Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Specific formulas for evaluating projective coordinate point operations. *) | |
(* ========================================================================= *) | |
needs "EC/projective.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Point doubling in projective coordinates. *) | |
(* *) | |
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) | |
(* ------------------------------------------------------------------------- *) | |
(*** | |
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3 | |
***) | |
let pr_dbl_2007_bl = new_definition | |
`pr_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) = | |
let xx = ring_pow f x1 2 in | |
let zz = ring_pow f z1 2 in | |
let t0 = ring_mul f (ring_of_num f 3) xx in | |
let t1 = ring_mul f a zz in | |
let w = ring_add f t1 t0 in | |
let t2 = ring_mul f y1 z1 in | |
let s = ring_mul f (ring_of_num f 2) t2 in | |
let ss = ring_pow f s 2 in | |
let sss = ring_mul f s ss in | |
let r = ring_mul f y1 s in | |
let rr = ring_pow f r 2 in | |
let t3 = ring_add f x1 r in | |
let t4 = ring_pow f t3 2 in | |
let t5 = ring_sub f t4 xx in | |
let b = ring_sub f t5 rr in | |
let t6 = ring_pow f w 2 in | |
let t7 = ring_mul f (ring_of_num f 2) b in | |
let h = ring_sub f t6 t7 in | |
let x3 = ring_mul f h s in | |
let t8 = ring_sub f b h in | |
let t9 = ring_mul f (ring_of_num f 2) rr in | |
let t10 = ring_mul f w t8 in | |
let y3 = ring_sub f t10 t9 in | |
let z3 = sss in | |
(x3,y3,z3)`;; | |
let PR_DBL_2007_BL = prove | |
(`!f a b x1 y1 z1:A. | |
field f /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
projective_point f (x1,y1,z1) | |
==> projective_eq f (pr_dbl_2007_bl (f,a,b) (x1,y1,z1)) | |
(projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN | |
REWRITE_TAC[pr_dbl_2007_bl; projective_add; projective_eq; | |
projective_neg; projective_0] THEN | |
ASM_CASES_TAC `z1:A = ring_0 f` THEN | |
ASM_REWRITE_TAC[projective_add; projective_eq; | |
projective_neg; projective_0] THEN | |
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN | |
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Point doubling in projective coordinates assuming a = -3. *) | |
(* *) | |
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *) | |
(* ------------------------------------------------------------------------- *) | |
(*** | |
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective-3/doubling/dbl-2007-bl-2.op3 | |
***) | |
let p3_dbl_2007_bl_2 = new_definition | |
`p3_dbl_2007_bl_2 (f:A ring,a:A,b:A) (x1,y1,z1) = | |
let t0 = ring_sub f x1 z1 in | |
let t1 = ring_add f x1 z1 in | |
let t2 = ring_mul f t0 t1 in | |
let w = ring_mul f (ring_of_num f 3) t2 in | |
let t3 = ring_mul f y1 z1 in | |
let s = ring_mul f (ring_of_num f 2) t3 in | |
let ss = ring_pow f s 2 in | |
let sss = ring_mul f s ss in | |
let r = ring_mul f y1 s in | |
let rr = ring_pow f r 2 in | |
let t4 = ring_mul f x1 r in | |
let b = ring_mul f (ring_of_num f 2) t4 in | |
let t5 = ring_pow f w 2 in | |
let t6 = ring_mul f (ring_of_num f 2) b in | |
let h = ring_sub f t5 t6 in | |
let x3 = ring_mul f h s in | |
let t7 = ring_sub f b h in | |
let t8 = ring_mul f (ring_of_num f 2) rr in | |
let t9 = ring_mul f w t7 in | |
let y3 = ring_sub f t9 t8 in | |
let z3 = sss in | |
(x3,y3,z3)`;; | |
let P3_DBL_2007_BL_2 = prove | |
(`!f a b x1 y1 z1:A. | |
field f /\ | |
a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\ | |
projective_point f (x1,y1,z1) | |
==> projective_eq f (p3_dbl_2007_bl_2 (f,a,b) (x1,y1,z1)) | |
(projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
REWRITE_TAC[p3_dbl_2007_bl_2; projective_add; projective_eq; | |
projective_neg; projective_0] THEN | |
ASM_CASES_TAC `z1:A = ring_0 f` THEN | |
ASM_REWRITE_TAC[projective_add; projective_eq; | |
projective_neg; projective_0] THEN | |
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN | |
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Point doubling in projective coordinates assuming a = 0. *) | |
(* *) | |
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." with *) | |
(* trivial constant propagation from a = 0. *) | |
(* ------------------------------------------------------------------------- *) | |
(*** | |
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3 | |
*** plus trivial constant propagation | |
***) | |
let p0_dbl_2007_bl = new_definition | |
`p0_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) = | |
let xx = ring_pow f x1 2 in | |
let zz = ring_pow f z1 2 in | |
let w = ring_mul f (ring_of_num f 3) xx in | |
let t2 = ring_mul f y1 z1 in | |
let s = ring_mul f (ring_of_num f 2) t2 in | |
let ss = ring_pow f s 2 in | |
let sss = ring_mul f s ss in | |
let r = ring_mul f y1 s in | |
let rr = ring_pow f r 2 in | |
let t3 = ring_add f x1 r in | |
let t4 = ring_pow f t3 2 in | |
let t5 = ring_sub f t4 xx in | |
let b = ring_sub f t5 rr in | |
let t6 = ring_pow f w 2 in | |
let t7 = ring_mul f (ring_of_num f 2) b in | |
let h = ring_sub f t6 t7 in | |
let x3 = ring_mul f h s in | |
