Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Conversion to Skolem normal form. *) | |
(* ========================================================================= *) | |
let HOLDS_EXISTS_LEMMA = prove | |
(`!p t x M v preds:num#num->bool. | |
interpretation (functions_term t,preds) M /\ | |
valuation(M) (v:num->A) /\ | |
holds M v (formsubst (valmod (x,t) V) p) | |
==> holds M v (??x p)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN | |
REWRITE_TAC[HOLDS] THEN DISCH_TAC THEN | |
EXISTS_TAC `termval M (v:num->A) t` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN | |
EXISTS_TAC `preds:num#num->bool` THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* One-step Skolemization of ??x p using new function f. *) | |
(* ------------------------------------------------------------------------- *) | |
let Skolem1_DEF = new_definition | |
`Skolem1 f x p = | |
formsubst (valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p`;; | |
let HOLDS_SKOLEM1 = prove | |
(`!f x p. | |
prenex(??x p) /\ | |
~((f,CARD(FV(??x p))) IN functions_form(??x p)) | |
==> prenex(Skolem1 f x p) /\ | |
(FV(Skolem1 f x p) = FV(??x p)) /\ | |
size(Skolem1 f x p) < size(??x p) /\ | |
(predicates_form (Skolem1 f x p) = predicates_form(??x p)) /\ | |
(functions_form(??x p) SUBSET functions_form (Skolem1 f x p)) /\ | |
(functions_form (Skolem1 f x p) SUBSET ((f,CARD(FV(??x p))) INSERT | |
functions_form(??x p))) /\ | |
(!M. interpretation (language {p}) M /\ | |
~(Dom(M) = EMPTY) /\ | |
(!v:num->A. valuation(M) v ==> holds M v (??x p)) | |
==> ?M'. (Dom(M') = Dom(M)) /\ | |
(Pred(M') = Pred(M)) /\ | |
(!g zs. ~(g = f) \/ ~(LENGTH zs = CARD(FV(??x p))) | |
==> (Fun(M') g zs = Fun(M) g zs)) /\ | |
interpretation (language {(Skolem1 f x p)}) M' /\ | |
(!v. valuation(M') v ==> holds M' v (Skolem1 f x p))) /\ | |
(!N. interpretation (language {(Skolem1 f x p)}) N /\ | |
~(Dom(N) = EMPTY) | |
==> !v:num->A. valuation(N) (v:num->A) /\ | |
holds N v (Skolem1 f x p) ==> holds N v (??x p))`, | |
let lemma1 = prove | |
(`!l. LIST_UNION (MAP (\x. {x}) l) = set_of_list l`, | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[set_of_list; LIST_UNION; MAP] THEN | |
SET_TAC[]) in | |
let lemma2 = prove | |
(`!s. FINITE(s) ==> (LIST_UNION (MAP (\x. {x}) (list_of_set s)) = s)`, | |
GEN_TAC THEN REWRITE_TAC[lemma1; SET_OF_LIST_OF_SET]) in | |
let lemma3 = prove | |
(`holds M v p /\ | |
(Dom M = Dom M') /\ | |
(!P zs. Pred M P zs = Pred M' P zs) /\ | |
(!f zs. | |
f,LENGTH zs IN functions_form p ==> (Fun M f zs = Fun M' f zs)) | |
==> holds M' v p`, | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP HOLDS_FUNCTIONS) THEN | |
ASM_MESON_TAC[]) in | |
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `x IN FV(p)` THENL | |
[ALL_TAC; | |
SUBGOAL_THEN `Skolem1 f x p = p` SUBST1_TAC THENL | |
[GEN_REWRITE_TAC RAND_CONV [GSYM FORMSUBST_TRIV] THEN | |
REWRITE_TAC[Skolem1_DEF] THEN MATCH_MP_TAC FORMSUBST_VALUATION THEN | |
GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `~(x IN FV(p))` THEN | |
REWRITE_TAC[FV; Exists_DEF; Not_DEF; EXTENSION; IN_UNION; IN_DELETE; | |
NOT_IN_EMPTY] THEN MESON_TAC[]; | |
REWRITE_TAC[SIZE] THEN ARITH_TAC; | |
REWRITE_TAC[Exists_DEF; Not_DEF; predicates_form; UNION_EMPTY]; | |
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_REFL]; | |
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY] THEN SET_TAC[]; | |
W(EXISTS_TAC o rand o rand o lhand o snd o dest_exists o snd) THEN | |
ASM_REWRITE_TAC[] THEN | |
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
REWRITE_TAC[HOLDS] THEN | |
DISCH_THEN(CHOOSE_THEN (MP_TAC o CONJUNCT2)) THEN | |
MATCH_MP_TAC EQ_IMP THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN | |
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[]; | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN REWRITE_TAC[HOLDS] THEN | |
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `holds N (v:num->A) p` THEN | |
MATCH_MP_TAC EQ_IMP THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN | |
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[]]] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN REWRITE_TAC[Skolem1_DEF] THEN | |
ASM_REWRITE_TAC[PRENEX_FORMSUBST] THEN | |
ASM_REWRITE_TAC[SIZE_FORMSUBST; SIZE; ARITH_RULE `x < 3 + x`] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[FORMSUBST_FV] THEN | |
REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN | |
REWRITE_TAC[FVT; NOT_IN_EMPTY; IN_INSERT] THEN | |
REWRITE_TAC[GSYM MAP_o; o_DEF] THEN REWRITE_TAC[FVT] THEN | |
REWRITE_TAC[MATCH_MP lemma2 (SPEC `??x p` FV_FINITE)] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
UNDISCH_TAC `x IN FV p` THEN | |
REWRITE_TAC[FV; Exists_DEF; Not_DEF; UNION_EMPTY; IN_DELETE] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[FORMSUBST_PREDICATES] THEN CONJ_TAC THENL | |
[REWRITE_TAC[predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY]; ALL_TAC] THEN | |
FIRST_ASSUM(fun th -> | |
REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_UNION]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[functions_term] THEN | |
SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY` | |
(fun th -> REWRITE_TAC[th]) THENL | |
[LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN | |
SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[LENGTH_MAP] THEN | |
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV(??x p))` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; | |
ALL_TAC] THEN | |
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form] THEN | |
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; NOT_IN_EMPTY; DISJ_ACI]; | |
ALL_TAC] THEN | |
REPEAT STRIP_TAC THENL | |
[EXISTS_TAC `Dom(M):A->bool, | |
(\g zs. if (g = f) /\ (LENGTH zs = CARD(FV(??x p))) | |
then @a. a IN Dom(M) /\ | |
holds M | |
(valmod (x,a) | |
(ITLIST valmod | |
(MAP2 (\x a. (x,a)) | |
(list_of_set(FV(??x p))) | |
zs) | |
(\z. @c. c IN Dom(M)))) p | |
else Fun(M) g zs), | |
Pred(M)` THEN | |
ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN | |
CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[language; interpretation] THEN | |
SUBGOAL_THEN | |
`functions | |
{(formsubst(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)} | |
= ((f,CARD(FV(??x p))) INSERT functions_form p)` | |
SUBST1_TAC THENL | |
[MP_TAC(SPECL [`x:num`; `Fn f (MAP V (list_of_set(FV(??x p))))`; | |
`p:form`] FORMSUBST_FUNCTIONS_FORM_1) THEN | |
ASM_REWRITE_TAC[FVT] THEN | |
SUBGOAL_THEN `LIST_UNION(MAP FVT (MAP V (list_of_set(FV(??x p))))) = | |
FV(??x p)` | |
(fun th -> ASM_REWRITE_TAC[th]) THENL | |
[SUBGOAL_THEN `FV(??x p) = set_of_list(list_of_set(FV(??x p)))` | |
(fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THENL | |
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SET_OF_LIST_OF_SET THEN | |
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN | |
SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[LIST_UNION; MAP; FVT; set_of_list] THEN | |
SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN | |
SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } = | |
functions_form p` | |
(fun th -> REWRITE_TAC[th]) THENL | |
[GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION] THEN | |
X_GEN_TAC `fa:num#num` THEN | |
GEN_REWRITE_TAC RAND_CONV [DISJ_SYM] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[functions_term] THEN | |
SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY` | |
(fun th -> REWRITE_TAC[th]) THENL | |
[LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN | |
SET_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[LENGTH_MAP] THEN | |
MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE]; | |
ALL_TAC] THEN | |
REWRITE_TAC[Dom_DEF; Fun_DEF] THEN | |
X_GEN_TAC `g:num` THEN X_GEN_TAC `zs:A list` THEN | |
REWRITE_TAC[IN_INSERT; PAIR_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[DISCH_TAC THEN | |
SUBGOAL_THEN `?a:A. a IN Dom M /\ | |
holds M (valmod (x,a) | |
(ITLIST valmod (MAP2 (\x a. x,a) | |
(list_of_set (FV (?? x p))) zs) | |
(\z. @c. c IN Dom(M)))) p` | |
(fun th -> REWRITE_TAC[SELECT_RULE th]) THEN | |
UNDISCH_TAC `!v. valuation M v ==> holds M (v:num->A) (??x p)` THEN | |
REWRITE_TAC[HOLDS] THEN DISCH_THEN MATCH_MP_TAC THEN | |
REWRITE_TAC[valuation] THEN | |
UNDISCH_TAC `ALL (\x:A. x IN Dom M) zs` THEN | |
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = LENGTH (zs:A list)` | |
MP_TAC THENL | |
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LENGTH_LIST_OF_SET THEN | |
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN | |
SPEC_TAC(`list_of_set(FV(??x p))`,`xs:num list`) THEN | |
SPEC_TAC(`zs:A list`,`zs:A list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; ITLIST; MAP2; LENGTH] THENL | |
[GEN_TAC THEN | |
REWRITE_TAC[LENGTH_EQ_NIL] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
REWRITE_TAC[MAP2; ITLIST] THEN | |
CONV_TAC SELECT_CONV THEN | |
ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN | |
REWRITE_TAC[SUC_INJ] THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN ANTE_RES_THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
REWRITE_TAC[MAP2; ITLIST] THEN | |
GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[]; | |
RULE_ASSUM_TAC(REWRITE_RULE[interpretation; language]) THEN | |
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN | |
SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } = | |
functions_form p` | |
(fun th -> ASM_REWRITE_TAC[th]) THEN | |
GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]]; ALL_TAC] THEN | |
REWRITE_TAC[HOLDS_FORMSUBST1] THEN | |
X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN REWRITE_TAC[termval] THEN | |
REWRITE_TAC[GSYM MAP_o] THEN REWRITE_TAC[o_DEF; termval] THEN | |
REWRITE_TAC[Fun_DEF; LENGTH_MAP] THEN | |
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV (??x p))` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC LENGTH_LIST_OF_SET THEN | |
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN | |
REWRITE_TAC[] THEN MATCH_MP_TAC lemma3 THEN | |
REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
UNDISCH_TAC `(f',LENGTH (zs:A list)) IN functions_form p` THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~(f,CARD (FV (?? x p)) IN functions_form (?? x p))` THEN | |
REWRITE_TAC[Exists_DEF; functions_form; Not_DEF; UNION_EMPTY] THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN | |
SUBGOAL_THEN | |
`!a. holds M (valmod (x,a) | |
(ITLIST valmod | |
(MAP2 (\x a. x,a) (list_of_set (FV (??x p))) | |
(MAP (\y. v y) (list_of_set(FV(??x p))))) | |
(\z. @c. c IN Dom(M)))) p = holds M (valmod (x,a:A) v) p` | |
(fun th -> REWRITE_TAC[th]) THENL | |
[ALL_TAC; | |
SUBGOAL_THEN | |
`(@a:A. a IN Dom M /\ holds M (valmod (x,a) v) p) IN Dom(M) /\ | |
holds M (valmod (x,(@a. a IN Dom M /\ holds M (valmod (x,a) v) p)) v) p` | |
(ACCEPT_TAC o CONJUNCT2) THEN CONV_TAC SELECT_CONV THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[HOLDS]) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[valuation; Dom_DEF]) THEN | |
ASM_REWRITE_TAC[valuation]] THEN | |
X_GEN_TAC `a:A` THEN MATCH_MP_TAC HOLDS_VALUATION THEN | |
X_GEN_TAC `z:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod] THEN | |
ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `MEM z (list_of_set (FV (??x p)))` MP_TAC THENL | |
[SUBGOAL_THEN `z IN FV(??x p)` | |
(fun th -> MESON_TAC[th; MEM_LIST_OF_SET; FV_FINITE]) THEN | |
ASM_REWRITE_TAC[Exists_DEF; Not_DEF; FV; IN_DELETE; IN_UNION; NOT_IN_EMPTY]; | |
ALL_TAC] THEN | |
SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN | |
REWRITE_TAC[ITLIST; MAP2; MAP; valmod] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC HOLDS_EXISTS_LEMMA THEN | |
EXISTS_TAC `Fn f (MAP V (list_of_set (FV (?? x p))))` THEN | |
EXISTS_TAC `predicates_form (formsubst | |
(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)` THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC | |
`interpretation | |
(language | |
(formsubst (valmod (x,Fn f (MAP V (list_of_set (FV (?? x p))))) V) | |
p INSERT | |
EMPTY)) | |
