Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
57.4 kB
(* ========================================================================= *)
(* Conversion to Skolem normal form. *)
(* ========================================================================= *)
let HOLDS_EXISTS_LEMMA = prove
(`!p t x M v preds:num#num->bool.
interpretation (functions_term t,preds) M /\
valuation(M) (v:num->A) /\
holds M v (formsubst (valmod (x,t) V) p)
==> holds M v (??x p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN
REWRITE_TAC[HOLDS] THEN DISCH_TAC THEN
EXISTS_TAC `termval M (v:num->A) t` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN
EXISTS_TAC `preds:num#num->bool` THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* One-step Skolemization of ??x p using new function f. *)
(* ------------------------------------------------------------------------- *)
let Skolem1_DEF = new_definition
`Skolem1 f x p =
formsubst (valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p`;;
let HOLDS_SKOLEM1 = prove
(`!f x p.
prenex(??x p) /\
~((f,CARD(FV(??x p))) IN functions_form(??x p))
==> prenex(Skolem1 f x p) /\
(FV(Skolem1 f x p) = FV(??x p)) /\
size(Skolem1 f x p) < size(??x p) /\
(predicates_form (Skolem1 f x p) = predicates_form(??x p)) /\
(functions_form(??x p) SUBSET functions_form (Skolem1 f x p)) /\
(functions_form (Skolem1 f x p) SUBSET ((f,CARD(FV(??x p))) INSERT
functions_form(??x p))) /\
(!M. interpretation (language {p}) M /\
~(Dom(M) = EMPTY) /\
(!v:num->A. valuation(M) v ==> holds M v (??x p))
==> ?M'. (Dom(M') = Dom(M)) /\
(Pred(M') = Pred(M)) /\
(!g zs. ~(g = f) \/ ~(LENGTH zs = CARD(FV(??x p)))
==> (Fun(M') g zs = Fun(M) g zs)) /\
interpretation (language {(Skolem1 f x p)}) M' /\
(!v. valuation(M') v ==> holds M' v (Skolem1 f x p))) /\
(!N. interpretation (language {(Skolem1 f x p)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) (v:num->A) /\
holds N v (Skolem1 f x p) ==> holds N v (??x p))`,
let lemma1 = prove
(`!l. LIST_UNION (MAP (\x. {x}) l) = set_of_list l`,
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[set_of_list; LIST_UNION; MAP] THEN
SET_TAC[]) in
let lemma2 = prove
(`!s. FINITE(s) ==> (LIST_UNION (MAP (\x. {x}) (list_of_set s)) = s)`,
GEN_TAC THEN REWRITE_TAC[lemma1; SET_OF_LIST_OF_SET]) in
let lemma3 = prove
(`holds M v p /\
(Dom M = Dom M') /\
(!P zs. Pred M P zs = Pred M' P zs) /\
(!f zs.
f,LENGTH zs IN functions_form p ==> (Fun M f zs = Fun M' f zs))
==> holds M' v p`,
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP HOLDS_FUNCTIONS) THEN
ASM_MESON_TAC[]) in
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_CASES_TAC `x IN FV(p)` THENL
[ALL_TAC;
SUBGOAL_THEN `Skolem1 f x p = p` SUBST1_TAC THENL
[GEN_REWRITE_TAC RAND_CONV [GSYM FORMSUBST_TRIV] THEN
REWRITE_TAC[Skolem1_DEF] THEN MATCH_MP_TAC FORMSUBST_VALUATION THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN ASM_REWRITE_TAC[];
UNDISCH_TAC `~(x IN FV(p))` THEN
REWRITE_TAC[FV; Exists_DEF; Not_DEF; EXTENSION; IN_UNION; IN_DELETE;
NOT_IN_EMPTY] THEN MESON_TAC[];
REWRITE_TAC[SIZE] THEN ARITH_TAC;
REWRITE_TAC[Exists_DEF; Not_DEF; predicates_form; UNION_EMPTY];
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_REFL];
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY] THEN SET_TAC[];
W(EXISTS_TAC o rand o rand o lhand o snd o dest_exists o snd) THEN
ASM_REWRITE_TAC[] THEN
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[HOLDS] THEN
DISCH_THEN(CHOOSE_THEN (MP_TAC o CONJUNCT2)) THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[];
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN REWRITE_TAC[HOLDS] THEN
EXISTS_TAC `a:A` THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `holds N (v:num->A) p` THEN
MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC HOLDS_VALUATION THEN
REWRITE_TAC[valmod] THEN UNDISCH_TAC `~(x IN FV(p))` THEN
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN MESON_TAC[]]] THEN
RULE_ASSUM_TAC(REWRITE_RULE[PRENEX]) THEN REWRITE_TAC[Skolem1_DEF] THEN
ASM_REWRITE_TAC[PRENEX_FORMSUBST] THEN
ASM_REWRITE_TAC[SIZE_FORMSUBST; SIZE; ARITH_RULE `x < 3 + x`] THEN
CONJ_TAC THENL
[REWRITE_TAC[FORMSUBST_FV] THEN
REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN
REWRITE_TAC[FVT; NOT_IN_EMPTY; IN_INSERT] THEN
REWRITE_TAC[GSYM MAP_o; o_DEF] THEN REWRITE_TAC[FVT] THEN
REWRITE_TAC[MATCH_MP lemma2 (SPEC `??x p` FV_FINITE)] THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
UNDISCH_TAC `x IN FV p` THEN
REWRITE_TAC[FV; Exists_DEF; Not_DEF; UNION_EMPTY; IN_DELETE] THEN MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[FORMSUBST_PREDICATES] THEN CONJ_TAC THENL
[REWRITE_TAC[predicates_form; Exists_DEF; Not_DEF; UNION_EMPTY]; ALL_TAC] THEN
FIRST_ASSUM(fun th ->
REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN
CONJ_TAC THENL
[REWRITE_TAC[Exists_DEF; Not_DEF; functions_form; UNION_EMPTY; SUBSET_UNION];
ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[functions_term] THEN
SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY`
(fun th -> REWRITE_TAC[th]) THENL
[LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN
SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[LENGTH_MAP] THEN
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV(??x p))`
SUBST1_TAC THENL
[MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE];
ALL_TAC] THEN
REWRITE_TAC[Exists_DEF; Not_DEF; functions_form] THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; NOT_IN_EMPTY; DISJ_ACI];
ALL_TAC] THEN
REPEAT STRIP_TAC THENL
[EXISTS_TAC `Dom(M):A->bool,
(\g zs. if (g = f) /\ (LENGTH zs = CARD(FV(??x p)))
then @a. a IN Dom(M) /\
holds M
(valmod (x,a)
(ITLIST valmod
(MAP2 (\x a. (x,a))
(list_of_set(FV(??x p)))
zs)
(\z. @c. c IN Dom(M)))) p
else Fun(M) g zs),
Pred(M)` THEN
ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN
CONJ_TAC THENL [REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[language; interpretation] THEN
SUBGOAL_THEN
`functions
{(formsubst(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)}
= ((f,CARD(FV(??x p))) INSERT functions_form p)`
SUBST1_TAC THENL
