Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /EC /formulary_projective.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.7 kB
(* ========================================================================= *)
(* Specific formulas for evaluating projective coordinate point operations. *)
(* ========================================================================= *)
needs "EC/projective.ml";;
(* ------------------------------------------------------------------------- *)
(* Point doubling in projective coordinates. *)
(* *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3
***)
let pr_dbl_2007_bl = new_definition
`pr_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) =
let xx = ring_pow f x1 2 in
let zz = ring_pow f z1 2 in
let t0 = ring_mul f (ring_of_num f 3) xx in
let t1 = ring_mul f a zz in
let w = ring_add f t1 t0 in
let t2 = ring_mul f y1 z1 in
let s = ring_mul f (ring_of_num f 2) t2 in
let ss = ring_pow f s 2 in
let sss = ring_mul f s ss in
let r = ring_mul f y1 s in
let rr = ring_pow f r 2 in
let t3 = ring_add f x1 r in
let t4 = ring_pow f t3 2 in
let t5 = ring_sub f t4 xx in
let b = ring_sub f t5 rr in
let t6 = ring_pow f w 2 in
let t7 = ring_mul f (ring_of_num f 2) b in
let h = ring_sub f t6 t7 in
let x3 = ring_mul f h s in
let t8 = ring_sub f b h in
let t9 = ring_mul f (ring_of_num f 2) rr in
let t10 = ring_mul f w t8 in
let y3 = ring_sub f t10 t9 in
let z3 = sss in
(x3,y3,z3)`;;
let PR_DBL_2007_BL = prove
(`!f a b x1 y1 z1:A.
field f /\
a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f (x1,y1,z1)
==> projective_eq f (pr_dbl_2007_bl (f,a,b) (x1,y1,z1))
(projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN
REWRITE_TAC[pr_dbl_2007_bl; projective_add; projective_eq;
projective_neg; projective_0] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[projective_add; projective_eq;
projective_neg; projective_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
(* ------------------------------------------------------------------------- *)
(* Point doubling in projective coordinates assuming a = -3. *)
(* *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective-3/doubling/dbl-2007-bl-2.op3
***)
let p3_dbl_2007_bl_2 = new_definition
`p3_dbl_2007_bl_2 (f:A ring,a:A,b:A) (x1,y1,z1) =
let t0 = ring_sub f x1 z1 in
let t1 = ring_add f x1 z1 in
let t2 = ring_mul f t0 t1 in
let w = ring_mul f (ring_of_num f 3) t2 in
let t3 = ring_mul f y1 z1 in
let s = ring_mul f (ring_of_num f 2) t3 in
let ss = ring_pow f s 2 in
let sss = ring_mul f s ss in
let r = ring_mul f y1 s in
let rr = ring_pow f r 2 in
let t4 = ring_mul f x1 r in
let b = ring_mul f (ring_of_num f 2) t4 in
let t5 = ring_pow f w 2 in
let t6 = ring_mul f (ring_of_num f 2) b in
let h = ring_sub f t5 t6 in
let x3 = ring_mul f h s in
let t7 = ring_sub f b h in
let t8 = ring_mul f (ring_of_num f 2) rr in
let t9 = ring_mul f w t7 in
let y3 = ring_sub f t9 t8 in
let z3 = sss in
(x3,y3,z3)`;;
let P3_DBL_2007_BL_2 = prove
(`!f a b x1 y1 z1:A.
field f /\
a = ring_of_int f (-- &3) /\ b IN ring_carrier f /\
projective_point f (x1,y1,z1)
==> projective_eq f (p3_dbl_2007_bl_2 (f,a,b) (x1,y1,z1))
(projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
REWRITE_TAC[p3_dbl_2007_bl_2; projective_add; projective_eq;
projective_neg; projective_0] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[projective_add; projective_eq;
projective_neg; projective_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
(* ------------------------------------------------------------------------- *)
(* Point doubling in projective coordinates assuming a = 0. *)
(* *)
(* Source: Bernstein-Lange [2007] "Faster addition and doubling..." with *)
(* trivial constant propagation from a = 0. *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/doubling/dbl-2007-bl.op3
*** plus trivial constant propagation
***)
let p0_dbl_2007_bl = new_definition
`p0_dbl_2007_bl (f:A ring,a:A,b:A) (x1,y1,z1) =
let xx = ring_pow f x1 2 in
let zz = ring_pow f z1 2 in
let w = ring_mul f (ring_of_num f 3) xx in
let t2 = ring_mul f y1 z1 in
let s = ring_mul f (ring_of_num f 2) t2 in
let ss = ring_pow f s 2 in
let sss = ring_mul f s ss in
let r = ring_mul f y1 s in
let rr = ring_pow f r 2 in
let t3 = ring_add f x1 r in
let t4 = ring_pow f t3 2 in
let t5 = ring_sub f t4 xx in
let b = ring_sub f t5 rr in
let t6 = ring_pow f w 2 in
let t7 = ring_mul f (ring_of_num f 2) b in
let h = ring_sub f t6 t7 in
let x3 = ring_mul f h s in
let t8 = ring_sub f b h in
let t9 = ring_mul f (ring_of_num f 2) rr in
let t10 = ring_mul f w t8 in
let y3 = ring_sub f t10 t9 in
let z3 = sss in
(x3,y3,z3)`;;
let P0_DBL_2007_BL = prove
(`!f a b x1 y1 z1:A.
