Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Explicit computations of group operations from extensible clauses. *) | |
(* ========================================================================= *) | |
needs "Library/grouptheory.ml";; | |
needs "Library/ringtheory.ml";; | |
let curve_clauses = ref ([]:thm list) | |
and curvezero_clauses = ref ([]:thm list) | |
and curveneg_clauses = ref ([]:thm list) | |
and curveadd_clauses = ref ([]:thm list) | |
and ecgroup_carriers = ref ([]:thm list) | |
and ecgroup_ids = ref ([]:thm list) | |
and ecgroup_invs = ref ([]:thm list) | |
and ecgroup_muls = ref ([]:thm list);; | |
(* ------------------------------------------------------------------------- *) | |
(* Augment store of clauses, both curve types and actual specific curves. *) | |
(* ------------------------------------------------------------------------- *) | |
let add_curve th = (curve_clauses := insert th (!curve_clauses));; | |
let add_curvezero th = (curvezero_clauses := insert th (!curvezero_clauses));; | |
let add_curveneg th = (curveneg_clauses := insert th (!curveneg_clauses));; | |
let add_curveadd th = (curveadd_clauses := insert th (!curveadd_clauses));; | |
let add_ecgroup defs th = | |
let [cth;ith;nth;ath] = CONJUNCTS(PURE_REWRITE_RULE defs th) in | |
(ecgroup_carriers := insert cth (!ecgroup_carriers); | |
ecgroup_ids := insert ith (!ecgroup_ids); | |
ecgroup_invs := insert nth (!ecgroup_invs); | |
ecgroup_muls := insert ath (!ecgroup_muls));; | |
(* ------------------------------------------------------------------------- *) | |
(* The actual conversions. *) | |
(* ------------------------------------------------------------------------- *) | |
let ECGROUP_CARRIER_CONV tm = | |
(GEN_REWRITE_CONV RAND_CONV (!ecgroup_carriers) THENC | |
GEN_REWRITE_CONV I [IN] THENC | |
GEN_REWRITE_CONV I (!curve_clauses) THENC | |
REWRITE_CONV[IN_INTEGER_MOD_RING_CARRIER] THENC | |
DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)) tm;; | |
let ECGROUP_ID_CONV tm = | |
(GEN_REWRITE_CONV I (!ecgroup_ids) THENC | |
TRY_CONV(GEN_REWRITE_CONV I (!curvezero_clauses) THENC | |
DEPTH_CONV INTEGER_MOD_RING_RED_CONV)) tm;; | |
let ECGROUP_INV_CONV tm = | |
(GEN_REWRITE_CONV RATOR_CONV (!ecgroup_invs) THENC | |
GEN_REWRITE_CONV I (!curveneg_clauses) THENC | |
DEPTH_CONV INTEGER_MOD_RING_RED_CONV) tm;; | |
let ECGROUP_MUL_CONV tm = | |
(GEN_REWRITE_CONV (RATOR_CONV o RATOR_CONV) (!ecgroup_muls) THENC | |
GEN_REWRITE_CONV I (!curveadd_clauses) THENC | |
DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV) THENC | |
REPEATC(let_CONV THENC DEPTH_CONV INTEGER_MOD_RING_RED_CONV)) tm;; | |
let ECGROUP_POW_CONV = | |
let pth = prove | |
(`!G x m n. | |
x IN group_carrier G | |
==> group_pow G x (2 * n) = group_pow G (group_mul G x x) n`, | |
SIMP_TAC[GSYM GROUP_POW_2; GROUP_POW_POW]) | |
and dth = prove | |
(`NUMERAL(BIT0 n) = 2 * NUMERAL n`, | |
REWRITE_TAC[MULT_2] THEN REWRITE_TAC[BIT0] THEN | |
REWRITE_TAC[NUMERAL]) in | |
let num_half_CONV = GEN_REWRITE_CONV I [dth] in | |
let conv_0 tm = | |
(GEN_REWRITE_CONV I [CONJUNCT1 group_pow] THENC | |
ECGROUP_ID_CONV) tm | |
and conv_1 = GEN_REWRITE_CONV I [CONJUNCT2 group_pow] | |
and conv_2 = PART_MATCH (lhand o rand) pth in | |
let rec conv tm = | |
match tm with | |
Comb(Comb(Comb(Const("group_pow",_),g),x),ntm) -> | |
let n = dest_numeral ntm in | |
if n =/ num_0 then conv_0 tm | |
else if mod_num n num_2 =/ num_1 then | |
(RAND_CONV num_CONV THENC conv_1 THENC | |
RAND_CONV conv THENC ECGROUP_MUL_CONV) tm | |
else | |
let th1 = RAND_CONV num_half_CONV tm in | |
let th2 = conv_2 (rand(concl th1)) in | |
let th3 = MP th2 | |
(EQT_ELIM((ECGROUP_CARRIER_CONV(lhand(concl th2))))) in | |
let th4 = TRANS th1 th3 in | |
CONV_RULE(RAND_CONV(LAND_CONV ECGROUP_MUL_CONV THENC conv)) th4 | |
| _ -> failwith "ECGROUP_POW_CONV" in | |
conv;; | |