Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Yet another formalized unification algorithm. *) | |
(* ========================================================================= *) | |
let LEFT_AND_EX_THM = prove | |
(`!P Q l. EX P l /\ Q <=> EX (\x. P x /\ Q) l`, | |
GEN_TAC THEN GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[EX] THEN CONV_TAC TAUT);; | |
let EX_ADHOC = prove | |
(`!l. (!x. ~(P x) ==> (Q x <=> R x)) ==> (~EX P l ==> (EX Q l <=> EX R l))`, | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[EX] THEN ASM_MESON_TAC[]);; | |
let ALL_ADHOC = prove | |
(`!l. ALL (\x. f x = g x) l ==> (EX f l <=> EX g l)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[ALL; EX] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Yet more wellfoundedness lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let WF_FINITE_LEMMA = prove | |
(`!(<<) s. FINITE s /\ | |
(!x:A. ~(TC(<<) x x)) /\ (!x y. x << y ==> y IN s) | |
==> WF(<<)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN | |
DISCH_THEN(X_CHOOSE_TAC `u:num->A`) THEN | |
SUBGOAL_THEN `!n. (u:num->A)(n) IN s` ASSUME_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
MP_TAC(ISPECL [`u:num->A`; `s:A->bool`] FINITE_IMAGE_INJ) THEN | |
REWRITE_TAC[ASSUME `FINITE(s:A->bool)`; NOT_IMP] THEN | |
SUBGOAL_THEN `{n | (u:num->A)(n) IN s} = UNIV:num->bool` SUBST1_TAC THENL | |
[ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV]; ALL_TAC] THEN | |
REWRITE_TAC[num_INFINITE; GSYM INFINITE] THEN | |
SUBGOAL_THEN `!m n. m < n ==> TC(<<) ((u:num->A) n) (u m)` | |
(fun th -> ASM_MESON_TAC[th; LT_CASES]) THEN | |
SIMP_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `n:num` THEN GEN_TAC THEN X_GEN_TAC `d:num` THEN | |
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[ADD_CLAUSES] THEN | |
SUBGOAL_THEN `!d. RTC(<<) ((u:num->A)(n + d))(u n) ` MP_TAC THENL | |
[INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; RTC_REFL] THEN | |
ASM_MESON_TAC[RTC_TRANS; RTC_INC]; | |
REWRITE_TAC[RTC; RC_CASES] THEN ASM_MESON_TAC[TC_INC; TC_CASES_R]]);; | |
let TC_REV = prove | |
(`!x:A y. TC (\u v. R v u) x y <=> TC R y x`, | |
REWRITE_TAC[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`; FORALL_AND_THM] THEN | |
CONJ_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[SWAP_FORALL_THM]] THEN | |
MATCH_MP_TAC TC_INDUCT THEN SIMP_TAC[TC_INC] THEN MESON_TAC[TC_TRANS]);; | |
let WF_DISJ = prove | |
(`WF(R) /\ WF(\x y. ?z. S x z /\ RTC(R) z y) ==> WF(\x:A y. R x y \/ S x y)`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[WF] THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `P:A->bool` THEN | |
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN | |
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP (snd(EQ_IMP_RULE(SPEC_ALL WF_TC)))) THEN | |
REWRITE_TAC[WF] THEN DISCH_THEN(MP_TAC o SPEC `\y:A. P(y) /\ TC R y a`) THEN | |
REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[RTC; RC_CASES]) THEN | |
ASM_MESON_TAC[TC_INC; TC_TRANS]);; | |
let WF_ALTERNATION = prove | |
(`WF(\x y. R x y \/ S x y) /\ (!x y z. ~(P x y /\ P y z)) | |
==> WF(\(x1:A,y1) (x2,y2). S x1 x2 /\ S y1 y2 \/ | |
R x1 x2 /\ (y1 = y2) \/ | |
P x2 y2 /\ (x1 = y2) /\ (x2 = y1))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[WF] THEN X_GEN_TAC `s:A#A->bool` THEN | |
REWRITE_TAC[EXISTS_PAIR_THM] THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF]) THEN | |
DISCH_THEN(MP_TAC o SPEC `\x:A. ?y:A. s(x,y) \/ s(y,x)`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `a:A` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `b0:A` ASSUME_TAC) THEN | |
