Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
32.1 kB
(* ========================================================================= *)
(* Canonical models in FOL and their use to derive classic metatheorems. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Domain of a canonical model for given language. *)
(* ------------------------------------------------------------------------- *)
let terms_RULES,terms_INDUCT,terms_CASES = new_inductive_definition
`(!x. terms fns (V x)) /\
(!f l. (f,LENGTH l) IN fns /\ ALL (terms fns) l
==> terms fns (Fn f l))`;;
(* ------------------------------------------------------------------------- *)
(* A few obvious lemmas. *)
(* ------------------------------------------------------------------------- *)
let STUPID_CANONDOM_LEMMA = prove
(`!t. t IN terms(FST L) ==> functions_term t SUBSET (FST L)`,
let lemma0 = prove
(`a SUBSET s /\ b SUBSET s ==> (a UNION b) SUBSET s`,SET_TAC[]) in
let lemma1 = prove
(`a IN s /\ b SUBSET s ==> (a INSERT b) SUBSET s`,SET_TAC[]) in
let lemma2 = prove
(`!l. ALL (\x. x SUBSET s) l ==> LIST_UNION l SUBSET s`,
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; LIST_UNION; EMPTY_SUBSET] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma0 THEN ASM_MESON_TAC[]) in
REWRITE_TAC[IN] THEN MATCH_MP_TAC terms_INDUCT THEN
REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma1 THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC lemma2 THEN
ASM_REWRITE_TAC[ALL_MAP; o_DEF]);;
let FINITE_SUBSET_INSTANCE = prove
(`!t'. FINITE(t')
==> t' SUBSET { formsubst v p | P(v) /\ p IN s}
==> ?t. FINITE(t) /\ t SUBSET s /\
t' SUBSET {formsubst v p | P(v) /\ p IN t}`,
let lemma = prove
(`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in
MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[EMPTY_SUBSET] THEN
EXISTS_TAC `EMPTY:form->bool` THEN
REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET];
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN
DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)) INSERT t0` THEN
ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
DISCH_THEN(MP_TAC o SELECT_RULE) THEN
DISCH_THEN(X_CHOOSE_THEN `v:num->term` MP_TAC) THEN
SPEC_TAC(`@p. ?v. (P v /\ p IN s) /\ (x = formsubst v p)`,`q:form`) THEN
UNDISCH_TAC `s' SUBSET {formsubst v p | P v /\ p IN t0}` THEN
UNDISCH_TAC `x IN {formsubst v p | P v /\ p IN s}` THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT] THEN MESON_TAC[]]);;
let FINITE_SUBSET_SKOLEM = prove
(`!s u. FINITE(u)
==> u SUBSET { SKOLEM p | p IN s}
==> ?t. FINITE(t) /\ t SUBSET s /\
(u = {SKOLEM p | p IN t})`,
let lemma = prove
(`(a INSERT s) SUBSET t <=> a IN t /\ s SUBSET t`,SET_TAC[]) in
let lemma2 = prove
(`{SKOLEM p | p IN x INSERT s} =
(SKOLEM x) INSERT {SKOLEM p | p IN s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN SET_TAC[]) in
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[EMPTY_SUBSET] THEN
EXISTS_TAC `EMPTY:form->bool` THEN
REWRITE_TAC[FINITE_RULES; EMPTY_SUBSET; NOT_IN_EMPTY] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY]; ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[lemma] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
ANTE_RES_THEN MP_TAC (CONJUNCT2 th)) THEN
DISCH_THEN(X_CHOOSE_THEN `t0:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(@p. p IN s /\ (x = SKOLEM p)) INSERT t0` THEN
ASM_REWRITE_TAC[FINITE_INSERT; lemma] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN]) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[IN_ELIM_THM]) THEN
DISCH_THEN(MP_TAC o SELECT_RULE) THEN STRIP_TAC THEN
ASM_REWRITE_TAC[lemma2] THEN
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM)) THEN REFL_TAC);;
let VALUATION_EXISTS = prove
(`!M. ~(Dom(M) = EMPTY) ==> ?v:num->A. valuation(M) v`,
GEN_TAC THEN REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
EXISTS_TAC `\x:num. a:A` THEN
ASM_REWRITE_TAC[valuation]);;
let HOLDS_ITLIST_EXISTS = prove
(`!M xs v. holds M v (ITLIST ?? xs p) <=>
?as. (LENGTH as = LENGTH xs) /\
ALL (Dom M) as /\
