. The third argument is the (simplified) expansion of the call, and *) | |
(* the fourth argument is the term currently being processed and which *) | |
(* contains the function call. *) | |
(*----------------------------------------------------------------------------*) | |
(*< Boyer and Moore's heuristic | |
let good_properties assumps call body_of_call tm = | |
let rec in_assumps tm assumps = | |
if (assumps = []) | |
then false | |
else if (is_subterm tm (hd assumps)) | |
then true | |
else in_assumps tm (tl assumps) | |
in | |
(let name = fst (dest_const (fst (strip_comb call))) | |
and body_less_call = hide_fun_call call tm | |
in let rec_calls = recursive_calls name body_of_call | |
in let bools = map (fun rc -> (no_new_terms rc body_less_call) || | |
(in_assumps rc assumps) || | |
(more_explicit_values call rc)) rec_calls | |
in itlist (fun x y -> x && y) bools true | |
) with Failure _ -> failwith "good_properties";; | |
>*) | |
(* For HOL implementation, the restricted form of definitions allows all *) | |
(* recursive calls to be considered to have good properties. *) | |
let good_properties assumps call body_of_call tm = true;; | |