REWRITE_TAC[FORALL_PAIR_THM] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
FIRST_X_ASSUM DISJ_CASES_TAC THENL | |
[ASM_CASES_TAC `(P:A->A->bool) a b0` THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
ASM_CASES_TAC `(s:A#A->bool)(b0,a)` THENL | |
[ALL_TAC; | |
MAP_EVERY EXISTS_TAC [`a:A`; `b0:A`] THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]] THEN | |
ASM_CASES_TAC `?y:A. R y (b0:A) /\ s(y,a:A)` THENL | |
[ALL_TAC; | |
MAP_EVERY EXISTS_TAC [`b0:A`; `a:A`] THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF]) THEN | |
DISCH_THEN(MP_TAC o SPEC `\y:A. s(y,a:A):bool`) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN | |
MAP_EVERY EXISTS_TAC [`b:A`; `a:A`] THEN ASM_MESON_TAC[]; | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [WF]) THEN | |
DISCH_THEN(MP_TAC o SPEC `\y:A. s(y,a:A):bool`) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC `(P:A->A->bool) b a /\ s(a,b)` THENL | |
[MAP_EVERY EXISTS_TAC [`a:A`; `b:A`]; | |
MAP_EVERY EXISTS_TAC [`b:A`; `a:A`]] THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);; | |
let MULTISET_FILTEREQ = prove | |
(`multiplicity (multiset (\x:A. LENGTH (FILTER ((=) x) l))) a = | |
LENGTH (FILTER ((=) a) l)`, | |
MP_TAC(ISPEC `\x:A. LENGTH (FILTER ((=) x) l)` | |
(CONJUNCT2 multiset_tybij)) THEN | |
MATCH_MP_TAC(TAUT `(b ==> c) /\ a ==> ((a <=> b) ==> c)`) THEN | |
SIMP_TAC[] THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{a:A | MEM a l}` THEN CONJ_TAC THENL | |
[SPEC_TAC(`l:(A)list`,`l:(A)list`) THEN LIST_INDUCT_TAC THENL | |
[SUBGOAL_THEN `{a:A | MEM a []} = EMPTY` | |
(fun th -> REWRITE_TAC[th; FINITE_RULES]) THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; MEM; NOT_IN_EMPTY]; | |
SUBGOAL_THEN `{a:A | MEM a (CONS h t)} = h INSERT {a | MEM a t}` | |
(fun th -> ASM_SIMP_TAC[th; FINITE_RULES]) THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT; MEM] THEN | |
REWRITE_TAC[DISJ_ACI]]; | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
SPEC_TAC(`l:(A)list`,`l:(A)list`) THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[FILTER; LENGTH; MEM] THEN GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; MEM]]);; | |
let WF_MULTIZIP = prove | |
(`WF(R) | |
==> WF(\l1 l2. ?h:A t l0. | |
(l2 = CONS h t) /\ (l1 = APPEND l0 t) /\ | |
(!k. MEM k l0 ==> R k h))`, | |
let lemma = INST_TYPE [`:(A)list`,`:A`] WF_MEASURE_GEN in | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o SPEC `\l. multiset(\x:A. LENGTH (FILTER ((=) x) l))` o | |
MATCH_MP lemma o MATCH_MP MORDER_WF) THEN | |
REWRITE_TAC[] THEN | |
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] | |
WF_SUBSET) THEN | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[morder; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:A`; `l:(A)list`; `m:(A)list`] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC)) THEN DISCH_TAC THEN | |
EXISTS_TAC `multiset(\x:A. LENGTH (FILTER ((=) x) l))` THEN | |
EXISTS_TAC `a:A` THEN | |
EXISTS_TAC `multiset(\x:A. LENGTH (FILTER ((=) x) m))` THEN | |
REWRITE_TAC[mmember; MEXTENSION; MULTISET_FILTEREQ; MUNION; MSING] THEN | |
REWRITE_TAC[FILTER_APPEND; LENGTH_APPEND; LENGTH; FILTER; ADD_AC] THEN | |
CONJ_TAC THENL | |
[GEN_TAC THEN COND_CASES_TAC THEN | |
REWRITE_TAC[LENGTH; ADD1; ADD_AC; ADD_CLAUSES]; ALL_TAC] THEN | |
SUBGOAL_THEN `!a:A l. ~(LENGTH (FILTER ((=) a) l) = 0) ==> MEM a l` | |
(fun th -> ASM_MESON_TAC[th]) THEN | |
