Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Load in Petros Papapanagiotou's Boyer-Moore code and try examples. *) | |
(* ========================================================================= *) | |
loads "Boyer_Moore/boyer-moore.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Slight variant of Petros's eval.ml file. *) | |
(* ------------------------------------------------------------------------- *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Shortcuts for the various evaluation versions: *) | |
(* ------------------------------------------------------------------------- *) | |
let BM = BOYER_MOORE;; (* Pure re-implementation of R.Boulton's work. *) | |
let BME = BOYER_MOORE_EXT;; (* Extended with early termination heuristics and HOL Light features. *) | |
let BMR = BOYER_MOORE_RE [];; | |
let BMG = BOYER_MOORE_GEN [];; (* Further extended with M.Aderhold's generalization techniques. *) | |
let BMF = BOYER_MOORE_FINAL [];; | |
let RBM = new_rewrite_rule o BOYER_MOORE;; | |
let RBME = new_rewrite_rule o BOYER_MOORE_EXT;; | |
let RBMG = new_rewrite_rule o BOYER_MOORE_GEN [];; | |
(* ------------------------------------------------------------------------- *) | |
(* Add a theorem as a new function definition and rewrite rule. *) | |
(* Adding it as a rewrite rule should no longer be necessary after the *) | |
(* latest (July 2009) bugfixes but it doesn't do any harm either. *) | |
(* ------------------------------------------------------------------------- *) | |
let new_stuff x = (new_def x ; new_rewrite_rule x);; | |
(* ------------------------------------------------------------------------- *) | |
(* Test sets extracted from the proven theorems in HOL Light's arith.ml and *) | |
(* list.ml. *) | |
(* ------------------------------------------------------------------------- *) | |
loads "Boyer_Moore/testset/arith.ml";; (* Arithmetic test set *) | |
loads "Boyer_Moore/testset/list.ml";; (* List test set *) | |
(* ------------------------------------------------------------------------- *) | |
(* Reloads all the necessary definitions and rules for the evaluation of the *) | |
(* test sets above. *) | |
(* ------------------------------------------------------------------------- *) | |
let bm_reset () = | |
system_defs := []; | |
system_rewrites := []; | |
new_stuff ADD; | |
new_stuff MULT; | |
new_stuff SUB; | |
new_stuff LE; | |
new_stuff LT; | |
new_stuff GE; | |
new_stuff GT; | |
new_rewrite_rule (ARITH_RULE `1=SUC(0)`); | |
new_stuff EXP; | |
new_stuff FACT; | |
new_stuff ODD; | |
new_stuff EVEN; | |
new_rewrite_rule NOT_SUC; | |
new_rewrite_rule SUC_INJ; | |
new_rewrite_rule PRE; | |
new_rewrite_rule (prove (`!n. ~(SUC n = n)`, INDUCT_TAC THEN ASM_REWRITE_TAC[SUC_INJ;NOT_SUC])); | |
new_rewrite_rule (prove (`!a b. a + SUC b = SUC (a + b)`,REPEAT GEN_TAC THEN BMF_TAC[])); | |
new_stuff HD; | |
new_stuff TL; | |
new_stuff APPEND; | |
new_stuff REVERSE; | |
new_stuff LENGTH; | |
new_stuff MAP; | |
new_stuff LAST; | |
new_stuff REPLICATE; | |
new_stuff NULL; | |
new_stuff ALL; | |
new_stuff EX; | |
new_stuff ITLIST; | |
new_stuff MEM; | |
new_stuff ALL2_DEF; | |
new_rewrite_rule ALL2; | |
new_stuff MAP2_DEF; | |
new_rewrite_rule MAP2; | |
new_stuff EL; | |
new_stuff FILTER; | |
new_stuff ASSOC; | |
new_stuff ITLIST2_DEF; | |
new_rewrite_rule ITLIST2; | |
new_stuff ZIP_DEF; | |
new_rewrite_rule ZIP; | |
new_rewrite_rule NOT_CONS_NIL; | |
new_rewrite_rule CONS_11 ;; | |
bm_reset();; | |
(* ------------------------------------------------------------------------- *) | |
(* Test functions. They use the Unix library to measure time. *) | |
(* Unfortunately this means that they do not load properly in Cygwin. *) | |
(* ------------------------------------------------------------------------- *) | |
#load "unix.cma";; | |
open Unix;; | |
open Printf;; | |
(* ------------------------------------------------------------------------- *) | |