[MP_TAC(SPECL [`x:num`; `Fn f (MAP V (list_of_set(FV(??x p))))`;
`p:form`] FORMSUBST_FUNCTIONS_FORM_1) THEN
ASM_REWRITE_TAC[FVT] THEN
SUBGOAL_THEN `LIST_UNION(MAP FVT (MAP V (list_of_set(FV(??x p))))) =
FV(??x p)`
(fun th -> ASM_REWRITE_TAC[th]) THENL
[SUBGOAL_THEN `FV(??x p) = set_of_list(list_of_set(FV(??x p)))`
(fun th -> GEN_REWRITE_TAC RAND_CONV [th]) THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SET_OF_LIST_OF_SET THEN
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN
SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN
LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; MAP; FVT; set_of_list] THEN
SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN
SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } =
functions_form p`
(fun th -> REWRITE_TAC[th]) THENL
[GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION] THEN
X_GEN_TAC `fa:num#num` THEN
GEN_REWRITE_TAC RAND_CONV [DISJ_SYM] THEN
AP_TERM_TAC THEN REWRITE_TAC[functions_term] THEN
SUBGOAL_THEN `!l. LIST_UNION (MAP functions_term (MAP V l)) = EMPTY`
(fun th -> REWRITE_TAC[th]) THENL
[LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[LIST_UNION; MAP; functions_term] THEN
SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[LENGTH_MAP] THEN
MATCH_MP_TAC LENGTH_LIST_OF_SET THEN REWRITE_TAC[FV_FINITE];
ALL_TAC] THEN
REWRITE_TAC[Dom_DEF; Fun_DEF] THEN
X_GEN_TAC `g:num` THEN X_GEN_TAC `zs:A list` THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[DISCH_TAC THEN
SUBGOAL_THEN `?a:A. a IN Dom M /\
holds M (valmod (x,a)
(ITLIST valmod (MAP2 (\x a. x,a)
(list_of_set (FV (?? x p))) zs)
(\z. @c. c IN Dom(M)))) p`
(fun th -> REWRITE_TAC[SELECT_RULE th]) THEN
UNDISCH_TAC `!v. valuation M v ==> holds M (v:num->A) (??x p)` THEN
REWRITE_TAC[HOLDS] THEN DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[valuation] THEN
UNDISCH_TAC `ALL (\x:A. x IN Dom M) zs` THEN
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = LENGTH (zs:A list)`
MP_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC LENGTH_LIST_OF_SET THEN
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN
SPEC_TAC(`list_of_set(FV(??x p))`,`xs:num list`) THEN
SPEC_TAC(`zs:A list`,`zs:A list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; ITLIST; MAP2; LENGTH] THENL
[GEN_TAC THEN
REWRITE_TAC[LENGTH_EQ_NIL] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[MAP2; ITLIST] THEN
CONV_TAC SELECT_CONV THEN
ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]; ALL_TAC] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN
REWRITE_TAC[SUC_INJ] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN ANTE_RES_THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
REWRITE_TAC[MAP2; ITLIST] THEN
GEN_TAC THEN REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[];
RULE_ASSUM_TAC(REWRITE_RULE[interpretation; language]) THEN
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[functions; IN_INSERT; NOT_IN_EMPTY] THEN
SUBGOAL_THEN `!p. UNIONS {functions_form q | q = p } =
functions_form p`
(fun th -> ASM_REWRITE_TAC[th]) THEN
GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[GSYM EXTENSION] THEN MESON_TAC[]]; ALL_TAC] THEN
REWRITE_TAC[HOLDS_FORMSUBST1] THEN
X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN REWRITE_TAC[termval] THEN
REWRITE_TAC[GSYM MAP_o] THEN REWRITE_TAC[o_DEF; termval] THEN
REWRITE_TAC[Fun_DEF; LENGTH_MAP] THEN
SUBGOAL_THEN `LENGTH(list_of_set(FV(??x p))) = CARD(FV (??x p))`
SUBST1_TAC THENL
[MATCH_MP_TAC LENGTH_LIST_OF_SET THEN
REWRITE_TAC[FV_FINITE]; ALL_TAC] THEN
REWRITE_TAC[] THEN MATCH_MP_TAC lemma3 THEN
REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF] THEN CONJ_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN
UNDISCH_TAC `(f',LENGTH (zs:A list)) IN functions_form p` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `~(f,CARD (FV (?? x p)) IN functions_form (?? x p))` THEN
REWRITE_TAC[Exists_DEF; functions_form; Not_DEF; UNION_EMPTY] THEN
DISCH_THEN(fun th -> REWRITE_TAC[th])] THEN
SUBGOAL_THEN
`!a. holds M (valmod (x,a)
(ITLIST valmod
(MAP2 (\x a. x,a) (list_of_set (FV (??x p)))
(MAP (\y. v y) (list_of_set(FV(??x p)))))
(\z. @c. c IN Dom(M)))) p = holds M (valmod (x,a:A) v) p`
(fun th -> REWRITE_TAC[th]) THENL
[ALL_TAC;
SUBGOAL_THEN
`(@a:A. a IN Dom M /\ holds M (valmod (x,a) v) p) IN Dom(M) /\
holds M (valmod (x,(@a. a IN Dom M /\ holds M (valmod (x,a) v) p)) v) p`
(ACCEPT_TAC o CONJUNCT2) THEN CONV_TAC SELECT_CONV THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[HOLDS]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation; Dom_DEF]) THEN
ASM_REWRITE_TAC[valuation]] THEN
X_GEN_TAC `a:A` THEN MATCH_MP_TAC HOLDS_VALUATION THEN
X_GEN_TAC `z:num` THEN DISCH_TAC THEN REWRITE_TAC[valmod] THEN
ASM_CASES_TAC `z:num = x` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `MEM z (list_of_set (FV (??x p)))` MP_TAC THENL
[SUBGOAL_THEN `z IN FV(??x p)`
(fun th -> MESON_TAC[th; MEM_LIST_OF_SET; FV_FINITE]) THEN
ASM_REWRITE_TAC[Exists_DEF; Not_DEF; FV; IN_DELETE; IN_UNION; NOT_IN_EMPTY];
ALL_TAC] THEN
SPEC_TAC(`list_of_set(FV(??x p))`,`l:num list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN
REWRITE_TAC[ITLIST; MAP2; MAP; valmod] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC HOLDS_EXISTS_LEMMA THEN
EXISTS_TAC `Fn f (MAP V (list_of_set (FV (?? x p))))` THEN
EXISTS_TAC `predicates_form (formsubst
(valmod (x,Fn f (MAP V (list_of_set(FV(??x p))))) V) p)` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC
`interpretation
(language
(formsubst (valmod (x,Fn f (MAP V (list_of_set (FV (?? x p))))) V)
p INSERT
EMPTY))
(N:(A->bool)#((num->((A)list->A))#(num->((A)list->bool))))` THEN
REWRITE_TAC[LANGUAGE_1] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
FIRST_ASSUM(fun th ->
REWRITE_TAC[MATCH_MP FORMSUBST_FUNCTIONS_FORM_1 th]) THEN
REWRITE_TAC[SUBSET_UNION]]);;
(* ------------------------------------------------------------------------- *)
(* Multiple Skolemization of a prenex formula. *)
(* ------------------------------------------------------------------------- *)
let Skolems_EXISTENCE = prove
(`!J. ?Skolems. !r.