(N:(A->bool)#((num->((A)list->A))#(num->((A)list->bool))))` THEN | |
REWRITE_TAC[LANGUAGE_1] THEN | |
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN | |
FIRST_ASSUM(fun th -> | |
REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN | |
REWRITE_TAC[SUBSET_UNION]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Multiple Skolemization of a prenex formula. *) | |
(* ------------------------------------------------------------------------- *) | |
let Skolems_EXISTENCE = prove | |
(`!J. ?Skolems. !r. | |
Skolems r = \k. PPAT (\x q. !!x (Skolems q k)) | |
(\x q. Skolems (Skolem1 (NUMPAIR J k) x q) (SUC k)) | |
(\p. p) r`, | |
GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN | |
ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; | |
SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) | |
(SPEC_ALL SELECT_REFL)] THEN | |
AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[size] THEN ARITH_TAC; ALL_TAC] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN | |
REWRITE_TAC[PRENEX_DISTINCT] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL; | |
SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) | |
(SPEC_ALL SELECT_REFL)] THEN | |
AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[Skolem1_DEF; SIZE_FORMSUBST] THEN | |
REWRITE_TAC[SIZE] THEN ARITH_TAC);; | |
let Skolems_SPECIFICATION = prove | |
(`?Skolems. !J r k. | |
Skolems J r k = | |
PPAT (\x q. !!x (Skolems J q k)) | |
(\x q. Skolems J (Skolem1 (NUMPAIR J k) x q) (SUC k)) | |
(\p. p) r`, | |
REWRITE_TAC[REWRITE_RULE[SKOLEM_THM; FUN_EQ_THM] Skolems_EXISTENCE]);; | |
let Skolems_DEF = new_specification ["Skolems"] Skolems_SPECIFICATION;; | |
let HOLDS_SKOLEMS_INDUCTION = prove | |
(`!n J k p. | |
(size(p) = n) /\ | |
prenex(p) /\ | |
(!l m. (NUMPAIR J l,m) IN functions_form p ==> l < k) | |
==> universal((Skolems J p k)) /\ | |
(FV((Skolems J p k)) = FV(p)) /\ | |
(predicates_form (Skolems J p k) = predicates_form p) /\ | |
functions_form p SUBSET functions_form (Skolems J p k) /\ | |
functions_form (Skolems J p k) SUBSET | |
{NUMPAIR j l,m | j,l,m | (j = J) /\ k <= l} UNION | |
functions_form p /\ | |
(!M. interpretation (language {p}) M /\ | |
~(Dom M = EMPTY) /\ | |
(!v:num->A. valuation M v ==> holds M v p) | |
==> ?M'. (Dom M' = Dom M) /\ | |
(Pred M' = Pred M) /\ | |
(!g zs. ~(Fun(M') g zs = Fun(M) g zs) | |
==> ?l. k <= l /\ (g = NUMPAIR J l)) /\ | |
interpretation (language {(Skolems J p k)}) M' /\ | |
(!v. valuation M' v | |
==> holds M' v (Skolems J p k))) /\ | |
(!N. interpretation (language {(Skolems J p k)}) N /\ | |
~(Dom(N) = EMPTY) | |
==> !v:num->A. valuation(N) v /\ holds N v (Skolems J p k) | |
==> holds N v p)`, | |
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(MP_TAC o ONCE_REWRITE_RULE[prenex_CASES]) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL | |
[SUBGOAL_THEN `Skolems J p k = p` SUBST1_TAC THENL | |
[ONCE_REWRITE_TAC[Skolems_DEF] THEN | |
SUBGOAL_THEN `~(?x q. p = !!x q) /\ ~(?x q. p = ??x q)` MP_TAC THENL | |
[REPEAT STRIP_TAC THEN UNDISCH_TAC `qfree p` THEN | |
ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN | |
SIMP_TAC[PPAT]; ALL_TAC] THEN | |
REWRITE_TAC[SUBSET_UNION; SUBSET_REFL] THEN | |
ONCE_REWRITE_TAC[universal_CASES] THEN ASM_REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
W(EXISTS_TAC o rand o rand o lhand o body o rand o snd) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN | |
(X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `r:form` | |
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)))) THEN | |
REWRITE_TAC[SIZE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THENL | |
[FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size r`) THEN | |
REWRITE_TAC[ARITH_RULE `r < 1 + r`] THEN | |
DISCH_THEN(MP_TAC o SPECL [`J:num`; `k:num`; `r:form`]) THEN | |
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL | |
[ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[functions_form]) THEN | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ARITH_TAC; ALL_TAC] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `Skolems J (!!x r) k = !!x (Skolems J r k)` SUBST1_TAC THENL | |
[GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN | |
SUBGOAL_THEN `?z s. !!x r = !!z s` (fun th -> SIMP_TAC[th; PPAT]) THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
ABBREV_TAC `q = Skolems J r k` THEN | |
ASM_REWRITE_TAC[functions_form; FV] THEN | |
REWRITE_TAC[predicates_form; functions_form; LANGUAGE_1] THEN | |
REWRITE_TAC[GSYM LANGUAGE_1] THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[universal_CASES]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THENL | |
[SUBGOAL_THEN | |
`interpretation (language (r INSERT EMPTY)) M /\ | |
~(Dom M = EMPTY) /\ | |
(!v:num->A. valuation M v ==> holds M v r)` | |
(ANTE_RES_THEN MP_TAC) THENL | |
[ASM_REWRITE_TAC[] THEN GEN_TAC THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC th) THEN | |
REWRITE_TAC[HOLDS] THEN | |
DISCH_THEN(MP_TAC o SPEC `(v:num->A) x`) THEN | |
REWRITE_TAC[VALMOD_TRIV] THEN DISCH_THEN MATCH_MP_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC(prove(`(!x. p x ==> q x) ==> (?x. p x) ==> ?x. q x`, | |
MESON_TAC[])) THEN | |
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[holds] THEN | |
ASM_MESON_TAC[VALUATION_VALMOD]]; | |
UNDISCH_TAC `holds N (v:num->A) (!!x q)` THEN | |
REWRITE_TAC[HOLDS] THEN ASM_MESON_TAC[VALUATION_VALMOD]]; ALL_TAC] THEN | |
MP_TAC(SPECL [`NUMPAIR J k`; `x:num`; `r:form`] HOLDS_SKOLEM1) THEN | |
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL | |
[ASM_REWRITE_TAC[PRENEX] THEN ASM_MESON_TAC[LT_REFL]; ALL_TAC] THEN | |
STRIP_TAC THEN ABBREV_TAC `q = Skolem1 (NUMPAIR J k) x r` THEN | |
FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size q`) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[SIZE]) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPECL [`J:num`; `SUC k`; `q:form`]) THEN | |
ASM_REWRITE_TAC[LT] THEN | |
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL | |
[REPEAT GEN_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ] THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
STRIP_TAC THEN | |
SUBGOAL_THEN `Skolems J (?? x r) k = Skolems J q (SUC k)` SUBST1_TAC THENL | |
[EXPAND_TAC "q" THEN GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN | |
REWRITE_TAC[PPAT]; | |
ABBREV_TAC `s = Skolems J q (SUC k)`] THEN | |
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[SUBSET_TRANS]; | |
UNDISCH_TAC `functions_form s SUBSET | |
{NUMPAIR j l,m | j,l,m | (j = J) /\ SUC k <= l} UNION | |
functions_form q` THEN | |
UNDISCH_TAC `functions_form q SUBSET | |
(NUMPAIR J k,CARD (FV (?? x r))) INSERT functions_form (?? x r)` THEN | |
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; IN_ELIM_THM] THEN | |
MESON_TAC[NUMPAIR_INJ; ARITH_RULE `SUC k <= l ==> k <= l`; LE_REFL]; | |
REPEAT STRIP_TAC THEN SUBGOAL_THEN | |
`interpretation (language {r}) M /\ | |
~(Dom M = EMPTY) /\ | |
!v:num->A. valuation M v ==> holds M v (?? x r)` | |
(ANTE_RES_THEN MP_TAC) THENL | |
[ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE | |
[LANGUAGE_1; Not_DEF; Exists_DEF; functions_form; | |
predicates_form; UNION_EMPTY]) THEN | |
ASM_REWRITE_TAC[LANGUAGE_1]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `M0:(A->bool)#(num->A list->A)#(num->A | |
list->bool)` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN | |
`interpretation (language {q}) M0 /\ | |
~(Dom M0 = EMPTY) /\ | |
(!v:num->A. valuation M0 v ==> holds M0 v q)` | |
(ANTE_RES_THEN MP_TAC) THENL | |
[ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `M1:(A->bool)#(num->A list->A)#(num->A | |
list->bool)` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN | |
ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN | |
SUBGOAL_THEN `~(Fun M1 g (zs:A list) = Fun M0 g zs) \/ | |
~(Fun M0 g zs = Fun M g zs)` | |
MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 (ANTE_RES_THEN MP_TAC) MP_TAC) THENL | |
[MESON_TAC[ARITH_RULE `SUC k <= l ==> k <= l`]; ALL_TAC] THEN | |
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
MESON_TAC[LE_REFL]; | |
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN | |
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN | |
MP_TAC(ASSUME `valuation N (v:num->A)`) THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `interpretation (language {s}) | |
(N:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN | |
REWRITE_TAC[LANGUAGE_1] THEN | |
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN | |
ASM_REWRITE_TAC[]]);; | |
let HOLDS_SKOLEMS_PRENEX = prove | |
(`!p. | |
prenex(p) | |
==> !K. (!l m. ~(NUMPAIR K l,m IN functions_form p)) | |
==> universal(Skolems K p 0) /\ | |
(FV(Skolems K p 0) = FV(p)) /\ | |
(predicates_form (Skolems K p 0) = predicates_form p) /\ | |
functions_form p SUBSET functions_form (Skolems K p 0) /\ | |
functions_form (Skolems K p 0) SUBSET | |
{NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\ | |
(!M. interpretation (language {p}) M /\ | |
~(Dom M = EMPTY) /\ | |
(!v:num->A. valuation M v ==> holds M v p) | |
==> ?M'. (Dom M' = Dom M) /\ | |
(Pred M' = Pred M) /\ | |
(!g zs. ~(Fun M' g zs = Fun M g zs) | |
==> (?l. g = | |
NUMPAIR K l)) /\ | |
interpretation (language {(Skolems K p 0)}) M' /\ | |
(!v. valuation M' v | |
==> holds M' v (Skolems K p 0))) /\ | |
(!N. interpretation (language {(Skolems K p 0)}) N /\ | |
~(Dom N = EMPTY) | |
==> !v:num->A. valuation(N) v /\ holds N v (Skolems K p 0) | |
==> holds N v p)`, | |
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN | |
MP_TAC(SPECL [`size p`; `K:num`; `0`; `p:form`] HOLDS_SKOLEMS_INDUCTION) THEN | |
ASM_REWRITE_TAC[LE_0]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now Skolemize an arbitrary (non-prenex) formula. *) | |
(* ------------------------------------------------------------------------- *) | |
let Skopre_DEF = new_definition | |
`Skopre K p = Skolems K (Prenex p) 0`;; | |
let SKOPRE = prove | |
(`!p K. | |
(!l m. ~(NUMPAIR K l,m IN functions_form p)) | |
==> universal(Skopre K p) /\ | |
(FV(Skopre K p) = FV(p)) /\ | |
(predicates_form (Skopre K p) = predicates_form p) /\ | |
functions_form p SUBSET functions_form (Skopre K p) /\ | |
functions_form (Skopre K p) SUBSET | |
{NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\ | |
(!M. interpretation (language {p}) M /\ | |
~(Dom M = EMPTY) /\ | |
(!v:num->A. valuation M v ==> holds M v p) | |
==> ?M'. (Dom M' = Dom M) /\ | |
(Pred M' = Pred M) /\ | |
(!g zs. ~(Fun M' g zs = Fun M g zs) | |
==> (?l. g = | |
NUMPAIR K l)) /\ | |
interpretation (language {(Skopre K p)}) M' /\ | |
(!v. valuation M' v ==> holds M' v (Skopre K p))) /\ | |
(!N. interpretation (language {(Skopre K p)}) N /\ | |
~(Dom(N) = EMPTY) | |
==> !v:num->A. valuation(N) v /\ holds N v (Skopre K p) | |
==> holds N v p)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[Skopre_DEF] THEN | |
MP_TAC(SPEC `p:form` PRENEX_THM) THEN | |
ABBREV_TAC `r = Prenex p` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `(functions_form r = functions_form p) /\ | |
(predicates_form r = predicates_form p)` | |
STRIP_ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[LANGUAGE_1; PAIR_EQ]) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
W(fun (_,w) -> SUBGOAL_THEN (subst [`r:form`,`p:form`] w) MP_TAC) THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP HOLDS_SKOLEMS_PRENEX) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC EQ_IMP THEN | |
ASM_REWRITE_TAC[] THEN | |
REPEAT(AP_TERM_TAC ORELSE ABS_TAC) THEN | |
BINOP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN | |
REWRITE_TAC[IMP_CONJ] THEN | |
REPEAT(MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a ==> b <=> a ==> c)`) THEN | |
DISCH_TAC) THEN TRY BINOP_TAC THEN | |
REPEAT((FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]) ORELSE | |
(FIRST_ASSUM(MATCH_MP_TAC o GSYM) THEN ASM_REWRITE_TAC[]) ORELSE | |
AP_TERM_TAC ORELSE ABS_TAC) THEN | |
REFL_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Bumping up function indices to leave room for Skolem functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let bumpmod = new_definition | |
`bumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMSND k) zs),Pred(M)`;; | |
let bumpterm = new_recursive_definition term_RECURSION | |
`(bumpterm (V x) = V x) /\ | |
(bumpterm (Fn k l) = Fn (NUMPAIR 0 k) (MAP bumpterm l))`;; | |
let bumpform = new_recursive_definition form_RECURSION | |
`(bumpform False = False) /\ | |
(bumpform (Atom p l) = Atom p (MAP bumpterm l)) /\ | |
(bumpform (q --> r) = bumpform q --> bumpform r) /\ | |
(bumpform (!!x r) = !!x (bumpform r))`;; | |
let BUMPTERM = prove | |
(`!M v t. termval M v t = termval (bumpmod M) v (bumpterm t)`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termval; bumpterm] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN | |
REWRITE_TAC[GSYM bumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN | |
ASM_REWRITE_TAC[o_THM]);; | |
let BUMPFORM = prove | |
(`!M p v. holds M v p = holds (bumpmod M) v (bumpform p)`, | |
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[Dom_DEF; bumpmod; bumpform; holds; Pred_DEF] THEN | |
REWRITE_TAC[GSYM bumpmod; GSYM MAP_o] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN | |
REWRITE_TAC[o_THM; GSYM BUMPTERM; ALL_T]);; | |
let FUNCTIONS_FORM_BUMPFORM = prove | |
(`!p f m. | |
f,m IN functions_form(bumpform p) | |
==> ?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION] THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN | |
DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN | |
SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);; | |
let BUMPFORM_INTERPRETATION = prove | |
(`interpretation (language {p}) M | |
==> interpretation (language {(bumpform p)}) (bumpmod M)`, | |
REWRITE_TAC[LANGUAGE_1; interpretation] THEN | |
REWRITE_TAC[Dom_DEF; bumpmod; Fun_DEF] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[FUNCTIONS_FORM_BUMPFORM; NUMPAIR_DEST]);; | |
let unbumpterm = new_recursive_definition term_RECURSION | |
`(unbumpterm (V x) = V x) /\ | |
(unbumpterm (Fn k l) = Fn (NUMSND k) (MAP unbumpterm l))`;; | |
let unbumpform = new_recursive_definition form_RECURSION | |
`(unbumpform False = False) /\ | |
(unbumpform (Atom p l) = Atom p (MAP unbumpterm l)) /\ | |
(unbumpform (q --> r) = unbumpform q --> unbumpform r) /\ | |
(unbumpform (!!x r) = !!x (unbumpform r))`;; | |
let UNBUMPTERM = prove | |
(`!t. unbumpterm(bumpterm t) = t`, | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[unbumpterm; bumpterm; NUMPAIR_DEST] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[GSYM MAP_o] THEN | |
MATCH_MP_TAC MAP_EQ_DEGEN THEN | |
ASM_REWRITE_TAC[o_THM]);; | |
let UNBUMPFORM = prove | |
(`!p. unbumpform (bumpform p) = p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[unbumpform; bumpform] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[GSYM MAP_o; o_DEF; UNBUMPTERM] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN | |
REWRITE_TAC[ALL_T]);; | |
let unbumpmod = new_definition | |
`unbumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMPAIR 0 k) zs),Pred(M)`;; | |
let UNBUMPMOD_TERM = prove | |
(`!M v t. termval M v (bumpterm t) = termval (unbumpmod M) v t`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termval; bumpterm] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[unbumpmod; Fun_DEF; NUMPAIR_DEST] THEN | |
REWRITE_TAC[GSYM unbumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN | |
ASM_REWRITE_TAC[o_THM]);; | |
let UNBUMPMOD = prove | |
(`!M p (v:num->A). holds M v (bumpform p) = holds (unbumpmod M) v p`, | |
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[Dom_DEF; unbumpmod; bumpform; holds; Pred_DEF] THEN | |
REWRITE_TAC[GSYM unbumpmod; GSYM MAP_o] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN | |
REWRITE_TAC[o_THM; GSYM UNBUMPMOD_TERM; ALL_T]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Mapping terms and formulas into terms for unique Skolem functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let NUMLIST = new_recursive_definition list_RECURSION | |
`(NUMLIST [] = 0) /\ | |
(NUMLIST (CONS h t) = NUMPAIR h (NUMLIST t) + 1)`;; | |
let NUMLIST_INJ = prove | |
(`!l1 l2. (NUMLIST l1 = NUMLIST l2) = (l1 = l2)`, | |
REPEAT(LIST_INDUCT_TAC ORELSE STRIP_TAC) THEN | |
ASM_REWRITE_TAC[NUMLIST; GSYM ADD1; SUC_INJ; NOT_SUC; | |
CONS_11; NOT_CONS_NIL; NUMPAIR_INJ]);; | |
let num_of_term = new_nested_recursive_definition term_RECURSION | |
`(!x. num_of_term (V x) = NUMPAIR 0 x) /\ | |
(!f l. num_of_term (Fn f l) = | |
NUMPAIR 1 (NUMPAIR f (NUMLIST(MAP num_of_term l))))`;; | |
let NUM_OF_TERM_INJ = prove | |
(`!s t. (num_of_term s = num_of_term t) = (s = t)`, | |
REPEAT(MATCH_MP_TAC term_INDUCT ORELSE STRIP_TAC) THEN | |
ASM_REWRITE_TAC[num_of_term; NUMPAIR_INJ; NUMLIST_INJ; ARITH] THEN | |
REWRITE_TAC[term_INJ; term_DISTINCT] THEN | |
AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
UNDISCH_TAC | |
`ALL (\s. !t. (num_of_term s = num_of_term t) = (s = t)) l` THEN | |
POP_ASSUM(K ALL_TAC) THEN | |
REWRITE_TAC[IMP_IMP] THEN | |
SPEC_TAC(`l':term list`,`l':term list`) THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN | |
REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN | |
REWRITE_TAC[num_of_term] THEN ASM_MESON_TAC[]);; | |
let num_of_form = new_recursive_definition form_RECURSION | |
`(num_of_form False = NUMPAIR 0 0) /\ | |
(num_of_form (Atom p l) = | |
NUMPAIR 1 (NUMPAIR p (NUMLIST(MAP num_of_term l)))) /\ | |
(num_of_form (q --> r) = | |
NUMPAIR 2 (NUMPAIR (num_of_form q) (num_of_form r))) /\ | |
(num_of_form (!!x q) = NUMPAIR 3 (NUMPAIR x (num_of_form q)))`;; | |
let NUMLIST_NUM_OF_TERM = prove | |
(`!l1 l2. (NUMLIST (MAP num_of_term l1) = NUMLIST (MAP num_of_term l2)) = | |
(l1 = l2)`, | |
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN | |
REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN | |
ASM_REWRITE_TAC[GSYM ADD1; NOT_SUC; SUC_INJ; NUMPAIR_INJ; NUM_OF_TERM_INJ]);; | |
let NUM_OF_FORM_INJ = prove | |
(`!q r. (num_of_form q = num_of_form r) = (q = r)`, | |
