Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.79 kB
(* ========================================================================= *)
(* *)
(* Quantum optics library: utilities. *)
(* *)
(* (c) Copyright, Mohamed Yousri Mahmoud, Vincent Aravantinos, 2012-2013 *)
(* Hardware Verification Group, *)
(* Concordia University *)
(* *)
(* Contact: <mosolim@ece.concordia.ca>, <vincent@ece.concordia.ca> *)
(* *)
(* Last update: Feb 27, 2013 *)
(* *)
(* ========================================================================= *)
needs "Library/q.ml";;
let EQ_TO_IMP = TAUT `!P Q. (P <=> Q) <=> (P ==> Q) /\ (Q==>P)`;;
let EQ_NOT = TAUT `!P Q.(~P <=> ~Q) <=> (P <=> Q)`;;
let LET_DEFS = CONJ LET_DEF LET_END_DEF;;
module Pa =
struct
include Pa
let COMPLEX_FIELD = call_with_interface prioritize_complex COMPLEX_FIELD;;
let SIMPLE_COMPLEX_ARITH =
call_with_interface prioritize_complex SIMPLE_COMPLEX_ARITH;
end;;
let HINT_EXISTS_TAC (hs,c as g) =
let hs = map snd hs in
let v,c' = dest_exists c in
let vs,c' = strip_exists c' in
let hyp_match c h =
ignore (check (not o exists (C mem vs) o frees) c);
term_match (subtract (frees c) [v]) c (concl h), h
in
let (_,subs,_),h = tryfind (C tryfind hs o hyp_match) (binops `/\` c') in
let witness =
match subs with
|[] -> v
|[t,u] when u = v -> t
|_ -> failwith "HINT_EXISTS_TAC not applicable"
in
(EXISTS_TAC witness THEN REWRITE_TAC hs) g;;
let GEN_PURE_MP_REWR_TAC sel th =
let PART_MATCH =
let concl = snd o dest_imp in
let body = snd o strip_forall o concl in
try PART_MATCH (lhs o body) th
with _ ->
let f1 = PART_MATCH concl th and f2 = PART_MATCH body th in
fun t -> try f1 t with _ -> f2 t
in
fun (_,c as g) ->
let th = ref TRUTH in
let match_term t = try th := PART_MATCH t; true with _ -> false in
ignore (find_term match_term (sel c));
let _,big_th = EQ_IMP_RULE (ONCE_REWRITE_CONV[UNDISCH (SPEC_ALL !th)] c) in
let mp_th = (GEN_ALL o ONCE_REWRITE_RULE[IMP_IMP] o DISCH_ALL) big_th in
MATCH_MP_TAC mp_th g;;
let PURE_MP_REWR_TAC = GEN_PURE_MP_REWR_TAC I;;
let GEN_MP_REWR_TAC s x =
GEN_PURE_MP_REWR_TAC s x THEN TRY HINT_EXISTS_TAC THEN ASM_REWRITE_TAC[];;
let MP_REWR_TAC = GEN_MP_REWR_TAC I;;
let MP_REWRITE_TAC = MAP_EVERY MP_REWR_TAC;;
let CASES_REWRITE_TAC th (_,c as g) =
let PART_MATCH =
let concl = snd o dest_imp in
let body = snd o strip_forall o concl in
try PART_MATCH (lhs o body) th
with _ ->
let f1 = PART_MATCH concl th and f2 = PART_MATCH body th in
fun t -> try f1 t with _ -> f2 t
in
let th = ref TRUTH in
ignore (find_term (fun t -> try th := PART_MATCH t; true with _ -> false) c);
(ASM_CASES_TAC (lhand (concl !th)) THENL [
POP_ASSUM (fun x -> REWRITE_TAC[MP !th x] THEN ASSUME_TAC x);
POP_ASSUM (ASSUME_TAC o REWRITE_RULE[NOT_CLAUSES])]) g;;
let wrap f x = f [x];;
let CONJS xs = end_itlist CONJ xs;;
let rec simp_horn_conv =
let fact (x,y) = if x = [] then y else fail () in
let rec tl = function [] -> [] | _::xs -> xs in
fun l ->
let fixpoint = ref true in
let l' =
rev_itlist (fun (hs,cs) (dones,todos) ->
let facts = flat (mapfilter fact (dones@todos)) in
let f = filter (not o C mem facts) in
let hs' = f hs in
let cs' = filter (not o C mem hs') (f cs) in
if not (hs' = hs) || not (cs' = cs) then fixpoint := false;
if (cs' = [] && cs <> [])
then (dones,tl todos)
else ((hs',cs')::dones),tl todos)
l ([],tl l)
in
if !fixpoint then l else simp_horn_conv (fst l');;
let horns_of_term =
let strip_conj = binops `(/\)` in
fun t -> map (fun t ->
try
let h,c = dest_imp t in
strip_conj h,strip_conj c
with _ -> [],[t]) (strip_conj t);;
let term_of_horns =
let term_of_horn = function
|[],cs -> list_mk_conj cs
|_,[] -> `T`
|hs,cs -> mk_imp (list_mk_conj hs,list_mk_conj cs)
in
list_mk_conj o map term_of_horn;;
let SIMP_HORN_CONV t =
TAUT (mk_eq (t,((term_of_horns o simp_horn_conv o horns_of_term) t)));;
let SIMP_HORN_TAC =
ASSUM_LIST (fun xs ->
TRY (fun g -> (MP_TAC (CONJS xs) THEN REWRITE_TAC[IMP_IMP]) g)
THEN CONV_TAC (TOP_DEPTH_CONV (CHANGED_CONV SIMP_HORN_CONV))
THEN REWRITE_TAC xs);;
let rec fixpoint f x =
let y = f x in
if y = x then y else fixpoint f y;;
let gimp_imp =
let rec self vars premisses t =
try
let v,b = dest_forall t in
self (v::vars) premisses b
with _ ->
try
let p,c = dest_imp t in
self vars (p::premisses) c
with _ ->
let body =
match premisses with
|[] -> t
|_::_ -> mk_imp(list_mk_conj (rev premisses),t)
in
list_mk_forall(rev vars,body)
in
self [] [];;
let GIMP_IMP_CONV t = MESON[](mk_eq(t,gimp_imp t));;
let GIMP_IMP = CONV_RULE GIMP_IMP_CONV;;
let MATCH_TRANS thm1 thm2 =
GEN_ALL (DISCH_ALL (MATCH_MP thm2 (UNDISCH (SPEC_ALL thm1))));;
let GCONV_TAC = CONV_TAC o DEPTH_CONV o CHANGED_CONV;;
let LET_RULE thm = REWRITE_RULE[LET_DEF;LET_END_DEF] thm;;
let LET_RULE_L l thm = REWRITE_RULE([LET_DEF;LET_END_DEF]@l) thm;;
let SPEC_V (x,v) thm = (Pa.SPEC v o Pa.GEN x o SPEC_ALL) thm;;