Skolems r = \k. PPAT (\x q. !!x (Skolems q k))
(\x q. Skolems (Skolem1 (NUMPAIR J k) x q) (SUC k))
(\p. p) r`,
GEN_TAC THEN MATCH_MP_TAC SIZE_REC THEN REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[PPAT_DEF] THEN
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN
ASM_CASES_TAC `?x p. r = !!x p` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
(SPEC_ALL SELECT_REFL)] THEN
AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[size] THEN ARITH_TAC; ALL_TAC] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CHOOSE_THEN (CHOOSE_THEN SUBST_ALL_TAC)) THEN
REWRITE_TAC[PRENEX_DISTINCT] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_REFL; GSYM EXISTS_REFL;
SELECT_REFL; CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV))
(SPEC_ALL SELECT_REFL)] THEN
AP_THM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[Skolem1_DEF; SIZE_FORMSUBST] THEN
REWRITE_TAC[SIZE] THEN ARITH_TAC);;
let Skolems_SPECIFICATION = prove
(`?Skolems. !J r k.
Skolems J r k =
PPAT (\x q. !!x (Skolems J q k))
(\x q. Skolems J (Skolem1 (NUMPAIR J k) x q) (SUC k))
(\p. p) r`,
REWRITE_TAC[REWRITE_RULE[SKOLEM_THM; FUN_EQ_THM] Skolems_EXISTENCE]);;
let Skolems_DEF = new_specification ["Skolems"] Skolems_SPECIFICATION;;
let HOLDS_SKOLEMS_INDUCTION = prove
(`!n J k p.
(size(p) = n) /\
prenex(p) /\
(!l m. (NUMPAIR J l,m) IN functions_form p ==> l < k)
==> universal((Skolems J p k)) /\
(FV((Skolems J p k)) = FV(p)) /\
(predicates_form (Skolems J p k) = predicates_form p) /\
functions_form p SUBSET functions_form (Skolems J p k) /\
functions_form (Skolems J p k) SUBSET
{NUMPAIR j l,m | j,l,m | (j = J) /\ k <= l} UNION
functions_form p /\
(!M. interpretation (language {p}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v p)
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun(M') g zs = Fun(M) g zs)
==> ?l. k <= l /\ (g = NUMPAIR J l)) /\
interpretation (language {(Skolems J p k)}) M' /\
(!v. valuation M' v
==> holds M' v (Skolems J p k))) /\
(!N. interpretation (language {(Skolems J p k)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (Skolems J p k)
==> holds N v p)`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o ONCE_REWRITE_RULE[prenex_CASES]) THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
[SUBGOAL_THEN `Skolems J p k = p` SUBST1_TAC THENL
[ONCE_REWRITE_TAC[Skolems_DEF] THEN
SUBGOAL_THEN `~(?x q. p = !!x q) /\ ~(?x q. p = ??x q)` MP_TAC THENL
[REPEAT STRIP_TAC THEN UNDISCH_TAC `qfree p` THEN
ASM_REWRITE_TAC[QFREE]; ALL_TAC] THEN
SIMP_TAC[PPAT]; ALL_TAC] THEN
REWRITE_TAC[SUBSET_UNION; SUBSET_REFL] THEN
ONCE_REWRITE_TAC[universal_CASES] THEN ASM_REWRITE_TAC[] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
W(EXISTS_TAC o rand o rand o lhand o body o rand o snd) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN
(X_CHOOSE_THEN `x:num` (X_CHOOSE_THEN `r:form`
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)))) THEN
REWRITE_TAC[SIZE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THENL
[FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size r`) THEN
REWRITE_TAC[ARITH_RULE `r < 1 + r`] THEN
DISCH_THEN(MP_TAC o SPECL [`J:num`; `k:num`; `r:form`]) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[functions_form]) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ARITH_TAC; ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN `Skolems J (!!x r) k = !!x (Skolems J r k)` SUBST1_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN
SUBGOAL_THEN `?z s. !!x r = !!z s` (fun th -> SIMP_TAC[th; PPAT]) THEN
MESON_TAC[]; ALL_TAC] THEN
ABBREV_TAC `q = Skolems J r k` THEN
ASM_REWRITE_TAC[functions_form; FV] THEN
REWRITE_TAC[predicates_form; functions_form; LANGUAGE_1] THEN
REWRITE_TAC[GSYM LANGUAGE_1] THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL [ASM_MESON_TAC[universal_CASES]; ALL_TAC] THEN
REPEAT STRIP_TAC THENL
[SUBGOAL_THEN
`interpretation (language (r INSERT EMPTY)) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v r)`
(ANTE_RES_THEN MP_TAC) THENL
[ASM_REWRITE_TAC[] THEN GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN ANTE_RES_THEN MP_TAC th) THEN
REWRITE_TAC[HOLDS] THEN
DISCH_THEN(MP_TAC o SPEC `(v:num->A) x`) THEN
REWRITE_TAC[VALMOD_TRIV] THEN DISCH_THEN MATCH_MP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[valuation]) THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC(prove(`(!x. p x ==> q x) ==> (?x. p x) ==> ?x. q x`,
MESON_TAC[])) THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[holds] THEN
ASM_MESON_TAC[VALUATION_VALMOD]];
UNDISCH_TAC `holds N (v:num->A) (!!x q)` THEN
REWRITE_TAC[HOLDS] THEN ASM_MESON_TAC[VALUATION_VALMOD]]; ALL_TAC] THEN
MP_TAC(SPECL [`NUMPAIR J k`; `x:num`; `r:form`] HOLDS_SKOLEM1) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[ASM_REWRITE_TAC[PRENEX] THEN ASM_MESON_TAC[LT_REFL]; ALL_TAC] THEN
STRIP_TAC THEN ABBREV_TAC `q = Skolem1 (NUMPAIR J k) x r` THEN
FIRST_X_ASSUM(MP_TAC o check (is_imp o concl) o SPEC `size q`) THEN
RULE_ASSUM_TAC(REWRITE_RULE[SIZE]) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPECL [`J:num`; `SUC k`; `q:form`]) THEN
ASM_REWRITE_TAC[LT] THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[REPEAT GEN_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[SUBSET]) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ] THEN
ASM_MESON_TAC[]; ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN `Skolems J (?? x r) k = Skolems J q (SUC k)` SUBST1_TAC THENL
[EXPAND_TAC "q" THEN GEN_REWRITE_TAC LAND_CONV [Skolems_DEF] THEN
REWRITE_TAC[PPAT];
ABBREV_TAC `s = Skolems J q (SUC k)`] THEN
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[SUBSET_TRANS];
UNDISCH_TAC `functions_form s SUBSET
{NUMPAIR j l,m | j,l,m | (j = J) /\ SUC k <= l} UNION
functions_form q` THEN
UNDISCH_TAC `functions_form q SUBSET
(NUMPAIR J k,CARD (FV (?? x r))) INSERT functions_form (?? x r)` THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_UNION; IN_ELIM_THM] THEN
MESON_TAC[NUMPAIR_INJ; ARITH_RULE `SUC k <= l ==> k <= l`; LE_REFL];