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[FILTER; LENGTH; MEM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; MEM]);; | |
let WF_MEASURE_OR_NONINC = prove | |
(`!R (m:A->num). | |
WF(R) /\ (!x y. R x y ==> m x <= m y) | |
==> WF(\x y. MEASURE m x y \/ R x y)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[WF] THEN | |
X_GEN_TAC `P:A->bool` THEN DISCH_TAC THEN | |
MP_TAC(ISPEC `m:A->num` WF_MEASURE) THEN REWRITE_TAC[WF; MEASURE] THEN | |
DISCH_THEN(MP_TAC o SPEC `P:A->bool`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC `?y. (R:A->A->bool) y a /\ P y` THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `\y. TC (R:A->A->bool) y a /\ P y` o | |
GEN_REWRITE_RULE I [WF]) THEN | |
ASM_REWRITE_TAC[] THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[TC_INC]; ALL_TAC] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:A` THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `(m:A->num)(b) <= m(a)` | |
(fun th -> ASM_MESON_TAC[th; TC_INC; TC_TRANS; LTE_TRANS]) THEN | |
UNDISCH_TAC `TC R b (a:A)` THEN | |
MAP_EVERY SPEC_TAC [`a:A`,`a:A`; `b:A`,`b:A`] THEN | |
MATCH_MP_TAC TC_INDUCT THEN ASM_REWRITE_TAC[LE_TRANS]);; | |
let WF_PROJ_EQ = prove | |
(`(!x. P x ==> WF(R x)) | |
==> WF(\(x',y') (x:A,y:B). P(x) /\ (x' = x) /\ R x y' y)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[WF_DCHAIN] THEN | |
DISCH_THEN(X_CHOOSE_TAC `s:num->A#B`) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `FST((s:num->A#B) 0)`) THEN | |
FIRST_ASSUM(MP_TAC o SPEC `0`) THEN | |
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) 0` PAIR)) THEN | |
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) (SUC 0)` PAIR)) THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[CONJUNCT1 th]) THEN | |
REWRITE_TAC[WF_DCHAIN] THEN | |
EXISTS_TAC `SND o (s:num->A#B)` THEN | |
X_GEN_TAC `n:num` THEN REWRITE_TAC[o_THM] THEN | |
SUBGOAL_THEN `FST((s:num->A#B) 0) = FST(s n)` SUBST1_TAC THENL | |
[SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `FST((s:num->A#B) n)` THEN | |
ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN | |
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) n` PAIR)) THEN | |
SUBST1_TAC(SYM(ISPEC `(s:num->A#B) (SUC n)` PAIR)) THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[FST; SND]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of loop-freeness. *) | |
(* ------------------------------------------------------------------------- *) | |
let OCC = new_definition | |
`OCC env (x:num) y <=> ?t. MEM (x,t) env /\ y IN FVT(t)`;; | |
let LOOPFREE = new_definition | |
`LOOPFREE env <=> !z. ~(TC (OCC env) z z)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Main preservation theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let LOOP_BREAK = prove | |
(`!env x t u v. | |
TC(OCC (CONS (x,t) env)) u v /\ ~(TC(OCC env) u v) | |
==> ?y. RTC(OCC env) u x /\ y IN FVT(t) /\ RTC(OCC env) y v`, | |
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN | |
REWRITE_TAC[TAUT `a /\ ~b ==> c <=> a ==> ~b ==> c`] THEN | |
MATCH_MP_TAC TC_INDUCT_L THEN REPEAT STRIP_TAC THENL | |
[UNDISCH_TAC `OCC (CONS (x,t) env) u v` THEN | |
REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THENL | |
[ASM_MESON_TAC[RTC_CASES]; ALL_TAC] THEN | |
UNDISCH_TAC `~TC (OCC env) u v` THEN | |
ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[OCC] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `TC (OCC env) u v` THENL | |
[UNDISCH_TAC `OCC (CONS (x,t) env) v z` THEN | |
REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THENL | |
[REWRITE_TAC[RTC; RC_CASES] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