MATCH_MP_TAC form_INDUCTION THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; | |
GEN_TAC THEN GEN_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC] THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
ASM_REWRITE_TAC[num_of_form; NUMPAIR_INJ; ARITH; form_DISTINCT; | |
form_INJ; NUMLIST_NUM_OF_TERM]);; | |
let form_of_num = new_definition | |
`form_of_num x = @p. num_of_form p = x`;; | |
let FORM_OF_NUM = prove | |
(`form_of_num(num_of_form p) = p`, | |
REWRITE_TAC[form_of_num; NUM_OF_FORM_INJ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Skolemization function. *) | |
(* ------------------------------------------------------------------------- *) | |
let SKOLEMIZE = new_definition | |
`SKOLEMIZE p = Skopre (num_of_form(bumpform p) + 1) (bumpform p)`;; | |
let SKOLEMIZE_WORKS = prove | |
(`!p. universal(SKOLEMIZE p) /\ | |
(FV(SKOLEMIZE p) = FV(bumpform p)) /\ | |
(predicates_form (SKOLEMIZE p) = predicates_form (bumpform p)) /\ | |
functions_form (bumpform p) SUBSET functions_form (SKOLEMIZE p) /\ | |
functions_form (SKOLEMIZE p) SUBSET | |
{NUMPAIR k l,m | k,l,m | k = num_of_form(bumpform p) + 1} UNION | |
functions_form (bumpform p) /\ | |
(!M. interpretation (language {(bumpform p)}) M /\ | |
~(Dom M = EMPTY) /\ | |
(!v:num->A. valuation M v ==> holds M v (bumpform p)) | |
==> ?M'. (Dom M' = Dom M) /\ | |
(Pred M' = Pred M) /\ | |
(!g zs. ~(Fun M' g zs = Fun M g zs) | |
==> (?l. g = | |
NUMPAIR (num_of_form(bumpform p) + 1) | |
l)) /\ | |
interpretation (language {(SKOLEMIZE p)}) M' /\ | |
(!v. valuation M' v ==> holds M' v (SKOLEMIZE p))) /\ | |
(!N. interpretation (language {(SKOLEMIZE p)}) N /\ | |
~(Dom(N) = EMPTY) | |
==> !v:num->A. valuation(N) v /\ holds N v (SKOLEMIZE p) | |
==> holds N v (bumpform p))`, | |
GEN_TAC THEN REWRITE_TAC[SKOLEMIZE] THEN MATCH_MP_TAC SKOPRE THEN | |
SPEC_TAC(`num_of_form(bumpform p)`,`x:num`) THEN | |
SPEC_TAC(`p:form`,`p:form`) THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[bumpform; functions_form] THEN | |
REWRITE_TAC[IN_UNION; NOT_IN_EMPTY] THEN | |
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL | |
[ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN | |
REWRITE_TAC[GSYM MAP_o] THEN | |
SPEC_TAC(`x:num`,`x:num`) THEN SPEC_TAC(`l:num`,`y:num`) THEN | |
SPEC_TAC(`m:num`,`z:num`) THEN SPEC_TAC(`a1:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; NOT_IN_EMPTY; MAP] THEN | |
ASM_REWRITE_TAC[IN_UNION] THEN | |
SPEC_TAC(`h:term`,`t:term`) THEN POP_ASSUM(K ALL_TAC) THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[functions_term; bumpterm; o_THM; NOT_IN_EMPTY] THEN | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY; IN_INSERT; ALL] THEN | |
REWRITE_TAC[PAIR_EQ; NUMPAIR_INJ; ARITH_RULE `~(x + 1 = 0)`] THEN | |
STRIP_TAC THEN REPEAT GEN_TAC THEN | |
ASM_REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN | |
FIRST_ASSUM(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN | |
REWRITE_TAC[IN_INSERT; DE_MORGAN_THM] THEN MESON_TAC[]);; | |
let FUNCTIONS_FORM_SKOLEMIZE = prove | |
(`!p f m. | |
f,m IN functions_form(SKOLEMIZE p) | |
==> (?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p) \/ | |
(?l. (f = NUMPAIR (num_of_form (bumpform p) + 1) l))`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
MP_TAC(SPEC_ALL SKOLEMIZE_WORKS) THEN | |
DISCH_THEN(MP_TAC o el 4 o CONJUNCTS) THEN | |
REWRITE_TAC[SUBSET; IN_UNION] THEN | |
DISCH_THEN(fun ith -> FIRST_ASSUM(MP_TAC o MATCH_MP ith)) THEN | |
MATCH_MP_TAC(TAUT `(a ==> a') /\ (b ==> b') ==> a \/ b ==> b' \/ a'`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[IN_ELIM_THM; NUMPAIR_INJ; PAIR_EQ] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
POP_ASSUM(K ALL_TAC) THEN | |
SPEC_TAC(`p:form`,`p:form`) THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN | |
DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN | |
SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN | |
REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Construction of Skolem model for a formula. *) | |
(* ------------------------------------------------------------------------- *) | |
let SKOMOD1 = new_definition | |
`SKOMOD1 p M = | |
if (!v. valuation M v ==> holds M v p) | |
then @M'. (Dom M' = Dom (bumpmod M)) /\ | |
(Pred M' = Pred (bumpmod M)) /\ | |
(!g zs. | |
~(Fun M' g zs = Fun (bumpmod M) g zs) | |
==> (?l. g = | |
NUMPAIR (num_of_form (bumpform p) + 1) l)) /\ | |
interpretation (language {(SKOLEMIZE p)}) M' /\ | |
(!v:num->A. valuation M' v | |
==> holds M' v (SKOLEMIZE p)) | |
else (Dom M,(\g zs. @a:A. a IN Dom(M)),Pred M)`;; | |
let SKOMOD1_WORKS = prove | |
(`!M p. | |
interpretation (language {p}) M /\ | |
~(Dom M = EMPTY) | |
==> (Dom (SKOMOD1 p M) = Dom (bumpmod M)) /\ | |
(Pred (SKOMOD1 p M) = Pred (bumpmod M)) /\ | |
interpretation (language {(SKOLEMIZE p)}) (SKOMOD1 p M) /\ | |
((!v:num->A. valuation M v ==> holds M v p) | |
==> (!g zs. | |
~(Fun (SKOMOD1 p M) g zs = Fun (bumpmod M) g zs) | |
==> (?l. g = | |
NUMPAIR (num_of_form (bumpform p) + 1) l)) /\ | |
(!v:num->A. valuation (SKOMOD1 p M) v | |
==> holds (SKOMOD1 p M) v (SKOLEMIZE p)))`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[SKOMOD1] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL | |
[ONCE_REWRITE_TAC[AC CONJ_ACI `d /\ p /\ i /\ g /\ v <=> | |
d /\ p /\ g /\ i /\ v`] THEN | |
CONV_TAC SELECT_CONV THEN | |
MATCH_MP_TAC(el 5 (CONJUNCTS (SPEC_ALL SKOLEMIZE_WORKS))) THEN | |
REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC BUMPFORM_INTERPRETATION THEN ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[Dom_DEF; bumpmod]; | |
REWRITE_TAC[GSYM BUMPFORM] THEN | |
REWRITE_TAC[valuation; Dom_DEF; bumpmod] THEN | |
ASM_REWRITE_TAC[GSYM valuation]]; | |
REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF; bumpmod] THEN | |
REWRITE_TAC[interpretation; Dom_DEF; LANGUAGE_1; Fun_DEF] THEN | |
REPEAT STRIP_TAC THEN CONV_TAC SELECT_CONV THEN | |
ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]);; | |
let SKOMOD = new_definition | |