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`interpretation (language {r}) M /\
~(Dom M = EMPTY) /\
!v:num->A. valuation M v ==> holds M v (?? x r)`
(ANTE_RES_THEN MP_TAC) THENL
[ASM_REWRITE_TAC[] THEN
RULE_ASSUM_TAC(REWRITE_RULE
[LANGUAGE_1; Not_DEF; Exists_DEF; functions_form;
predicates_form; UNION_EMPTY]) THEN
ASM_REWRITE_TAC[LANGUAGE_1]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `M0:(A->bool)#(num->A list->A)#(num->A
list->bool)` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN
`interpretation (language {q}) M0 /\
~(Dom M0 = EMPTY) /\
(!v:num->A. valuation M0 v ==> holds M0 v q)`
(ANTE_RES_THEN MP_TAC) THENL
[ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `M1:(A->bool)#(num->A list->A)#(num->A
list->bool)` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `M1:(A->bool)#(num->A list->A)#(num->A list->bool)` THEN
ASM_REWRITE_TAC[] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `~(Fun M1 g (zs:A list) = Fun M0 g zs) \/
~(Fun M0 g zs = Fun M g zs)`
MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 (ANTE_RES_THEN MP_TAC) MP_TAC) THENL
[MESON_TAC[ARITH_RULE `SUC k <= l ==> k <= l`]; ALL_TAC] THEN
CONV_TAC CONTRAPOS_CONV THEN REWRITE_TAC[] THEN DISCH_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN
MESON_TAC[LE_REFL];
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
MP_TAC(ASSUME `valuation N (v:num->A)`) THEN
REWRITE_TAC[IMP_IMP] THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language {s})
(N:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[LANGUAGE_1] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
ASM_REWRITE_TAC[]]);;
let HOLDS_SKOLEMS_PRENEX = prove
(`!p.
prenex(p)
==> !K. (!l m. ~(NUMPAIR K l,m IN functions_form p))
==> universal(Skolems K p 0) /\
(FV(Skolems K p 0) = FV(p)) /\
(predicates_form (Skolems K p 0) = predicates_form p) /\
functions_form p SUBSET functions_form (Skolems K p 0) /\
functions_form (Skolems K p 0) SUBSET
{NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\
(!M. interpretation (language {p}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v p)
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun M' g zs = Fun M g zs)
==> (?l. g =
NUMPAIR K l)) /\
interpretation (language {(Skolems K p 0)}) M' /\
(!v. valuation M' v
==> holds M' v (Skolems K p 0))) /\
(!N. interpretation (language {(Skolems K p 0)}) N /\
~(Dom N = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (Skolems K p 0)
==> holds N v p)`,
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPECL [`size p`; `K:num`; `0`; `p:form`] HOLDS_SKOLEMS_INDUCTION) THEN
ASM_REWRITE_TAC[LE_0]);;
(* ------------------------------------------------------------------------- *)
(* Now Skolemize an arbitrary (non-prenex) formula. *)
(* ------------------------------------------------------------------------- *)
let Skopre_DEF = new_definition
`Skopre K p = Skolems K (Prenex p) 0`;;
let SKOPRE = prove
(`!p K.
(!l m. ~(NUMPAIR K l,m IN functions_form p))
==> universal(Skopre K p) /\
(FV(Skopre K p) = FV(p)) /\
(predicates_form (Skopre K p) = predicates_form p) /\
functions_form p SUBSET functions_form (Skopre K p) /\
functions_form (Skopre K p) SUBSET
{NUMPAIR k l,m | k,l,m | k = K} UNION functions_form p /\
(!M. interpretation (language {p}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v p)
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun M' g zs = Fun M g zs)
==> (?l. g =
NUMPAIR K l)) /\
interpretation (language {(Skopre K p)}) M' /\
(!v. valuation M' v ==> holds M' v (Skopre K p))) /\
(!N. interpretation (language {(Skopre K p)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (Skopre K p)
==> holds N v p)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[Skopre_DEF] THEN
MP_TAC(SPEC `p:form` PRENEX_THM) THEN
ABBREV_TAC `r = Prenex p` THEN STRIP_TAC THEN
SUBGOAL_THEN `(functions_form r = functions_form p) /\
(predicates_form r = predicates_form p)`
STRIP_ASSUME_TAC THENL
[RULE_ASSUM_TAC(REWRITE_RULE[LANGUAGE_1; PAIR_EQ]) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
W(fun (_,w) -> SUBGOAL_THEN (subst [`r:form`,`p:form`] w) MP_TAC) THENL
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP HOLDS_SKOLEMS_PRENEX) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN
ASM_REWRITE_TAC[] THEN
REPEAT(AP_TERM_TAC ORELSE ABS_TAC) THEN
BINOP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN
REWRITE_TAC[IMP_CONJ] THEN
REPEAT(MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a ==> b <=> a ==> c)`) THEN
DISCH_TAC) THEN TRY BINOP_TAC THEN
REPEAT((FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]) ORELSE
(FIRST_ASSUM(MATCH_MP_TAC o GSYM) THEN ASM_REWRITE_TAC[]) ORELSE
AP_TERM_TAC ORELSE ABS_TAC) THEN
REFL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Bumping up function indices to leave room for Skolem functions. *)
(* ------------------------------------------------------------------------- *)
let bumpmod = new_definition
`bumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMSND k) zs),Pred(M)`;;
let bumpterm = new_recursive_definition term_RECURSION
`(bumpterm (V x) = V x) /\
(bumpterm (Fn k l) = Fn (NUMPAIR 0 k) (MAP bumpterm l))`;;
let bumpform = new_recursive_definition form_RECURSION
`(bumpform False = False) /\
(bumpform (Atom p l) = Atom p (MAP bumpterm l)) /\
(bumpform (q --> r) = bumpform q --> bumpform r) /\
(bumpform (!!x r) = !!x (bumpform r))`;;
let BUMPTERM = prove
(`!M v t. termval M v t = termval (bumpmod M) v (bumpterm t)`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; bumpterm] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN
REWRITE_TAC[GSYM bumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
ASM_REWRITE_TAC[o_THM]);;
let BUMPFORM = prove
(`!M p v. holds M v p = holds (bumpmod M) v (bumpform p)`,
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[Dom_DEF; bumpmod; bumpform; holds; Pred_DEF] THEN
REWRITE_TAC[GSYM bumpmod; GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[o_THM; GSYM BUMPTERM; ALL_T]);;
let FUNCTIONS_FORM_BUMPFORM = prove
(`!p f m.