holds M
(ITLIST valmod (REVERSE (MAP2 (\x a:A. (x,a)) xs as)) v)
p`,
GEN_TAC THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[HOLDS; LENGTH; ITLIST; MAP2_DEF; HD;
TL; REVERSE; APPEND] THENL
[MESON_TAC[ALL; LENGTH]; REWRITE_TAC[ITLIST_EXTRA; IN]] THEN
GEN_TAC THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `as:A list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `CONS (a:A) as` THEN ASM_REWRITE_TAC[ALL; TL; HD; LENGTH];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
REWRITE_TAC[ALL; SUC_INJ; HD; TL] THEN MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Canonical model based on the language of a set of formulas. *)
(* ------------------------------------------------------------------------- *)
let canonical = new_definition
`canonical (L:(num#num->bool)#(num#num->bool)) M <=>
(Dom M = terms (FST L)) /\
(!f. Fun(M) f = Fn f)`;;
(* ------------------------------------------------------------------------- *)
(* Mappings between models and propositional valuations. *)
(* ------------------------------------------------------------------------- *)
let prop_of_model = new_definition
`prop_of_model M v (Atom p l) <=> holds M v (Atom p l)`;;
let canon_of_prop = new_definition
`canon_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) =
terms(FST L),Fn,\p l. d(Atom p l)`;;
let PHOLDS_PROP_OF_MODEL = prove
(`!p. qfree(p) ==> (pholds (prop_of_model M v) p <=> holds M v p)`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[qfree; holds; pholds] THEN CONJ_TAC THENL
[REWRITE_TAC[prop_of_model; holds];
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC]);;
let PROP_OF_CANON_OF_PROP = prove
(`!p l. prop_of_model (canon_of_prop L d) V (Atom p l) = d (Atom p l)`,
REWRITE_TAC[prop_of_model; canon_of_prop; holds; Pred_DEF] THEN
REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
SPEC_TAC(`h:term`,`t:term`) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; Fun_DEF] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;
let HOLDS_CANON_OF_PROP = prove
(`!p. qfree p ==> (holds (canon_of_prop L d) V p <=> pholds d p)`,
GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[pholds; qfree; PROP_OF_CANON_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);;
let HOLDS_CANON_OF_PROP_GENERAL = prove
(`qfree p ==> (holds (canon_of_prop L d) v p <=> pholds d (formsubst v p))`,
DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_CANON_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THENL
[ALL_TAC;
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN
REFL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; canon_of_prop; holds] THEN
REWRITE_TAC[Pred_DEF] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);;
let CANONICAL_CANON_OF_PROP = prove
(`!d. canonical L (canon_of_prop L d)`,
REWRITE_TAC[canonical; canon_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);;
let INTERPRETATION_CANON_OF_PROP = prove
(`!L d. interpretation L (canon_of_prop L d)`,
REWRITE_TAC[FORALL_PAIR_THM; IN; ETA_AX;
interpretation; canon_of_prop; Fun_DEF; Dom_DEF] THEN
MESON_TAC[terms_RULES; IN]);;
(* ------------------------------------------------------------------------- *)
(* Equivalence theorems for tautologies. *)
(* ------------------------------------------------------------------------- *)
let PROP_VALID_IMP_FOL_VALID = prove
(`!p. qfree(p) /\ (!d. pholds d p) ==> !M v. holds M v p`,
MESON_TAC[PHOLDS_PROP_OF_MODEL]);;
let FOL_VALID_IMP_PROP_VALID = prove
(`!p. qfree(p) /\
(!C (v:num->term). canonical(language {p}) C ==> holds C v p)
==> !d. pholds d p`,
MESON_TAC[CANONICAL_CANON_OF_PROP; HOLDS_CANON_OF_PROP]);;
(* ------------------------------------------------------------------------- *)
(* Same thing for satisfiability. *)
(* ------------------------------------------------------------------------- *)
let SATISFIES_PSATISFIES = prove
(`(!p. p IN s ==> qfree p) /\ M satisfies s /\ valuation(M) v
==> (prop_of_model M v) psatisfies s`,
REWRITE_TAC[satisfies; psatisfies] THEN MESON_TAC[PHOLDS_PROP_OF_MODEL]);;