UNDISCH_TAC `~TC (OCC env) u z` THEN | |
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN | |
ONCE_REWRITE_TAC[TC_CASES_L] THEN DISJ2_TAC THEN | |
REWRITE_TAC[OCC] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_imp o concl) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `OCC (CONS (x,t) env) v z` THEN | |
REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THENL | |
[REWRITE_TAC[RTC; RC_CASES] THEN ASM_MESON_TAC[]; | |
ASM_MESON_TAC[RTC_CASES_L; OCC]]);; | |
let LOOPFREE_PRESERVE = prove | |
(`LOOPFREE env /\ ~(?y. y IN FVT(t) /\ RTC (OCC env) y x) | |
==> LOOPFREE (CONS (x,t) env)`, | |
MESON_TAC[LOOPFREE; RTC_CASES; LOOP_BREAK]);; | |
let LOOPFREE_PRESERVE_EQ = prove | |
(`LOOPFREE env | |
==> (LOOPFREE (CONS (x,t) env) = ~(?y. y IN FVT(t) /\ RTC (OCC env) y x))`, | |
MATCH_MP_TAC(TAUT `(a /\ ~c ==> b) /\ (c ==> ~b) ==> (a ==> (b <=> ~c))`) THEN | |
REWRITE_TAC[LOOPFREE_PRESERVE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN | |
REWRITE_TAC[LOOPFREE] THEN DISCH_THEN(MP_TAC o SPEC `x:num`) THEN | |
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN | |
EXISTS_TAC `y:num` THEN REWRITE_TAC[OCC; MEM; PAIR_EQ] THEN CONJ_TAC THENL | |
[EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `RTC (OCC env) y x` THEN | |
MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM] RTC_MONO) THEN | |
SIMP_TAC[OCC; MEM; PAIR_EQ] THEN MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* If existing env is loopfree, a naive algorithm works. *) | |
(* ------------------------------------------------------------------------- *) | |
let LOOPFREE_WF = prove | |
(`!env. LOOPFREE env ==> WF(\x y. OCC env y x)`, | |
REWRITE_TAC[LOOPFREE] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC WF_FINITE_LEMMA THEN | |
EXISTS_TAC `set_of_list (MAP FST (env:(num#term)list))` THEN | |
ASM_REWRITE_TAC[FINITE_SET_OF_LIST] THEN | |
ONCE_REWRITE_TAC[TC_REV] THEN | |
CONV_TAC(DEPTH_CONV ETA_CONV) THEN ASM_REWRITE_TAC[OCC] THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; set_of_list; MEM; IN_INSERT] THEN | |
ASM_MESON_TAC[FST]);; | |
let LOOPFREE_WF_TERM = prove | |
(`!env. LOOPFREE(env) ==> WF(\s t. ?y. y IN FVT(t) /\ MEM (y,s) env)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP LOOPFREE_WF) THEN | |
REWRITE_TAC[WF_DCHAIN; OCC; TAUT `~a ==> ~b <=> b ==> a`; SKOLEM_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:num->term` (X_CHOOSE_THEN `x:num->num` | |
STRIP_ASSUME_TAC)) THEN | |
MAP_EVERY EXISTS_TAC [`x:num->num`; `\n. s(SUC n):term`] THEN | |
ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* This would be so much nicer with TFL... *) | |
(* ------------------------------------------------------------------------- *) | |
let LOOPCHECK_EXISTS = prove | |
(`!env x. | |
LOOPFREE(env) | |
==> ?loopcheck. !t. | |
loopcheck t <=> | |
?y. y IN FVT(t) /\ | |
((y = x) \/ ?s. MEM (y,s) env /\ loopcheck s)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WF_REC o MATCH_MP LOOPFREE_WF_TERM) THEN | |
REWRITE_TAC[] THEN MESON_TAC[]);; | |
let loopcheck_raw = | |
new_specification ["loopcheck"] | |
(REWRITE_RULE[SKOLEM_THM; RIGHT_IMP_EXISTS_THM] LOOPCHECK_EXISTS);; | |
let loopcheck = prove | |
(`!env x. | |
LOOPFREE(env) | |
==> (!x y. loopcheck env x (V y) <=> | |
(y = x) \/ ?s. MEM (y,s) env /\ loopcheck env x s) /\ | |
(!f args. loopcheck env x (Fn f args) <=> | |
EX (loopcheck env x) args)`, | |
REPEAT STRIP_TAC THEN FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC LAND_CONV [MATCH_MP loopcheck_raw th]) THEN | |