f,m IN functions_form(bumpform p)
==> ?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN REPEAT GEN_TAC THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN
DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);;
let BUMPFORM_INTERPRETATION = prove
(`interpretation (language {p}) M
==> interpretation (language {(bumpform p)}) (bumpmod M)`,
REWRITE_TAC[LANGUAGE_1; interpretation] THEN
REWRITE_TAC[Dom_DEF; bumpmod; Fun_DEF] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[FUNCTIONS_FORM_BUMPFORM; NUMPAIR_DEST]);;
let unbumpterm = new_recursive_definition term_RECURSION
`(unbumpterm (V x) = V x) /\
(unbumpterm (Fn k l) = Fn (NUMSND k) (MAP unbumpterm l))`;;
let unbumpform = new_recursive_definition form_RECURSION
`(unbumpform False = False) /\
(unbumpform (Atom p l) = Atom p (MAP unbumpterm l)) /\
(unbumpform (q --> r) = unbumpform q --> unbumpform r) /\
(unbumpform (!!x r) = !!x (unbumpform r))`;;
let UNBUMPTERM = prove
(`!t. unbumpterm(bumpterm t) = t`,
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[unbumpterm; bumpterm; NUMPAIR_DEST] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM MAP_o] THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN
ASM_REWRITE_TAC[o_THM]);;
let UNBUMPFORM = prove
(`!p. unbumpform (bumpform p) = p`,
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[unbumpform; bumpform] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM MAP_o; o_DEF; UNBUMPTERM] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN
REWRITE_TAC[ALL_T]);;
let unbumpmod = new_definition
`unbumpmod(M) = Dom(M),(\k zs. Fun(M) (NUMPAIR 0 k) zs),Pred(M)`;;
let UNBUMPMOD_TERM = prove
(`!M v t. termval M v (bumpterm t) = termval (unbumpmod M) v t`,
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; bumpterm] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[unbumpmod; Fun_DEF; NUMPAIR_DEST] THEN
REWRITE_TAC[GSYM unbumpmod] THEN REWRITE_TAC[GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
ASM_REWRITE_TAC[o_THM]);;
let UNBUMPMOD = prove
(`!M p (v:num->A). holds M v (bumpform p) = holds (unbumpmod M) v p`,
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[Dom_DEF; unbumpmod; bumpform; holds; Pred_DEF] THEN
REWRITE_TAC[GSYM unbumpmod; GSYM MAP_o] THEN
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN
REWRITE_TAC[o_THM; GSYM UNBUMPMOD_TERM; ALL_T]);;
(* ------------------------------------------------------------------------- *)
(* Mapping terms and formulas into terms for unique Skolem functions. *)
(* ------------------------------------------------------------------------- *)
let NUMLIST = new_recursive_definition list_RECURSION
`(NUMLIST [] = 0) /\
(NUMLIST (CONS h t) = NUMPAIR h (NUMLIST t) + 1)`;;
let NUMLIST_INJ = prove
(`!l1 l2. (NUMLIST l1 = NUMLIST l2) = (l1 = l2)`,
REPEAT(LIST_INDUCT_TAC ORELSE STRIP_TAC) THEN
ASM_REWRITE_TAC[NUMLIST; GSYM ADD1; SUC_INJ; NOT_SUC;
CONS_11; NOT_CONS_NIL; NUMPAIR_INJ]);;
let num_of_term = new_nested_recursive_definition term_RECURSION
`(!x. num_of_term (V x) = NUMPAIR 0 x) /\
(!f l. num_of_term (Fn f l) =
NUMPAIR 1 (NUMPAIR f (NUMLIST(MAP num_of_term l))))`;;
let NUM_OF_TERM_INJ = prove
(`!s t. (num_of_term s = num_of_term t) = (s = t)`,
REPEAT(MATCH_MP_TAC term_INDUCT ORELSE STRIP_TAC) THEN
ASM_REWRITE_TAC[num_of_term; NUMPAIR_INJ; NUMLIST_INJ; ARITH] THEN
REWRITE_TAC[term_INJ; term_DISTINCT] THEN
AP_TERM_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
UNDISCH_TAC
`ALL (\s. !t. (num_of_term s = num_of_term t) = (s = t)) l` THEN
POP_ASSUM(K ALL_TAC) THEN
REWRITE_TAC[IMP_IMP] THEN
SPEC_TAC(`l':term list`,`l':term list`) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN
REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN
REWRITE_TAC[num_of_term] THEN ASM_MESON_TAC[]);;
let num_of_form = new_recursive_definition form_RECURSION
`(num_of_form False = NUMPAIR 0 0) /\
(num_of_form (Atom p l) =
NUMPAIR 1 (NUMPAIR p (NUMLIST(MAP num_of_term l)))) /\
(num_of_form (q --> r) =
NUMPAIR 2 (NUMPAIR (num_of_form q) (num_of_form r))) /\
(num_of_form (!!x q) = NUMPAIR 3 (NUMPAIR x (num_of_form q)))`;;
let NUMLIST_NUM_OF_TERM = prove
(`!l1 l2. (NUMLIST (MAP num_of_term l1) = NUMLIST (MAP num_of_term l2)) =
(l1 = l2)`,
REPEAT(LIST_INDUCT_TAC ORELSE GEN_TAC) THEN
REWRITE_TAC[NOT_CONS_NIL; MAP; NUMLIST; num_of_term; CONS_11; ALL] THEN
ASM_REWRITE_TAC[GSYM ADD1; NOT_SUC; SUC_INJ; NUMPAIR_INJ; NUM_OF_TERM_INJ]);;
let NUM_OF_FORM_INJ = prove
(`!q r. (num_of_form q = num_of_form r) = (q = r)`,
MATCH_MP_TAC form_INDUCTION THEN REPEAT CONJ_TAC THENL
[ALL_TAC;
GEN_TAC THEN GEN_TAC;
REPEAT GEN_TAC THEN STRIP_TAC;
REPEAT GEN_TAC THEN STRIP_TAC] THEN
MATCH_MP_TAC form_INDUCTION THEN