field f /\
a = ring_0 f /\ b IN ring_carrier f /\
projective_point f (x1,y1,z1)
==> projective_eq f (p0_dbl_2007_bl (f,a,b) (x1,y1,z1))
(projective_add (f,a,b) (x1,y1,z1) (x1,y1,z1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN STRIP_TAC THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN
REWRITE_TAC[p0_dbl_2007_bl; projective_add; projective_eq;
projective_neg; projective_0] THEN
ASM_CASES_TAC `z1:A = ring_0 f` THEN
ASM_REWRITE_TAC[projective_add; projective_eq;
projective_neg; projective_0] THEN
ASM_REWRITE_TAC[LET_DEF; LET_END_DEF; PAIR_EQ; projective_eq] THEN
FIELD_TAC THEN ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
(* ------------------------------------------------------------------------- *)
(* Pure point addition in projective coordinates. This sequence never uses *)
(* the value of "a" so there's no special optimized version for special "a". *)
(* *)
(* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation" *)
(* *)
(* Note the correctness is not proved in cases where the points are equal *)
(* (or projectively equivalent), or either input is 0 (point at infinity). *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/add-1998-cmo-2.op3
***)
let pr_add_1998_cmo_2 = new_definition
`pr_add_1998_cmo_2 (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
let y1z2 = ring_mul f y1 z2 in
let x1z2 = ring_mul f x1 z2 in
let z1z2 = ring_mul f z1 z2 in
let t0 = ring_mul f y2 z1 in
let u = ring_sub f t0 y1z2 in
let uu = ring_pow f u 2 in
let t1 = ring_mul f x2 z1 in
let v = ring_sub f t1 x1z2 in
let vv = ring_pow f v 2 in
let vvv = ring_mul f v vv in
let r = ring_mul f vv x1z2 in
let t2 = ring_mul f (ring_of_num f 2) r in
let t3 = ring_mul f uu z1z2 in
let t4 = ring_sub f t3 vvv in
let a = ring_sub f t4 t2 in
let x3 = ring_mul f v a in
let t5 = ring_sub f r a in
let t6 = ring_mul f vvv y1z2 in
let t7 = ring_mul f u t5 in
let y3 = ring_sub f t7 t6 in
let z3 = ring_mul f vvv z1z2 in
(x3,y3,z3)`;;
let PR_ADD_1998_CMO_2 = prove
(`!f a b x1 y1 z1 x2 y2 z2:A.
field f /\ ~(ring_char f = 2) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\
~(z1 = ring_0 f) /\ ~(z2 = ring_0 f) /\
~(projective_eq f (x1,y1,z1) (x2,y2,z2))
==> projective_eq f (pr_add_1998_cmo_2 (f,a,b) (x1,y1,z1) (x2,y2,z2))
(projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[projective_eq; pr_add_1998_cmo_2; projective_add] THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[projective_add; projective_eq;
projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
FIELD_TAC);;
(* ------------------------------------------------------------------------- *)
(* Mixed point addition in projective coordinates. Here "mixed" means *)
(* assuming z2 = 1, which holds if the second point was directly injected *)
(* from the Weierstrass coordinates via (x,y) |-> (x,y,1). This never uses *)
(* the value of "a" so there's no special optimized version for special "a". *)
(* *)
(* Source Cohen-Miyaji-Ono [1998] "Efficient elliptic curve exponentiation" *)
(* *)
(* Note the correctness is not proved in the case where the points are equal *)
(* or projectively equivalent, nor where the first is the group identity *)
(* (i.e. the point at infinity, anything with z1 = 0 in projective coords). *)
(* ------------------------------------------------------------------------- *)
(***
*** http://hyperelliptic.org/EFD/g1p/auto-code/shortw/projective/addition/madd-1998-cmo.op3
***)
let pr_madd_1998_cmo = new_definition
`pr_madd_1998_cmo (f:A ring,a:A,b:A) (x1,y1,z1) (x2,y2,z2) =
let t0 = ring_mul f y2 z1 in
let u = ring_sub f t0 y1 in
let uu = ring_pow f u 2 in
let t1 = ring_mul f x2 z1 in
let v = ring_sub f t1 x1 in
let vv = ring_pow f v 2 in
let vvv = ring_mul f v vv in
let r = ring_mul f vv x1 in
let t2 = ring_mul f (ring_of_num f 2) r in
let t3 = ring_mul f uu z1 in
let t4 = ring_sub f t3 vvv in
let a = ring_sub f t4 t2 in
let x3 = ring_mul f v a in
let t5 = ring_sub f r a in
let t6 = ring_mul f vvv y1 in
let t7 = ring_mul f u t5 in
let y3 = ring_sub f t7 t6 in
let z3 = ring_mul f vvv z1 in
(x3,y3,z3)`;;
let PR_MADD_1998_CMO = prove
(`!f a b x1 y1 z1 x2 y2 z2:A.
field f /\ ~(ring_char f = 2) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
projective_point f (x1,y1,z1) /\ projective_point f (x2,y2,z2) /\
z2 = ring_1 f /\
~(z1 = ring_0 f) /\ ~(projective_eq f (x1,y1,z1) (x2,y2,z2))
==> projective_eq f (pr_madd_1998_cmo (f,a,b) (x1,y1,z1) (x2,y2,z2))
(projective_add (f,a,b) (x1,y1,z1) (x2,y2,z2))`,
REPEAT GEN_TAC THEN REWRITE_TAC[projective_point] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[GSYM RING_CHAR_DIVIDES_PRIME; PRIME_2] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
ASM_REWRITE_TAC[projective_eq; pr_madd_1998_cmo; projective_add] THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[projective_add; projective_eq;
projective_neg; projective_0; LET_DEF; LET_END_DEF]) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o check (free_in `(=):A->A->bool` o concl))) THEN
FIELD_TAC);;