let PSATISFIES_INSTANCES = prove
(`(!p. p IN s ==> qfree p) /\
d psatisfies {formsubst v p | (!x. v x IN terms(FST L)) /\ p IN s}
==> (canon_of_prop L d) satisfies s`,
REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
STRIP_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[canon_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p)` MP_TAC THENL
[ASM_MESON_TAC[HOLDS_CANON_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN
SUBGOAL_THEN `holds (canon_of_prop L d) V (formsubst v p) <=>
holds (canon_of_prop L d) (termval (canon_of_prop L d) V o v)
p`
SUBST1_TAC THENL
[REWRITE_TAC[HOLDS_FORMSUBST] THEN
ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY];
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN
MATCH_MP_TAC TERMVAL_TRIV THEN
REWRITE_TAC[canon_of_prop; Fun_DEF]]);;
let SATISFIES_INSTANCES = prove
(`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s t.
interpretation(language t) M
==> (M satisfies
{formsubst i p | p IN s /\
(!x. i x IN terms(FST(language t)))} <=>
M satisfies s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
EQ_TAC THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[FORMSUBST_TRIV; terms_RULES; IN]; ALL_TAC] THEN
ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[valuation; o_THM] THEN GEN_TAC THEN
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `predicates t` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language t)
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[language] THEN MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
SUBGOAL_THEN `functions t = FST(language t)` SUBST1_TAC THENL
[REWRITE_TAC[language]; ALL_TAC] THEN
MATCH_MP_TAC STUPID_CANONDOM_LEMMA THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* So we have compactness in a strong form. *)
(* ------------------------------------------------------------------------- *)
let COMPACT_CANON_QFREE = prove
(`(!p. p IN s ==> qfree p) /\
(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language ss) M /\
~(Dom(M):A->bool = EMPTY) /\
M satisfies t)
==> ?C. interpretation (language ss) C /\
canonical (language ss) C /\
C satisfies s`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`psatisfiable {formsubst v p | (!x. v x IN terms(FST(language ss))) /\
p IN s}`
MP_TAC THENL
[REWRITE_TAC[psatisfiable] THEN MATCH_MP_TAC COMPACT_PROP THEN
REWRITE_TAC[GSYM psatisfiable] THEN
X_GEN_TAC `u:form->bool` THEN STRIP_TAC THEN
SUBGOAL_THEN
`?t. FINITE(t) /\ t SUBSET s /\
u SUBSET {formsubst v p |
(!x. v x IN terms (FST (language ss))) /\
p IN t}`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC(REWRITE_RULE[TAUT `(a ==> b ==> c) <=> a /\ b ==> c`]
(GEN_ALL FINITE_SUBSET_INSTANCE)) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC SATISFIABLE_MONO THEN
EXISTS_TAC `{formsubst v p |
(!x. v x IN terms (FST (language ss))) /\
p IN t}` THEN
ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN
FIRST_ASSUM(CHOOSE_TAC o MATCH_MP VALUATION_EXISTS) THEN
MP_TAC(SPEC `ss:form->bool` (SPEC `t:form->bool`
(snd(SPEC_VAR SATISFIES_INSTANCES)))) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `!p. p IN t ==> qfree p` (fun th -> REWRITE_TAC[th]) THENL
[ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN DISCH_TAC THEN
REWRITE_TAC[psatisfiable] THEN
EXISTS_TAC `prop_of_model M (v:num->A)` THEN
REWRITE_TAC[GSYM psatisfies] THEN
MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE_FORMSUBST] THEN
ASM_MESON_TAC[SUBSET];
RULE_ASSUM_TAC(REWRITE_RULE[CONJ_ACI]) THEN
ASM_REWRITE_TAC[CONJ_ACI]]; ALL_TAC] THEN
REWRITE_TAC[psatisfiable; GSYM psatisfies] THEN
DISCH_THEN(X_CHOOSE_THEN `d:form->bool` ASSUME_TAC) THEN
EXISTS_TAC `canon_of_prop (language ss) d` THEN
REWRITE_TAC[CANONICAL_CANON_OF_PROP; INTERPRETATION_CANON_OF_PROP] THEN
MATCH_MP_TAC PSATISFIES_INSTANCES THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Tedious lemma about sublanguage. *)
(* ------------------------------------------------------------------------- *)
let INTERPRETATION_RESTRICTLANGUAGE = prove