`SKOMOD M = | |
(Dom M, | |
(\g zs. if NUMFST g = 0 then Fun M (NUMSND g) zs | |
else Fun (SKOMOD1 (unbumpform(form_of_num (PRE(NUMFST g)))) M) | |
g zs), | |
Pred M)`;; | |
let SKOMOD_INTERPRETATION = prove | |
(`interpretation (language {p}) M /\ | |
~(Dom M :A->bool = EMPTY) | |
==> interpretation (language {(SKOLEMIZE p)}) (SKOMOD M)`, | |
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC (CONJUNCT1 th)) THEN | |
REWRITE_TAC[LANGUAGE_1; interpretation] THEN | |
REWRITE_TAC[Dom_DEF; SKOMOD; Fun_DEF] THEN | |
DISCH_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN | |
STRIP_TAC THEN | |
ASM_REWRITE_TAC[NUMPAIR_DEST; ARITH_RULE `~(x + 1 = 0)`] THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM] THEN | |
REWRITE_TAC[ADD1] THEN | |
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o el 1 o CONJUNCTS)) THEN | |
REWRITE_TAC[LANGUAGE_1; interpretation] THEN | |
ASM_REWRITE_TAC[bumpmod; Dom_DEF] THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]);; | |
let SKOMOD_WORKS = prove | |
(`interpretation(language {p}) M /\ | |
~(Dom M = EMPTY) | |
==> ((!v:num->A. valuation(M) v ==> holds M v p) <=> | |
(!v:num->A. valuation(SKOMOD M) v | |
==> holds (SKOMOD M) v (SKOLEMIZE p)))`, | |
STRIP_TAC THEN REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN | |
REWRITE_TAC[GSYM valuation] THEN EQ_TAC THENL | |
[DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`holds (SKOMOD1 p M) (v:num->A) (SKOLEMIZE p)` | |
MP_TAC THENL | |
[SUBGOAL_THEN `valuation (SKOMOD1 p M) (v:num->A)` MP_TAC THENL | |
[MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN | |
UNDISCH_TAC `valuation M (v:num->A)` THEN | |
ASM_REWRITE_TAC[Dom_DEF; valuation; bumpmod]; ALL_TAC] THEN | |
SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC EQ_IMP THEN | |
SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
MATCH_MP_TAC HOLDS_FUNCTIONS THEN | |
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; bumpmod] THEN | |
REWRITE_TAC[Fun_DEF] THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST] THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL [`NUMPAIR 0 k`; `zs:A list`]) THEN | |
REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN | |
REWRITE_TAC[NUMPAIR_INJ; ARITH_RULE `~(0 = x + 1)`]; | |
REWRITE_TAC[ARITH_RULE `~(x + 1 = 0)`] THEN | |
REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM]]; | |
DISCH_TAC THEN SUBGOAL_THEN | |
`!v. valuation (bumpmod M) (v:num->A) | |
==> holds (bumpmod M) v (bumpform p)` | |
MP_TAC THENL | |
[ALL_TAC; REWRITE_TAC[GSYM BUMPFORM; valuation] THEN | |
REWRITE_TAC[Dom_DEF; bumpmod]] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM SKOMOD]) THEN | |
GEN_TAC THEN DISCH_TAC THEN | |
MP_TAC(INST [`@x:A. T`,`ty:A`] | |
(last (CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THEN | |
DISCH_THEN(MP_TAC o SPEC | |
`SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))`) THEN | |
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL | |
[CONJ_TAC THENL | |
[MATCH_MP_TAC SKOMOD_INTERPRETATION THEN ASM_REWRITE_TAC[]; | |
ASM_REWRITE_TAC[SKOMOD; Dom_DEF]]; ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `holds (SKOMOD M) (v:num->A) (bumpform p)` MP_TAC THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL | |
[REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN | |
ASM_REWRITE_TAC[GSYM valuation] THEN | |
UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN | |
REWRITE_TAC[bumpmod; Dom_DEF; valuation]; | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN | |
REWRITE_TAC[bumpmod; Dom_DEF; valuation]]; | |
MATCH_MP_TAC EQ_IMP THEN | |
SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
MATCH_MP_TAC HOLDS_FUNCTIONS THEN | |
REWRITE_TAC[SKOMOD; Dom_DEF; Fun_DEF; Pred_DEF; bumpmod] THEN | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_BUMPFORM) THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST]]]);; | |
let SKOLEMIZE_SATISFIABLE = prove | |
(`(?M. ~(Dom M :A->bool = EMPTY) /\ | |
interpretation (language s) M /\ | |
M satisfies s) <=> | |
(?M. ~(Dom M :A->bool = EMPTY) /\ | |
interpretation (language {SKOLEMIZE p | p IN s}) M /\ | |
M satisfies {SKOLEMIZE p | p IN s})`, | |
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN | |
EQ_TAC THEN STRIP_TAC THENL | |
[EXISTS_TAC `SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN | |
REPEAT CONJ_TAC THENL | |
[ASM_REWRITE_TAC[Dom_DEF; SKOMOD]; | |
REWRITE_TAC[interpretation; language; functions] THEN | |
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC_ALL SKOMOD_INTERPRETATION) THEN | |
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL | |
[ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `interpretation (language s) | |
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN | |
REWRITE_TAC[interpretation; language] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `functions {p} SUBSET functions s` | |
(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `p:form IN s` THEN | |
REWRITE_TAC[functions] THEN | |
REWRITE_TAC[SUBSET; IN_UNIONS; IN_INSERT; | |
NOT_IN_EMPTY; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[interpretation; language] THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; functions] THEN | |
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `interpretation (language {p'}) M /\ | |
~(Dom M :A->bool = EMPTY)` | |
(MP_TAC o MATCH_MP SKOMOD_WORKS) THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `interpretation (language s) | |
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN | |
REWRITE_TAC[language] THEN | |
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN | |
REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
UNDISCH_TAC `p':form IN s` THEN ASM_MESON_TAC[]]; | |
ALL_TAC] THEN | |
EXISTS_TAC | |
`unbumpmod (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN | |
REWRITE_TAC[GSYM UNBUMPMOD] THEN REPEAT CONJ_TAC THENL | |
[ASM_REWRITE_TAC[unbumpmod; Dom_DEF]; | |
ALL_TAC; | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`interpretation (language ({(SKOLEMIZE p)})) M /\ | |
