Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* *) | |
(* Quantum optics library: utilities. *) | |
(* *) | |
(* (c) Copyright, Mohamed Yousri Mahmoud, Vincent Aravantinos, 2012-2013 *) | |
(* Hardware Verification Group, *) | |
(* Concordia University *) | |
(* *) | |
(* Contact: <mosolim@ece.concordia.ca>, <vincent@ece.concordia.ca> *) | |
(* *) | |
(* Last update: Feb 27, 2013 *) | |
(* *) | |
(* ========================================================================= *) | |
needs "Library/q.ml";; | |
let EQ_TO_IMP = TAUT `!P Q. (P <=> Q) <=> (P ==> Q) /\ (Q==>P)`;; | |
let EQ_NOT = TAUT `!P Q.(~P <=> ~Q) <=> (P <=> Q)`;; | |
let LET_DEFS = CONJ LET_DEF LET_END_DEF;; | |
module Pa = | |
struct | |
include Pa | |
let COMPLEX_FIELD = call_with_interface prioritize_complex COMPLEX_FIELD;; | |
let SIMPLE_COMPLEX_ARITH = | |
call_with_interface prioritize_complex SIMPLE_COMPLEX_ARITH; | |
end;; | |
let HINT_EXISTS_TAC (hs,c as g) = | |
let hs = map snd hs in | |
let v,c' = dest_exists c in | |
let vs,c' = strip_exists c' in | |
let hyp_match c h = | |
ignore (check (not o exists (C mem vs) o frees) c); | |
term_match (subtract (frees c) [v]) c (concl h), h | |
in | |
let (_,subs,_),h = tryfind (C tryfind hs o hyp_match) (binops `/\` c') in | |
let witness = | |
match subs with | |
|[] -> v | |
|[t,u] when u = v -> t | |
|_ -> failwith "HINT_EXISTS_TAC not applicable" | |
in | |
(EXISTS_TAC witness THEN REWRITE_TAC hs) g;; | |
let GEN_PURE_MP_REWR_TAC sel th = | |
let PART_MATCH = | |
let concl = snd o dest_imp in | |
let body = snd o strip_forall o concl in | |
try PART_MATCH (lhs o body) th | |
with _ -> | |
let f1 = PART_MATCH concl th and f2 = PART_MATCH body th in | |
fun t -> try f1 t with _ -> f2 t | |
in | |
fun (_,c as g) -> | |
let th = ref TRUTH in | |
let match_term t = try th := PART_MATCH t; true with _ -> false in | |
ignore (find_term match_term (sel c)); | |
let _,big_th = EQ_IMP_RULE (ONCE_REWRITE_CONV[UNDISCH (SPEC_ALL !th)] c) in | |
let mp_th = (GEN_ALL o ONCE_REWRITE_RULE[IMP_IMP] o DISCH_ALL) big_th in | |
MATCH_MP_TAC mp_th g;; | |
let PURE_MP_REWR_TAC = GEN_PURE_MP_REWR_TAC I;; | |
let GEN_MP_REWR_TAC s x = | |
GEN_PURE_MP_REWR_TAC s x THEN TRY HINT_EXISTS_TAC THEN ASM_REWRITE_TAC[];; | |
let MP_REWR_TAC = GEN_MP_REWR_TAC I;; | |
let MP_REWRITE_TAC = MAP_EVERY MP_REWR_TAC;; | |
let CASES_REWRITE_TAC th (_,c as g) = | |
let PART_MATCH = | |
let concl = snd o dest_imp in | |
let body = snd o strip_forall o concl in | |
try PART_MATCH (lhs o body) th | |
with _ -> | |
let f1 = PART_MATCH concl th and f2 = PART_MATCH body th in | |
fun t -> try f1 t with _ -> f2 t | |
in | |
let th = ref TRUTH in | |
ignore (find_term (fun t -> try th := PART_MATCH t; true with _ -> false) c); | |
(ASM_CASES_TAC (lhand (concl !th)) THENL [ | |
POP_ASSUM (fun x -> REWRITE_TAC[MP !th x] THEN ASSUME_TAC x); | |
POP_ASSUM (ASSUME_TAC o REWRITE_RULE[NOT_CLAUSES])]) g;; | |
let wrap f x = f [x];; | |
let CONJS xs = end_itlist CONJ xs;; | |
let rec simp_horn_conv = | |
let fact (x,y) = if x = [] then y else fail () in | |
let rec tl = function [] -> [] | _::xs -> xs in | |
fun l -> | |
let fixpoint = ref true in | |
let l' = | |
rev_itlist (fun (hs,cs) (dones,todos) -> | |
let facts = flat (mapfilter fact (dones@todos)) in | |
let f = filter (not o C mem facts) in | |
let hs' = f hs in | |
let cs' = filter (not o C mem hs') (f cs) in | |
if not (hs' = hs) || not (cs' = cs) then fixpoint := false; | |
if (cs' = [] && cs <> []) | |
then (dones,tl todos) | |
else ((hs',cs')::dones),tl todos) | |
l ([],tl l) | |
in | |
if !fixpoint then l else simp_horn_conv (fst l');; | |
let horns_of_term = | |
let strip_conj = binops `(/\)` in | |
fun t -> map (fun t -> | |
try | |
let h,c = dest_imp t in | |
strip_conj h,strip_conj c | |
with _ -> [],[t]) (strip_conj t);; | |
let term_of_horns = | |
let term_of_horn = function | |
|[],cs -> list_mk_conj cs | |
|_,[] -> `T` | |
|hs,cs -> mk_imp (list_mk_conj hs,list_mk_conj cs) | |
in | |
list_mk_conj o map term_of_horn;; | |
let SIMP_HORN_CONV t = | |
TAUT (mk_eq (t,((term_of_horns o simp_horn_conv o horns_of_term) t)));; | |
let SIMP_HORN_TAC = | |
ASSUM_LIST (fun xs -> | |
TRY (fun g -> (MP_TAC (CONJS xs) THEN REWRITE_TAC[IMP_IMP]) g) | |
THEN CONV_TAC (TOP_DEPTH_CONV (CHANGED_CONV SIMP_HORN_CONV)) | |
THEN REWRITE_TAC xs);; | |
let rec fixpoint f x = | |
let y = f x in | |
if y = x then y else fixpoint f y;; | |
let gimp_imp = | |
let rec self vars premisses t = | |
try | |
let v,b = dest_forall t in | |
self (v::vars) premisses b | |
with _ -> | |
try | |
let p,c = dest_imp t in | |
self vars (p::premisses) c | |
with _ -> | |
let body = | |
match premisses with | |
|[] -> t | |
|_::_ -> mk_imp(list_mk_conj (rev premisses),t) | |
in | |
list_mk_forall(rev vars,body) | |
in | |
self [] [];; | |
let GIMP_IMP_CONV t = MESON[](mk_eq(t,gimp_imp t));; | |
let GIMP_IMP = CONV_RULE GIMP_IMP_CONV;; | |
let MATCH_TRANS thm1 thm2 = | |
GEN_ALL (DISCH_ALL (MATCH_MP thm2 (UNDISCH (SPEC_ALL thm1))));; | |
let GCONV_TAC = CONV_TAC o DEPTH_CONV o CHANGED_CONV;; | |
let LET_RULE thm = REWRITE_RULE[LET_DEF;LET_END_DEF] thm;; | |
let LET_RULE_L l thm = REWRITE_RULE([LET_DEF;LET_END_DEF]@l) thm;; | |
let SPEC_V (x,v) thm = (Pa.SPEC v o Pa.GEN x o SPEC_ALL) thm;; | |