(`!M s t. t SUBSET s /\ interpretation(language s) M
==> interpretation(language t) M`,
REPEAT GEN_TAC THEN
REWRITE_TAC[IMP_CONJ] THEN
DISCH_TAC THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
REWRITE_TAC[functions] THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_UNIONS] THEN MESON_TAC[]);;
let INTERPRETATION_EXTENDLANGUAGE = prove
(`!M s t.
interpretation (language t) M /\
~(Dom M :A->bool = EMPTY) /\
M satisfies t
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
interpretation(language s) M' /\
M' satisfies t`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `Dom(M):A->bool,
(\g zs. if (g,LENGTH zs) IN functions t then Fun(M) g zs
else @a. a IN Dom(M)),
Pred(M)` THEN
REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF; interpretation; language] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE [language; interpretation]) THEN
ASM_REWRITE_TAC[];
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN
REWRITE_TAC[satisfies] THEN
REWRITE_TAC[valuation; Dom_DEF] THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
STRIP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_FUNCTIONS THEN
REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE[functions; IN_UNIONS; IN_ELIM_THM]) THEN
ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Generalize to any formulas, via Skolemization. *)
(* ------------------------------------------------------------------------- *)
let COMPACT_LS = prove
(`(!t. FINITE t /\ t SUBSET s ==> ?M. interpretation(language s) M /\
~(Dom(M):A->bool = EMPTY) /\
M satisfies t)
==> ?C. interpretation (language s) C /\
~(Dom(C):term->bool = EMPTY) /\
C satisfies s`,
let lemma = prove
(`(!y. p y ==> p' y)
==> (?x. p x) ==> (?x. p' x)`,
MESON_TAC[]) in
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!u. FINITE u /\ u SUBSET {SKOLEM p | p IN s}
==> ?M. interpretation(language {SKOLEM p | p IN s}) M /\
~(Dom(M):A->bool = EMPTY) /\
M satisfies u`
ASSUME_TAC THENL
[REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?t. (u = {SKOLEM p | p IN t}) /\
FINITE t /\ t SUBSET s`
(CHOOSE_THEN (CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THENL
[MP_TAC(SPECL [`s:form->bool`; `u:form->bool`] FINITE_SUBSET_SKOLEM) THEN
ASM_REWRITE_TAC[CONJ_ACI]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `t:form->bool`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN
`M:(A->bool)#(num->A list->A)#(num->A list->bool)`
STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`(?M. ~(Dom M:A->bool = EMPTY) /\
interpretation(language t) M /\
M satisfies t)`
(MP_TAC o GEN_REWRITE_RULE I [SKOLEM_SATISFIABLE]) THENL
[EXISTS_TAC `M:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC INTERPRETATION_RESTRICTLANGUAGE THEN
EXISTS_TAC `s:form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN
`M0:(A->bool)#(num->A list->A)#(num->A list->bool)`
STRIP_ASSUME_TAC) THEN
MP_TAC(ISPEC `M0:(A->bool)#(num->A list->A)#(num->A list->bool)`
INTERPRETATION_EXTENDLANGUAGE) THEN
DISCH_THEN(MP_TAC o SPECL
[`{SKOLEM p | p IN s}`; `{SKOLEM p | p IN t}`]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN
`M1:(A->bool)#(num->A list->A)#(num->A list->bool)`
STRIP_ASSUME_TAC) THEN
EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MP_TAC(INST [`{SKOLEM p | p IN s}`,`s:form->bool`;
`{SKOLEM p | p IN s}`,`ss:form->bool`]
COMPACT_CANON_QFREE) THEN
ASM_REWRITE_TAC[] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[REWRITE_TAC[IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SKOLEM_QFREE]; ALL_TAC] THEN
ONCE_REWRITE_TAC[AC CONJ_ACI `a /\ b /\ c <=> b /\ a /\ c`] THEN
GEN_REWRITE_TAC RAND_CONV [SKOLEM_SATISFIABLE] THEN
MATCH_MP_TAC lemma THEN REWRITE_TAC[canonical] THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN] THEN
MESON_TAC[terms_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Split away the compactness argument. *)
(* ------------------------------------------------------------------------- *)
let CANON = prove
(`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s.