let t8 = ring_sub f b h in | |
let t9 = ring_mul f (ring_of_num f 2) rr in | |
let t10 = ring_mul f w t8 in | |
let y3 = ring_sub f t10 t9 in | |
let z3 = sss in | |
(x3,y3,z3)`;; | |
let P0_DBL_2007_BL = prove | |
(`!f a b x1 y1 z1:A. | |
field f /\ | |
a = ring_0 f /\ b IN ring_carrier f /\ | |
projective_point f (x1,y1,z1) | |
==> projective_eq f (p0_dbl_2007_bl (f,a,b) (x1,y1,z1)) | |
(projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
REWRITE_TAC[p0_dbl_2007_bl; projective_add; projective_eq; | |
projective_neg; projective_0] THEN | |
ASM_CASES_TAC `z1:A = ring_0 f` THEN | |
ASM_REWRITE_TAC[projective_add; projective_eq; | |
projective_neg; projective_0] THEN | |
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN | |
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pure point addition in projective coordinates. This sequence never uses *) | |
(* the value of "a" so there's no special optimized version for special "a". *) | |
(* *) | |
(* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation" *) | |
(* *) | |
(* Note the correctness is not proved in cases where the points are equal *) | |
(* (or projectively equivalent), or either input is 0 (point at infinity). *) | |
(* ------------------------------------------------------------------------- *) | |
(*** | |
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/add-1998-cmo-2.op3 | |
***) | |
let pr_add_1998_cmo_2 = new_definition | |
`pr_add_1998_cmo_2 (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) = | |
let y1z2 = ring_mul f y1 z2 in | |
let x1z2 = ring_mul f x1 z2 in | |
let z1z2 = ring_mul f z1 z2 in | |
let t0 = ring_mul f y2 z1 in | |
let u = ring_sub f t0 y1z2 in | |
let uu = ring_pow f u 2 in | |
let t1 = ring_mul f x2 z1 in | |
let v = ring_sub f t1 x1z2 in | |
let vv = ring_pow f v 2 in | |
let vvv = ring_mul f v vv in | |
let r = ring_mul f vv x1z2 in | |
let t2 = ring_mul f (ring_of_num f 2) r in | |
let t3 = ring_mul f uu z1z2 in | |
let t4 = ring_sub f t3 vvv in | |
let a = ring_sub f t4 t2 in | |
let x3 = ring_mul f v a in | |
let t5 = ring_sub f r a in | |
let t6 = ring_mul f vvv y1z2 in | |
let t7 = ring_mul f u t5 in | |
let y3 = ring_sub f t7 t6 in | |
let z3 = ring_mul f vvv z1z2 in | |
(x3,y3,z3)`;; | |
let PR_ADD_1998_CMO_2 = prove | |
(`!f a b x1 y1 z1 x2 y2 z2:A. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\ | |
~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\ | |
~(projective_eq f (x1,y1,z1) (x2,y2,z2)) | |
==> projective_eq f (pr_add_1998_cmo_2 (f,a,b) (x1,y1,z1) (x2,y2,z2)) | |
(projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN | |
ASM_REWRITE_TAC[projective_eq; pr_add_1998_cmo_2; projective_add] THEN | |
REPEAT(COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[projective_add; projective_eq; | |
projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN | |
FIELD_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Mixed point addition in projective coordinates. Here "mixed" means *) | |
(* assuming z2 = 1, which holds if the second point was directly injected *) | |
(* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses *) | |
(* the value of "a" so there's no special optimized version for special "a". *) | |
(* *) | |
(* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation" *) | |
(* *) | |
(* Note the correctness is not proved in the case where the points are equal *) | |
(* or projectively equivalent, nor where the first is the group identity *) | |
(* (i.e. the point at infinity, anything with z1 = 0 in projective coords). *) | |
(* ------------------------------------------------------------------------- *) | |
(*** | |
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/madd-1998-cmo.op3 | |
***) | |
let pr_madd_1998_cmo = new_definition | |
`pr_madd_1998_cmo (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) = | |
let t0 = ring_mul f y2 z1 in | |
let u = ring_sub f t0 y1 in | |
let uu = ring_pow f u 2 in | |
let t1 = ring_mul f x2 z1 in | |
let v = ring_sub f t1 x1 in | |
let vv = ring_pow f v 2 in | |
let vvv = ring_mul f v vv in | |
let r = ring_mul f vv x1 in | |
let t2 = ring_mul f (ring_of_num f 2) r in | |
let t3 = ring_mul f uu z1 in | |
let t4 = ring_sub f t3 vvv in | |
let a = ring_sub f t4 t2 in | |
let x3 = ring_mul f v a in | |
let t5 = ring_sub f r a in | |
let t6 = ring_mul f vvv y1 in | |
let t7 = ring_mul f u t5 in | |
let y3 = ring_sub f t7 t6 in | |
let z3 = ring_mul f vvv z1 in | |
(x3,y3,z3)`;; | |
let PR_MADD_1998_CMO = prove | |
(`!f a b x1 y1 z1 x2 y2 z2:A. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\ | |
z2 = ring_1 f /\ | |
~(z1 = ring_0 f) /\ ~(projective_eq f (x1,y1,z1) (x2,y2,z2)) | |
==> projective_eq f (pr_madd_1998_cmo (f,a,b) (x1,y1,z1) (x2,y2,z2)) | |
(projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN | |
ASM_REWRITE_TAC[projective_eq; pr_madd_1998_cmo; projective_add] THEN | |
REPEAT(COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[projective_add; projective_eq; | |
projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN | |
FIELD_TAC);; | |