(* Reference of the remaining theory to be proven. Load a list of theorems *) | |
(* that you want the evaluation to run through. *) | |
(* eg. remaining_theory := !mytheory;; *) | |
(* Then use nexttm (see below) to evaluate one of the BOYER_MOORE_* *) | |
(* procedures over the list. *) | |
(* ------------------------------------------------------------------------- *) | |
let remaining_theory = ref ([]:term list);; | |
let currenttm = ref `p`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Tries a theorem-proving procedure f on arg. *) | |
(* Returns a truth value of whether the procedure succeeded in finding a *) | |
(* proof and a pair of timestamps taken from the start and the end of the *) | |
(* procedure. *) | |
(* ------------------------------------------------------------------------- *) | |
let bm_time f arg = | |
let t1=Unix.times () in | |
let resu = try (if (can dest_thm (f arg)) then true else false) with Failure _ -> false in | |
let t2=Unix.times () in (resu,(t1,t2));; | |
(* printf "User time: %f - system time: %f\n%!" (t2.tms_utime -. t1.tms_utime) (t2.tms_stime -. t1.tms_stime);; *) | |
(* ------------------------------------------------------------------------- *) | |
(* Uses bm_time to try a Boyer-Moore theorem-proving procedure f on tm. *) | |
(* Prints out all the evaluation information that is collected and returns *) | |
(* the list of generalizations made during the proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let bm_test f tm = | |
let pfpt = (print_term tm ; print_newline() ; proof_printer false) in | |
let (resu,(t1,t2)) = bm_time f tm in | |
let pfpt = proof_printer pfpt in | |
printf "Proven: %b - Time: %f - Steps: %d - Inductions: %d - Gen terms: %d - Over gens: %d \\\\\n" resu | |
(t2.tms_utime -. t1.tms_utime) (fst !bm_steps) (snd !bm_steps) (length !my_gen_terms) (!counterexamples) ; | |
!my_gen_terms;; | |
(* ------------------------------------------------------------------------- *) | |
(* Another version of bm_test but with a more compact printout. *) | |
(* Returns unit (). *) | |
(* ------------------------------------------------------------------------- *) | |
let bm_test2 f tm = | |
let pfpt = (print_term tm ; print_newline() ; proof_printer false) in | |
let (resu,(t1,t2)) = bm_time f tm in | |
let pfpt = proof_printer pfpt in | |
printf "& %b & %f & %d & %d & %d & %d \\\\\n" resu (t2.tms_utime -. t1.tms_utime) (fst !bm_steps) (snd !bm_steps) (length !my_gen_terms) (!counterexamples) ; | |
();; | |
(* ------------------------------------------------------------------------- *) | |
(* Convenient function for evaluation. *) | |
(* Uses f to try and prove the next term in !remaining_theory by bm_test2 *) | |
(* ------------------------------------------------------------------------- *) | |
let nexttm f = | |
if (!remaining_theory = []) then failwith "No more" | |
else currenttm := hd !remaining_theory ; remaining_theory := tl !remaining_theory ; | |
bm_test2 f !currenttm;; | |
(* ------------------------------------------------------------------------- *) | |
(* Reruns evaluation on the same term that was last loaded with nexttm. *) | |
(* ------------------------------------------------------------------------- *) | |
let sametm f = bm_test2 f !currenttm;; | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Just one example. *) | |
(* ------------------------------------------------------------------------- *) | |
bm_test BME `m + n:num = n + m`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Note that these don't all terminate, so need more delicacy really. *) | |
(* Should carefully reconstruct the cases in Petros's thesis, also maybe *) | |
(* using a timeout. *) | |
(* ------------------------------------------------------------------------- *) | |
(**** | |
do_list (bm_test BME) (!mytheory);; | |
do_list (bm_test BME) (!mytheory2);; | |
****) | |