interpretation (language s) M /\
~(Dom(M) = EMPTY) /\
(!p. p IN s ==> qfree p) /\ M satisfies s
==> ?C. interpretation (language s) C /\
~(Dom C :term->bool = EMPTY) /\
C satisfies s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC COMPACT_LS THEN
ASM_MESON_TAC[satisfies; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* Conventional form of the LS theorem. *)
(* ------------------------------------------------------------------------- *)
let term_of_num = new_definition
`term_of_num n = (@t. num_of_term t = n)`;;
let TERM_OF_NUM = prove
(`term_of_num(num_of_term t) = t`,
REWRITE_TAC[term_of_num; NUM_OF_TERM_INJ]);;
let LOWMOD = new_definition
`LOWMOD M = {num_of_term t | t IN Dom(M)},
(\g zs. num_of_term (Fun(M) g (MAP term_of_num zs))),
(\p zs. Pred(M) p (MAP term_of_num zs))`;;
let LOWMOD_DOM_EMPTY = prove
(`(Dom(LOWMOD M) = EMPTY) <=> (Dom(M) = EMPTY)`,
REWRITE_TAC[Dom_DEF; LOWMOD; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
MESON_TAC[]);;
let LOWMOD_TERMVAL = prove
(`!v. valuation (LOWMOD M) v
==> !t. termval (LOWMOD M) v t =
num_of_term (termval M (term_of_num o v) t)`,
GEN_TAC THEN DISCH_THEN
(ASSUME_TAC o REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN
CONJ_TAC THENL [ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN
REWRITE_TAC[LOWMOD; Fun_DEF] THEN REWRITE_TAC[GSYM LOWMOD] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN
ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[o_THM; TERM_OF_NUM]);;
let LOWMOD_HOLDS = prove
(`!p v. valuation (LOWMOD M) v
==> (holds (LOWMOD M) v p <=> holds M (term_of_num o v) p)`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[holds] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN REWRITE_TAC[LOWMOD; Pred_DEF] THEN
REWRITE_TAC[GSYM LOWMOD] THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM MAP_o] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
ASM_SIMP_TAC[LOWMOD_TERMVAL; TERM_OF_NUM];
MESON_TAC[];
REPEAT STRIP_TAC THEN
REWRITE_TAC[Dom_DEF; LOWMOD] THEN REWRITE_TAC[GSYM LOWMOD] THEN
SUBGOAL_THEN `!a. a IN {num_of_term t | t IN Dom M}
==> valuation (LOWMOD M) (valmod (a0:num,a) v)`
MP_TAC THENL
[GEN_TAC THEN REWRITE_TAC[valuation; valmod; LOWMOD; Dom_DEF] THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[IN_ELIM_THM] THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation; LOWMOD; Dom_DEF; IN_ELIM_THM]) THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(fun th -> ASM_SIMP_TAC[th]) THEN
SUBGOAL_THEN `!P. (!a. a IN {num_of_term t | t IN Dom(M)} ==> P(a)) <=>
(!a. a IN Dom(M) ==> P(num_of_term a))`
(fun th -> REWRITE_TAC[th])
THENL [REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; ALL_TAC] THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> ((a ==> b) <=> (a ==> c))`) THEN
DISCH_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[valmod; FUN_EQ_THM; o_THM] THEN
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[TERM_OF_NUM]]);;
let LOWMOD_INTERPRETATION = prove
(`!L M. interpretation L (LOWMOD M) = interpretation L M`,
REWRITE_TAC[FORALL_PAIR_THM; interpretation] THEN
REWRITE_TAC[Fun_DEF; Dom_DEF; LOWMOD] THEN
SUBGOAL_THEN `!P x. num_of_term x IN {num_of_term y | P y} <=> x IN P`
(fun th -> REWRITE_TAC[th]) THENL
[REWRITE_TAC[IN_ELIM_THM; IN; NUM_OF_TERM_INJ] THEN MESON_TAC[];