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; UNWIND_THM2; IN_LIST_UNION] THEN | |
REWRITE_TAC[LEFT_AND_EX_THM; EXISTS_EX; EX_MAP; o_THM] THEN | |
FIRST_ASSUM(fun th -> REWRITE_TAC[GSYM(MATCH_MP loopcheck_raw th)]) THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REFL_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Prove that it does indeed work. *) | |
(* ------------------------------------------------------------------------- *) | |
let LOOPCHECK = prove | |
(`!env x t. LOOPFREE(env) | |
==> (loopcheck env x t <=> ~LOOPFREE (CONS (x,t) env))`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `?y. y IN FVT t /\ RTC (OCC env) y x` THEN | |
ASM_SIMP_TAC[LOOPFREE_PRESERVE_EQ] THEN SPEC_TAC(`t:term`,`t:term`) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP LOOPFREE_WF_TERM) THEN | |
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN | |
X_GEN_TAC `t:term` THEN DISCH_TAC THEN | |
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP loopcheck_raw th]) THEN | |
AP_TERM_TAC THEN ABS_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN | |
ASM_CASES_TAC `x:num = y` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[OCC; LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
EXISTS_TAC `y:num` THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Final transformation to solved form. More non-TFL hell. *) | |
(* ------------------------------------------------------------------------- *) | |
let rightsubst = new_definition | |
`rightsubst (x,t) (y:num,s) = | |
y,termsubst (\z. if z = x then t else V(z)) s`;; | |
let SOLVE_EXISTS = prove | |
(`?SOLVE. !pr. SOLVE pr = | |
if SND pr = [] then FST pr | |
else SOLVE (CONS (HD(SND pr)) | |
(MAP (rightsubst (HD(SND pr))) (FST pr)), | |
MAP (rightsubst (HD(SND pr))) (TL(SND pr)))`, | |
let lemma = prove | |
(`(if b then x else y) = (if ~b then y else x)`, | |
BOOL_CASES_TAC `b:bool` THEN REWRITE_TAC[]) in | |
ONCE_REWRITE_TAC[lemma] THEN REWRITE_TAC[WF_REC_TAIL]);; | |
let SOLVEC_RAW = new_specification ["SOLVEC"] SOLVE_EXISTS;; | |
let SOLVE = new_definition | |
`SOLVE sol uns = SOLVEC (sol,uns)`;; | |
let SOLVE = prove | |
(`(!sol. SOLVE sol [] = sol) /\ | |
(!sol p oth. SOLVE sol (CONS p oth) = | |
SOLVE (CONS p (MAP (rightsubst p) sol)) | |
(MAP (rightsubst p) oth))`, | |
REWRITE_TAC[SOLVE] THEN REPEAT STRIP_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [SOLVEC_RAW] THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD; TL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Fact that the list gives no conflicting definitions. *) | |
(* ------------------------------------------------------------------------- *) | |
let CONFLICTFREE = new_definition | |
`CONFLICTFREE l <=> !x. LENGTH (FILTER (\(y:num,s:term). y = x) l) <= 1`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Solve step preserves loop-freeness. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOLVE_PRESERVES_LOOPFREE_LEMMA = prove | |
(`!p oth x y. | |
TC(OCC (MAP (rightsubst p) oth)) x y ==> TC(OCC (CONS p oth)) x y`, | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`; `oth:(num#term)list`] THEN | |
GEN_REWRITE_TAC (funpow 2 BINDER_CONV o RAND_CONV o funpow 2 RATOR_CONV) | |
[GSYM TC_IDEMP] THEN | |
MATCH_MP_TAC TC_MONO THEN MAP_EVERY X_GEN_TAC [`u:num`; `v:num`] THEN | |
REWRITE_TAC[OCC; MEM_MAP; EXISTS_PAIR_THM; rightsubst; PAIR_EQ] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:term`; `y:num`; `s:term`] THEN STRIP_TAC THEN | |