ASM_REWRITE_TAC[num_of_form; NUMPAIR_INJ; ARITH; form_DISTINCT;
form_INJ; NUMLIST_NUM_OF_TERM]);;
let form_of_num = new_definition
`form_of_num x = @p. num_of_form p = x`;;
let FORM_OF_NUM = prove
(`form_of_num(num_of_form p) = p`,
REWRITE_TAC[form_of_num; NUM_OF_FORM_INJ]);;
(* ------------------------------------------------------------------------- *)
(* Skolemization function. *)
(* ------------------------------------------------------------------------- *)
let SKOLEMIZE = new_definition
`SKOLEMIZE p = Skopre (num_of_form(bumpform p) + 1) (bumpform p)`;;
let SKOLEMIZE_WORKS = prove
(`!p. universal(SKOLEMIZE p) /\
(FV(SKOLEMIZE p) = FV(bumpform p)) /\
(predicates_form (SKOLEMIZE p) = predicates_form (bumpform p)) /\
functions_form (bumpform p) SUBSET functions_form (SKOLEMIZE p) /\
functions_form (SKOLEMIZE p) SUBSET
{NUMPAIR k l,m | k,l,m | k = num_of_form(bumpform p) + 1} UNION
functions_form (bumpform p) /\
(!M. interpretation (language {(bumpform p)}) M /\
~(Dom M = EMPTY) /\
(!v:num->A. valuation M v ==> holds M v (bumpform p))
==> ?M'. (Dom M' = Dom M) /\
(Pred M' = Pred M) /\
(!g zs. ~(Fun M' g zs = Fun M g zs)
==> (?l. g =
NUMPAIR (num_of_form(bumpform p) + 1)
l)) /\
interpretation (language {(SKOLEMIZE p)}) M' /\
(!v. valuation M' v ==> holds M' v (SKOLEMIZE p))) /\
(!N. interpretation (language {(SKOLEMIZE p)}) N /\
~(Dom(N) = EMPTY)
==> !v:num->A. valuation(N) v /\ holds N v (SKOLEMIZE p)
==> holds N v (bumpform p))`,
GEN_TAC THEN REWRITE_TAC[SKOLEMIZE] THEN MATCH_MP_TAC SKOPRE THEN
SPEC_TAC(`num_of_form(bumpform p)`,`x:num`) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[bumpform; functions_form] THEN
REWRITE_TAC[IN_UNION; NOT_IN_EMPTY] THEN
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THENL
[ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[GSYM MAP_o] THEN
SPEC_TAC(`x:num`,`x:num`) THEN SPEC_TAC(`l:num`,`y:num`) THEN
SPEC_TAC(`m:num`,`z:num`) THEN SPEC_TAC(`a1:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[LIST_UNION; NOT_IN_EMPTY; MAP] THEN
ASM_REWRITE_TAC[IN_UNION] THEN
SPEC_TAC(`h:term`,`t:term`) THEN POP_ASSUM(K ALL_TAC) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[functions_term; bumpterm; o_THM; NOT_IN_EMPTY] THEN
GEN_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY; IN_INSERT; ALL] THEN
REWRITE_TAC[PAIR_EQ; NUMPAIR_INJ; ARITH_RULE `~(x + 1 = 0)`] THEN
STRIP_TAC THEN REPEAT GEN_TAC THEN
ASM_REWRITE_TAC[IN_UNION; DE_MORGAN_THM] THEN
FIRST_ASSUM(fun th -> FIRST_ASSUM(MP_TAC o MATCH_MP th)) THEN
REWRITE_TAC[IN_INSERT; DE_MORGAN_THM] THEN MESON_TAC[]);;
let FUNCTIONS_FORM_SKOLEMIZE = prove
(`!p f m.
f,m IN functions_form(SKOLEMIZE p)
==> (?k. (f = NUMPAIR 0 k) /\ k,m IN functions_form p) \/
(?l. (f = NUMPAIR (num_of_form (bumpform p) + 1) l))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPEC_ALL SKOLEMIZE_WORKS) THEN
DISCH_THEN(MP_TAC o el 4 o CONJUNCTS) THEN
REWRITE_TAC[SUBSET; IN_UNION] THEN
DISCH_THEN(fun ith -> FIRST_ASSUM(MP_TAC o MATCH_MP ith)) THEN
MATCH_MP_TAC(TAUT `(a ==> a') /\ (b ==> b') ==> a \/ b ==> b' \/ a'`) THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_ELIM_THM; NUMPAIR_INJ; PAIR_EQ] THEN MESON_TAC[];
ALL_TAC] THEN
POP_ASSUM(K ALL_TAC) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[functions_form; bumpform; IN_UNION; NOT_IN_EMPTY] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN POP_ASSUM(K ALL_TAC) THEN
DISCH_TAC THEN DISJ1_TAC THEN POP_ASSUM MP_TAC THEN
SPEC_TAC(`h:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; PAIR_EQ; LENGTH_MAP] THEN REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`] THEN
REWRITE_TAC[EXISTS_OR_THM] THEN DISJ2_TAC THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN
REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION; ALL] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Construction of Skolem model for a formula. *)
(* ------------------------------------------------------------------------- *)
let SKOMOD1 = new_definition
`SKOMOD1 p M =
if (!v. valuation M v ==> holds M v p)
then @M'. (Dom M' = Dom (bumpmod M)) /\
(Pred M' = Pred (bumpmod M)) /\
(!g zs.
~(Fun M' g zs = Fun (bumpmod M) g zs)
==> (?l. g =
NUMPAIR (num_of_form (bumpform p) + 1) l)) /\
interpretation (language {(SKOLEMIZE p)}) M' /\
(!v:num->A. valuation M' v
==> holds M' v (SKOLEMIZE p))
else (Dom M,(\g zs. @a:A. a IN Dom(M)),Pred M)`;;
let SKOMOD1_WORKS = prove
(`!M p.
interpretation (language {p}) M /\
~(Dom M = EMPTY)
==> (Dom (SKOMOD1 p M) = Dom (bumpmod M)) /\
(Pred (SKOMOD1 p M) = Pred (bumpmod M)) /\
interpretation (language {(SKOLEMIZE p)}) (SKOMOD1 p M) /\
((!v:num->A. valuation M v ==> holds M v p)
==> (!g zs.