ALL_TAC] THEN
REPEAT GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
EQ_TAC THEN DISCH_TAC THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; LENGTH] THENL
[DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :num list`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV);
STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPEC `CONS (num_of_term h) (MAP num_of_term t)`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN
REWRITE_TAC[ALL_MAP; IN_ELIM_THM] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[o_THM; NUM_OF_TERM_INJ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TERM_OF_NUM; GSYM MAP_o; o_DEF] THEN
SIMP_TAC[MAP_EQ_DEGEN; ALL_T];
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `[] :term list`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH] THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV);
STRIP_TAC THEN FIRST_X_ASSUM
(MP_TAC o SPEC `CONS (term_of_num h) (MAP term_of_num t)`) THEN
ASM_REWRITE_TAC[ALL; MAP; LENGTH; LENGTH_MAP] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[CONJ_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN
ASM_MESON_TAC[TERM_OF_NUM]; ALL_TAC] THEN
REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[IN_ELIM_THM; o_THM] THEN MESON_TAC[TERM_OF_NUM];
ALL_TAC] THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV)]);;
let LS = prove
(`!M:(A->bool)#(num->A list->A)#(num->A list->bool) s.
interpretation (language s) M /\
~(Dom(M) = EMPTY) /\
(!p. p IN s ==> qfree p) /\ M satisfies s
==> ?N. interpretation (language s) N /\
~(Dom N :num->bool = EMPTY) /\
N satisfies s`,
REPEAT GEN_TAC THEN
DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP CANON) THEN
EXISTS_TAC `LOWMOD C` THEN
ASM_REWRITE_TAC[LOWMOD_DOM_EMPTY; LOWMOD_INTERPRETATION] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [satisfies]) THEN
REWRITE_TAC[satisfies] THEN SIMP_TAC[LOWMOD_HOLDS] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [valuation]) THEN
ASM_REWRITE_TAC[valuation] THEN REWRITE_TAC[LOWMOD; Dom_DEF] THEN
REWRITE_TAC[IN_ELIM_THM; o_THM] THEN
MESON_TAC[TERM_OF_NUM]);;
(* ------------------------------------------------------------------------- *)
(* Now the Uniformity Lemma. *)
(* ------------------------------------------------------------------------- *)
let UNIFORMITY = prove
(`qfree p /\ (!C v. ~(Dom C = EMPTY) /\
valuation(C) v ==> holds C (v:num->term) (ITLIST ?? xs p))
==> ?is. (!i x. MEM i is ==> terms(FST(language {p})) (i x)) /\
!d. pholds(d) (ITLIST (||) (MAP (\i. formsubst i p) is) False)`,
STRIP_TAC THEN
MP_TAC(SPEC `{formsubst i q | q IN {p} /\
(!x. i x IN terms(FST(language {p})))}`
COMPACT_DISJ) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ALL_TAC;
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[UNWIND_THM2] THEN
DISCH_THEN(X_CHOOSE_THEN `ps:form list` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `MAP (\q. @i. (!x. i x IN terms (FST (language {p}))) /\
(q = formsubst i p)) ps` THEN
REWRITE_TAC[GSYM MAP_o; o_DEF] THEN CONJ_TAC THENL
[REPEAT GEN_TAC THEN
FIRST_ASSUM
(UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN
SPEC_TAC(`ps:form list`,`ps:form list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN
DISCH_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC; FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]] THEN
FIRST_ASSUM(ASSUME_TAC o SELECT_RULE o CONJUNCT1) THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[IN] THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN
FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT1 o SPEC_ALL);
X_GEN_TAC `d:form->bool` THEN
FIRST_ASSUM(MP_TAC o SPEC `d:form->bool`) THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC(GSYM MAP_EQ_DEGEN) THEN
FIRST_ASSUM
(UNDISCH_TAC o check ((=) `ps:form list` o rand) o concl) THEN
SPEC_TAC(`ps:form list`,`ps:form list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; MAP; MEM] THEN
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SELECT_RULE) ASSUME_TAC) THEN
CONJ_TAC THENL [FIRST_ASSUM(MATCH_ACCEPT_TAC o CONJUNCT2); ALL_TAC] THEN
MATCH_MP_TAC ALL_IMP THEN
FIRST_ASSUM(fun th -> EXISTS_TAC(lhand(concl th)) THEN
CONJ_TAC THENL [ALL_TAC; FIRST_ASSUM ACCEPT_TAC]) THEN
X_GEN_TAC `r:form` THEN REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SELECT_RULE o CONJUNCT2) THEN
DISCH_THEN(ACCEPT_TAC o CONJUNCT2)]] THEN
X_GEN_TAC `d:form->bool` THEN
SUBGOAL_THEN `~((canon_of_prop (language {p}) d) satisfies {(Not p)})`
ASSUME_TAC THENL
[REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `canon_of_prop (language {p}) d`) THEN
REWRITE_TAC[HOLDS_ITLIST_EXISTS; NOT_FORALL_THM; NOT_IMP] THEN
SUBGOAL_THEN `?v:num->term. valuation (canon_of_prop (language {p}) d) v`
CHOOSE_TAC THENL
[MATCH_MP_TAC VALUATION_EXISTS THEN
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN
REWRITE_TAC[Dom_DEF; canon_of_prop; IN] THEN
MESON_TAC[terms_RULES]; ALL_TAC] THEN
EXISTS_TAC `v:num->term` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REWRITE_TAC[canon_of_prop; Dom_DEF] THEN
REWRITE_TAC[language; EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN
EXISTS_TAC `V 0` THEN REWRITE_TAC[IN] THEN MESON_TAC[terms_CASES];
ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> a /\ b ==> ~c`] THEN
REWRITE_TAC[GSYM HOLDS] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valuation; IN] THEN GEN_TAC THEN
UNDISCH_TAC `valuation (canon_of_prop (language {p}) d) (v:num->term)` THEN
SPEC_TAC(`v:num->term`,`v:num->term`) THEN
UNDISCH_TAC `ALL (Dom (canon_of_prop (language {p}) d)) as` THEN
UNDISCH_TAC `LENGTH (as:term list) = LENGTH (xs:num list)` THEN
SPEC_TAC(`as:term list`,`as:term list`) THEN
SPEC_TAC(`xs:num list`,`xs:num list`) THEN
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[LENGTH; NOT_SUC; MAP2; REVERSE; ITLIST; ALL] THENL
[REWRITE_TAC[valuation; IN] THEN MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[SUC_INJ; ITLIST_EXTRA] THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[valuation; valmod] THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN
GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[IN]; ALL_TAC] THEN
SUBGOAL_THEN `!q. q IN {(Not p)} ==> qfree q` ASSUME_TAC THENL
[REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP
(GEN_REWRITE_RULE I [GSYM CONTRAPOS_THM] PSATISFIES_INSTANCES)) THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[psatisfies; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[Not_DEF; formsubst] THEN REWRITE_TAC[GSYM Not_DEF] THEN
MESON_TAC[el 3 (CONJUNCTS PHOLDS)]);;