UNDISCH_TAC `v IN FVT p` THEN ASM_REWRITE_TAC[TERMSUBST_FVT] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `z:num` MP_TAC) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THENL | |
[STRIP_TAC THEN MATCH_MP_TAC TC_TRANS THEN EXISTS_TAC `x:num` THEN CONJ_TAC; | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)] THEN | |
MATCH_MP_TAC TC_INC THEN REWRITE_TAC[OCC] THEN ASM_MESON_TAC[MEM]);; | |
let SOLVE_PRESERVES_LOOPFREE = prove | |
(`!p oth. LOOPFREE(CONS p oth) ==> LOOPFREE(MAP (rightsubst p) oth)`, | |
REWRITE_TAC[LOOPFREE] THEN MESON_TAC[SOLVE_PRESERVES_LOOPFREE_LEMMA]);; | |
(* ------------------------------------------------------------------------- *) | |
(* ...and the absence of conflicts. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOLVE_PRESERVES_CONFLICTFREE_LEMMA = prove | |
(`!p x. (\(y,s). y = x) o rightsubst p = (\(y,s). y = x)`, | |
REWRITE_TAC[FUN_EQ_THM; o_THM; FORALL_PAIR_THM; rightsubst] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[EQ_SYM]);; | |
let SOLVE_PRESERVES_CONFLICTFREE = prove | |
(`CONFLICTFREE(APPEND sol (CONS p oth)) | |
==> CONFLICTFREE(APPEND (CONS p (MAP (rightsubst p) sol)) | |
(MAP (rightsubst p) oth))`, | |
REWRITE_TAC[CONFLICTFREE; FILTER_APPEND; FILTER; LENGTH_APPEND; | |
FILTER_MAP; LENGTH_MAP] THEN | |
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[LENGTH; LENGTH_MAP] THEN | |
REWRITE_TAC[SOLVE_PRESERVES_CONFLICTFREE_LEMMA] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* ...and preserves the invariant of removing free variables. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOLVE_PRESERVES_DEFREE = prove | |
(`LOOPFREE(CONS p oth) /\ | |
(!x y s t. MEM (x,t) sol /\ MEM (y,s) (APPEND sol (CONS p oth)) | |
==> ~(x IN FVT(s))) | |
==> (!x y s t. MEM (x,t) (CONS p (MAP (rightsubst p) sol)) /\ | |
MEM (y,s) (APPEND (CONS p (MAP (rightsubst p) sol)) | |
(MAP (rightsubst p) oth)) | |
==> ~(x IN FVT(s)))`, | |
ONCE_REWRITE_TAC[GSYM LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[GSYM LEFT_AND_EXISTS_THM] THEN | |
SUBGOAL_THEN `!x. (?t. MEM (x,t) (CONS p (MAP (rightsubst p) sol))) <=> | |
(?t. MEM (x,t) (CONS p sol))` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[GEN_TAC THEN REWRITE_TAC[MEM; EXISTS_OR_THM] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[MEM_MAP; EXISTS_PAIR_THM] THEN | |
SUBST1_TAC(SYM(ISPEC `p:num#term` PAIR)) THEN | |
PURE_REWRITE_TAC[rightsubst; PAIR_EQ] THEN MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
STRIP_TAC THEN REPEAT GEN_TAC THEN REWRITE_TAC[MEM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THENL | |
[UNDISCH_TAC | |
`MEM (y,s) | |
(APPEND (CONS (x,t) (MAP (rightsubst (x,t)) sol)) | |
(MAP (rightsubst (x,t)) oth))` THEN | |
REWRITE_TAC[APPEND; GSYM MAP_APPEND] THEN | |
REWRITE_TAC[MEM; MEM_MAP; PAIR_EQ] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 (CONJUNCTS_THEN SUBST1_TAC) MP_TAC) THENL | |
[ALL_TAC; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM] THEN | |
SIMP_TAC[PAIR_EQ; rightsubst; TERMSUBST_FVT] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:num` (MP_TAC o CONJUNCT2)) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY]] THEN | |
UNDISCH_TAC `LOOPFREE (CONS (x,t) oth)` THEN REWRITE_TAC[LOOPFREE] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN | |
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN DISCH_TAC THEN | |
MATCH_MP_TAC TC_INC THEN REWRITE_TAC[OCC] THEN | |
EXISTS_TAC `t:term` THEN ASM_REWRITE_TAC[MEM]; ALL_TAC] THEN | |
UNDISCH_TAC | |
`MEM (y,s) | |