~(Dom M :A->bool = EMPTY)` | |
(MATCH_MP_TAC o MATCH_MP (last(CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THENL | |
[ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN | |
REWRITE_TAC[language] THEN | |
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN | |
REWRITE_TAC[functions; SUBSET; IN_ELIM_THM] THEN | |
REWRITE_TAC[IN_UNIONS; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[]; | |
CONJ_TAC THENL | |
[UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN | |
REWRITE_TAC[valuation; Dom_DEF; unbumpmod]; | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN | |
REWRITE_TAC[valuation; Dom_DEF; unbumpmod] THEN | |
ASM_MESON_TAC[]]]] THEN | |
SUBGOAL_THEN | |
`interpretation (language {bumpform p | p IN s}) | |
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` | |
MP_TAC THENL | |
[FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN | |
REWRITE_TAC[language] THEN | |
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN | |
REWRITE_TAC[functions; SUBSET; IN_ELIM_THM; IN_UNIONS] THEN | |
MP_TAC(GEN `p:form` (el 3 | |
(CONJUNCTS (SPEC `p:form` | |
(INST [`@x:A. T`,`ty:A`] SKOLEMIZE_WORKS))))) THEN | |
REWRITE_TAC[SUBSET] THEN MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!p. interpretation (language {(bumpform p)}) | |
(M:(A->bool)#(num->A list->A)#(num->A list->bool)) | |
==> interpretation (language {p}) (unbumpmod M)` | |
MP_TAC THENL | |
[REWRITE_TAC[LANGUAGE_1; interpretation] THEN | |
REWRITE_TAC[Dom_DEF; unbumpmod; Fun_DEF] THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[functions_form; bumpform] THEN | |
REWRITE_TAC[NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION] THEN | |
SPEC_TAC(`\x:A. x IN Dom M`,`P:A->bool`) THEN | |
GEN_TAC THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `f,LENGTH(l:A list) IN LIST_UNION (MAP functions_term a1)` THEN | |
SPEC_TAC(`LENGTH(l:A list)`,`k:num`) THEN | |
SPEC_TAC(`a1:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION] THEN REPEAT STRIP_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
DISJ1_TAC THEN UNDISCH_TAC `f,k IN functions_term h` THEN | |
SPEC_TAC(`h:term`,`t:term`) THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ; LENGTH_MAP] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
DISJ2_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[ALL; IN_UNION] THEN | |
POP_ASSUM MP_TAC THEN | |
W((fun t -> SPEC_TAC(t,`P:term->bool`)) o find_term is_abs o snd) THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[interpretation; language; functions] THEN | |
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`!p. p IN s ==> interpretation (language {p}) (unbumpmod | |
(M:(A->bool)#(num->A list->A)#(num->A list->bool)))` | |
MP_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `p:form`) THEN | |
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL | |
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[interpretation; language; functions] THEN | |
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN | |
REWRITE_TAC[IN_UNIONS; IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]]; | |
REWRITE_TAC[interpretation; language; functions] THEN | |
REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNIONS] THEN | |
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN | |
DISCH_THEN(MP_TAC o SPEC `f':form`) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Skolemization right down to quantifier-free formula. *) | |
(* ------------------------------------------------------------------------- *) | |
let specialize = new_recursive_definition form_RECURSION | |
`(specialize False = False) /\ | |
(specialize (Atom p l) = Atom p l) /\ | |
(specialize (q --> r) = q --> r) /\ | |
(specialize (!!x r) = specialize r)`;; | |
let SPECIALIZE_SATISFIES = prove | |
(`!M s. ~(Dom M:A->bool = EMPTY) | |
==> (M satisfies s <=> M satisfies {specialize p | p IN s})`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN | |
SUBGOAL_THEN | |
`!p. (!v:num->A. valuation M v ==> holds M v p) <=> | |
(!v:num->A. valuation M v ==> holds M v (specialize p))` | |
(fun th -> MESON_TAC[th]) THEN | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[specialize] THEN | |
ASM_REWRITE_TAC[HOLDS_UCLOSE]);; | |
let SPECIALIZE_QFREE = prove | |
(`!p. universal p ==> qfree(specialize p)`, | |
MATCH_MP_TAC universal_INDUCT THEN REWRITE_TAC[specialize] THEN | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; specialize]);; | |
let SPECIALIZE_LANGUAGE = prove | |
(`!s. language {specialize p | p IN s} = language s`, | |
REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN | |
REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN | |
SUBGOAL_THEN | |
`(!p. functions_form(specialize p) = functions_form p) /\ | |
(!p. predicates_form(specialize p) = predicates_form p)` | |
(fun th -> GEN_MESON_TAC 16 40 1[th]) THEN | |
CONJ_TAC THEN MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[specialize; predicates_form; functions_form]);; | |
let SKOLEM = new_definition | |
`SKOLEM p = specialize(SKOLEMIZE p)`;; | |
let SKOLEM_QFREE = prove | |
(`!p. qfree(SKOLEM p)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM] THEN | |
MATCH_MP_TAC SPECIALIZE_QFREE THEN | |
REWRITE_TAC[SKOLEMIZE_WORKS]);; | |
let SKOLEM_SATISFIABLE = prove | |
(`(?M. ~(Dom M :A->bool = EMPTY) /\ | |
interpretation (language s) M /\ | |
M satisfies s) = | |
(?M. ~(Dom M :A->bool = EMPTY) /\ | |
interpretation (language {SKOLEM p | p IN s}) M /\ | |
M satisfies {SKOLEM p | p IN s})`, | |
GEN_REWRITE_TAC LAND_CONV [SKOLEMIZE_SATISFIABLE] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_TAC THEN BINOP_TAC THENL | |
[AP_THM_TAC THEN AP_TERM_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM SPECIALIZE_LANGUAGE] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]; | |
REWRITE_TAC[SKOLEM] THEN | |
FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC LAND_CONV [MATCH_MP SPECIALIZE_SATISFIES th]) THEN | |
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]]);; | |