~(Fun (SKOMOD1 p M) g zs = Fun (bumpmod M) g zs)
==> (?l. g =
NUMPAIR (num_of_form (bumpform p) + 1) l)) /\
(!v:num->A. valuation (SKOMOD1 p M) v
==> holds (SKOMOD1 p M) v (SKOLEMIZE p)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[SKOMOD1] THEN
COND_CASES_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL
[ONCE_REWRITE_TAC[AC CONJ_ACI `d /\ p /\ i /\ g /\ v <=>
d /\ p /\ g /\ i /\ v`] THEN
CONV_TAC SELECT_CONV THEN
MATCH_MP_TAC(el 5 (CONJUNCTS (SPEC_ALL SKOLEMIZE_WORKS))) THEN
REPEAT CONJ_TAC THENL
[MATCH_MP_TAC BUMPFORM_INTERPRETATION THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[Dom_DEF; bumpmod];
REWRITE_TAC[GSYM BUMPFORM] THEN
REWRITE_TAC[valuation; Dom_DEF; bumpmod] THEN
ASM_REWRITE_TAC[GSYM valuation]];
REWRITE_TAC[Dom_DEF; Pred_DEF; Fun_DEF; bumpmod] THEN
REWRITE_TAC[interpretation; Dom_DEF; LANGUAGE_1; Fun_DEF] THEN
REPEAT STRIP_TAC THEN CONV_TAC SELECT_CONV THEN
ASM_REWRITE_TAC[MEMBER_NOT_EMPTY]]);;
let SKOMOD = new_definition
`SKOMOD M =
(Dom M,
(\g zs. if NUMFST g = 0 then Fun M (NUMSND g) zs
else Fun (SKOMOD1 (unbumpform(form_of_num (PRE(NUMFST g)))) M)
g zs),
Pred M)`;;
let SKOMOD_INTERPRETATION = prove
(`interpretation (language {p}) M /\
~(Dom M :A->bool = EMPTY)
==> interpretation (language {(SKOLEMIZE p)}) (SKOMOD M)`,
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC (CONJUNCT1 th)) THEN
REWRITE_TAC[LANGUAGE_1; interpretation] THEN
REWRITE_TAC[Dom_DEF; SKOMOD; Fun_DEF] THEN
DISCH_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN
STRIP_TAC THEN
ASM_REWRITE_TAC[NUMPAIR_DEST; ARITH_RULE `~(x + 1 = 0)`] THENL
[FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM] THEN
REWRITE_TAC[ADD1] THEN
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o el 1 o CONJUNCTS)) THEN
REWRITE_TAC[LANGUAGE_1; interpretation] THEN
ASM_REWRITE_TAC[bumpmod; Dom_DEF] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]);;
let SKOMOD_WORKS = prove
(`interpretation(language {p}) M /\
~(Dom M = EMPTY)
==> ((!v:num->A. valuation(M) v ==> holds M v p) <=>
(!v:num->A. valuation(SKOMOD M) v
==> holds (SKOMOD M) v (SKOLEMIZE p)))`,
STRIP_TAC THEN REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN
REWRITE_TAC[GSYM valuation] THEN EQ_TAC THENL
[DISCH_TAC THEN X_GEN_TAC `v:num->A` THEN DISCH_TAC THEN
SUBGOAL_THEN
`holds (SKOMOD1 p M) (v:num->A) (SKOLEMIZE p)`
MP_TAC THENL
[SUBGOAL_THEN `valuation (SKOMOD1 p M) (v:num->A)` MP_TAC THENL
[MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1) THEN
UNDISCH_TAC `valuation M (v:num->A)` THEN
ASM_REWRITE_TAC[Dom_DEF; valuation; bumpmod]; ALL_TAC] THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_FUNCTIONS THEN
MP_TAC(SPEC_ALL SKOMOD1_WORKS) THEN ASM_REWRITE_TAC[] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[Dom_DEF; Pred_DEF; bumpmod] THEN
REWRITE_TAC[Fun_DEF] THEN REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_SKOLEMIZE) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST] THENL
[FIRST_X_ASSUM(MP_TAC o SPECL [`NUMPAIR 0 k`; `zs:A list`]) THEN
REWRITE_TAC[bumpmod; Fun_DEF; NUMPAIR_DEST] THEN
REWRITE_TAC[NUMPAIR_INJ; ARITH_RULE `~(0 = x + 1)`];
REWRITE_TAC[ARITH_RULE `~(x + 1 = 0)`] THEN
REWRITE_TAC[GSYM ADD1; PRE; FORM_OF_NUM; UNBUMPFORM]];
DISCH_TAC THEN SUBGOAL_THEN
`!v. valuation (bumpmod M) (v:num->A)
==> holds (bumpmod M) v (bumpform p)`
MP_TAC THENL
[ALL_TAC; REWRITE_TAC[GSYM BUMPFORM; valuation] THEN
REWRITE_TAC[Dom_DEF; bumpmod]] THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM SKOMOD]) THEN
GEN_TAC THEN DISCH_TAC THEN
MP_TAC(INST [`@x:A. T`,`ty:A`]
(last (CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THEN
DISCH_THEN(MP_TAC o SPEC
`SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))`) THEN
W(C SUBGOAL_THEN (fun th -> REWRITE_TAC[th]) o funpow 2 lhand o snd) THENL
[CONJ_TAC THENL
[MATCH_MP_TAC SKOMOD_INTERPRETATION THEN ASM_REWRITE_TAC[];
ASM_REWRITE_TAC[SKOMOD; Dom_DEF]]; ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `holds (SKOMOD M) (v:num->A) (bumpform p)` MP_TAC THENL
[FIRST_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL
[REWRITE_TAC[SKOMOD; valuation; Dom_DEF] THEN
ASM_REWRITE_TAC[GSYM valuation] THEN
UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN
REWRITE_TAC[bumpmod; Dom_DEF; valuation];
FIRST_ASSUM MATCH_MP_TAC THEN
UNDISCH_TAC `valuation (bumpmod M) (v:num->A)` THEN
REWRITE_TAC[bumpmod; Dom_DEF; valuation]];
MATCH_MP_TAC EQ_IMP THEN
SPEC_TAC(`v:num->A`,`v:num->A`) THEN
MATCH_MP_TAC HOLDS_FUNCTIONS THEN
REWRITE_TAC[SKOMOD; Dom_DEF; Fun_DEF; Pred_DEF; bumpmod] THEN
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP FUNCTIONS_FORM_BUMPFORM) THEN
STRIP_TAC THEN ASM_REWRITE_TAC[NUMPAIR_DEST]]]);;
let SKOLEMIZE_SATISFIABLE = prove
(`(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language s) M /\
M satisfies s) <=>
(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language {SKOLEMIZE p | p IN s}) M /\
M satisfies {SKOLEMIZE p | p IN s})`,
REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
EQ_TAC THEN STRIP_TAC THENL
[EXISTS_TAC `SKOMOD (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[Dom_DEF; SKOMOD];
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
MP_TAC(SPEC_ALL SKOMOD_INTERPRETATION) THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language s)
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[interpretation; language] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `functions {p} SUBSET functions s`
(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `p:form IN s` THEN
REWRITE_TAC[functions] THEN
REWRITE_TAC[SUBSET; IN_UNIONS; IN_INSERT;
NOT_IN_EMPTY; IN_ELIM_THM] THEN
MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[interpretation; language] THEN
DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; functions] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `interpretation (language {p'}) M /\
~(Dom M :A->bool = EMPTY)`
(MP_TAC o MATCH_MP SKOMOD_WORKS) THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `interpretation (language s)
(M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE THEN
REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
UNDISCH_TAC `p':form IN s` THEN ASM_MESON_TAC[]];
ALL_TAC] THEN
EXISTS_TAC
`unbumpmod (M:(A->bool)#(num->A list->A)#(num->A list->bool))` THEN
REWRITE_TAC[GSYM UNBUMPMOD] THEN REPEAT CONJ_TAC THENL
[ASM_REWRITE_TAC[unbumpmod; Dom_DEF];
ALL_TAC;
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`interpretation (language ({(SKOLEMIZE p)})) M /\
~(Dom M :A->bool = EMPTY)`
(MATCH_MP_TAC o MATCH_MP (last(CONJUNCTS(SPEC_ALL SKOLEMIZE_WORKS)))) THENL
[ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
REWRITE_TAC[functions; SUBSET; IN_ELIM_THM] THEN
REWRITE_TAC[IN_UNIONS; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
ASM_MESON_TAC[];
CONJ_TAC THENL
[UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN
REWRITE_TAC[valuation; Dom_DEF; unbumpmod];
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `valuation (unbumpmod M) (v:num->A)` THEN
REWRITE_TAC[valuation; Dom_DEF; unbumpmod] THEN
ASM_MESON_TAC[]]]] THEN
SUBGOAL_THEN
`interpretation (language {bumpform p | p IN s})
(M:(A->bool)#(num->A list->A)#(num->A list->bool))`
MP_TAC THENL
[FIRST_ASSUM(fun th -> UNDISCH_TAC (concl th) THEN
REWRITE_TAC[language] THEN
MATCH_MP_TAC INTERPRETATION_SUBLANGUAGE) THEN
REWRITE_TAC[functions; SUBSET; IN_ELIM_THM; IN_UNIONS] THEN
MP_TAC(GEN `p:form` (el 3
(CONJUNCTS (SPEC `p:form`
(INST [`@x:A. T`,`ty:A`] SKOLEMIZE_WORKS))))) THEN
REWRITE_TAC[SUBSET] THEN MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!p. interpretation (language {(bumpform p)})
(M:(A->bool)#(num->A list->A)#(num->A list->bool))
==> interpretation (language {p}) (unbumpmod M)`
MP_TAC THENL
[REWRITE_TAC[LANGUAGE_1; interpretation] THEN
REWRITE_TAC[Dom_DEF; unbumpmod; Fun_DEF] THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[functions_form; bumpform] THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN
SPEC_TAC(`\x:A. x IN Dom M`,`P:A->bool`) THEN
GEN_TAC THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `f,LENGTH(l:A list) IN LIST_UNION (MAP functions_term a1)` THEN
SPEC_TAC(`LENGTH(l:A list)`,`k:num`) THEN
SPEC_TAC(`a1:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_UNION] THEN REPEAT STRIP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
DISJ1_TAC THEN UNDISCH_TAC `f,k IN functions_term h` THEN
SPEC_TAC(`h:term`,`t:term`) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[bumpterm; functions_term; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN_INSERT; NUMPAIR_INJ; PAIR_EQ; LENGTH_MAP] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ2_TAC THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; NOT_IN_EMPTY] THEN
REWRITE_TAC[ALL; IN_UNION] THEN
POP_ASSUM MP_TAC THEN
W((fun t -> SPEC_TAC(t,`P:term->bool`)) o find_term is_abs o snd) THEN
MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!p. p IN s ==> interpretation (language {p}) (unbumpmod
(M:(A->bool)#(num->A list->A)#(num->A list->bool)))`
MP_TAC THENL
[REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:form`) THEN
W(C SUBGOAL_THEN (fun t -> REWRITE_TAC[t]) o funpow 2 lhand o snd) THENL
[REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN
REWRITE_TAC[IN_UNIONS; IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY]];
REWRITE_TAC[interpretation; language; functions] THEN
REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNIONS] THEN
REWRITE_TAC[Dom_DEF; unbumpmod] THEN REWRITE_TAC[GSYM unbumpmod] THEN
DISCH_THEN(MP_TAC o SPEC `f':form`) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Skolemization right down to quantifier-free formula. *)
(* ------------------------------------------------------------------------- *)
let specialize = new_recursive_definition form_RECURSION
`(specialize False = False) /\
(specialize (Atom p l) = Atom p l) /\
(specialize (q --> r) = q --> r) /\
(specialize (!!x r) = specialize r)`;;
let SPECIALIZE_SATISFIES = prove
(`!M s. ~(Dom M:A->bool = EMPTY)
==> (M satisfies s <=> M satisfies {specialize p | p IN s})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[satisfies; IN_ELIM_THM] THEN
SUBGOAL_THEN
`!p. (!v:num->A. valuation M v ==> holds M v p) <=>
(!v:num->A. valuation M v ==> holds M v (specialize p))`
(fun th -> MESON_TAC[th]) THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[specialize] THEN
ASM_REWRITE_TAC[HOLDS_UCLOSE]);;
let SPECIALIZE_QFREE = prove
(`!p. universal p ==> qfree(specialize p)`,
MATCH_MP_TAC universal_INDUCT THEN REWRITE_TAC[specialize] THEN
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree; specialize]);;
let SPECIALIZE_LANGUAGE = prove
(`!s. language {specialize p | p IN s} = language s`,
REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN
REWRITE_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM] THEN
SUBGOAL_THEN
`(!p. functions_form(specialize p) = functions_form p) /\
(!p. predicates_form(specialize p) = predicates_form p)`
(fun th -> GEN_MESON_TAC 16 40 1[th]) THEN
CONJ_TAC THEN MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[specialize; predicates_form; functions_form]);;
let SKOLEM = new_definition
`SKOLEM p = specialize(SKOLEMIZE p)`;;
let SKOLEM_QFREE = prove
(`!p. qfree(SKOLEM p)`,
REPEAT GEN_TAC THEN REWRITE_TAC[SKOLEM] THEN
MATCH_MP_TAC SPECIALIZE_QFREE THEN
REWRITE_TAC[SKOLEMIZE_WORKS]);;
let SKOLEM_SATISFIABLE = prove
(`(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language s) M /\
M satisfies s) =
(?M. ~(Dom M :A->bool = EMPTY) /\
interpretation (language {SKOLEM p | p IN s}) M /\
M satisfies {SKOLEM p | p IN s})`,
GEN_REWRITE_TAC LAND_CONV [SKOLEMIZE_SATISFIABLE] THEN
AP_TERM_TAC THEN ABS_TAC THEN
MATCH_MP_TAC(TAUT `(a ==> (b = c)) ==> (a /\ b <=> a /\ c)`) THEN
DISCH_TAC THEN BINOP_TAC THENL
[AP_THM_TAC THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC LAND_CONV [GSYM SPECIALIZE_LANGUAGE] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[];
REWRITE_TAC[SKOLEM] THEN
FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC LAND_CONV [MATCH_MP SPECIALIZE_SATISFIES th]) THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; SKOLEM] THEN
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[]]);;