(APPEND (CONS p (MAP (rightsubst p) sol)) | |
(MAP (rightsubst p) oth))` THEN | |
REWRITE_TAC[APPEND; MEM] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o SYM) MP_TAC) THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[MEM; APPEND; MEM_APPEND] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM MAP_APPEND; MEM_MAP; LEFT_IMP_EXISTS_THM; | |
FORALL_PAIR_THM] THEN | |
SUBST_ALL_TAC(SYM(ISPEC `p:num#term` PAIR)) THEN | |
REWRITE_TAC[rightsubst; PAIR_EQ] THEN GEN_TAC THEN X_GEN_TAC `u:term` THEN | |
MAP_EVERY ABBREV_TAC [`z = FST(p:num#term)`; `r = SND(p:num#term)`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) SUBST1_TAC) THEN | |
REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `w:num` MP_TAC) THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THENL | |
[ALL_TAC; | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (SUBST_ALL_TAC o SYM))] THEN | |
ASM_MESON_TAC[MEM_APPEND; MEM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* ...and maintains exactly the same set of unifiers. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOLVE_PRESERVES_UNIFIERS = prove | |
(`(!x t. MEM (x,t) (APPEND sol (CONS p oth)) | |
==> (i(x) = termsubst i t)) <=> | |
(!x t. MEM (x,t) (APPEND (CONS p (MAP (rightsubst p) sol)) | |
(MAP (rightsubst p) oth)) | |
==> (i(x) = termsubst i t))`, | |
let lemma = prove | |
(`(!x t y s. P y s /\ (x = y) /\ (t = f s) ==> Q x t) <=> | |
(!x t s. P x s ==> Q x (f s))`, | |
MESON_TAC[]) in | |
REWRITE_TAC[MEM_APPEND; MEM] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) | |
[TAUT `a \/ b \/ c <=> b \/ a \/ c`] THEN | |
REWRITE_TAC[GSYM DISJ_ASSOC; GSYM MEM_APPEND; GSYM MAP_APPEND] THEN | |
SPEC_TAC(`APPEND sol (oth:(num#term)list)`,`l:(num#term)list`) THEN | |
GEN_TAC THEN REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
REWRITE_TAC[FORALL_AND_THM] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
SPEC_TAC(`p:num#term`,`p:num#term`) THEN REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`] THEN | |
SIMP_TAC[PAIR_EQ; GSYM LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
DISCH_TAC THEN SIMP_TAC[MEM_MAP; LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[rightsubst; PAIR_EQ; lemma] THEN | |
REWRITE_TAC[TERMSUBST_TERMSUBST; o_DEF] THEN | |
SUBGOAL_THEN `(\x. termsubst i (if x = y then s else V x)) = i` | |
(fun th -> REWRITE_TAC[th]) THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[termsubst]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence it works. *) | |
(* ------------------------------------------------------------------------- *) | |
let SOLVE_WORKS_GENERAL = prove | |
(`!n env sol. (LENGTH env = n) /\ | |
LOOPFREE(env) /\ | |
CONFLICTFREE(APPEND sol env) /\ | |
(!x y s t. MEM (x,t) sol /\ MEM (y,s) (APPEND sol env) | |
==> ~(x IN FVT(s))) | |
==> CONFLICTFREE(SOLVE sol env) /\ | |
(!i. (!x t. MEM (x,t) (APPEND sol env) | |
==> (i x = termsubst i t)) <=> | |
(!x t. MEM (x,t) (SOLVE sol env) | |
==> (i x = termsubst i t))) /\ | |
!x y s t. MEM (x,t) (SOLVE sol env) /\ | |
MEM (y,s) (SOLVE sol env) | |
==> ~(x IN FVT(s))`, | |
INDUCT_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THENL | |
[SIMP_TAC[SOLVE; APPEND_NIL] THEN MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[SUC_INJ; SOLVE] THEN X_GEN_TAC `sol:(num#term)list` THEN | |
FIRST_X_ASSUM(K ALL_TAC o check is_imp o snd o dest_forall o concl) THEN | |
REWRITE_TAC[SOLVE_PRESERVES_UNIFIERS] THEN | |
STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
ASM_SIMP_TAC[LENGTH_MAP; SOLVE_PRESERVES_LOOPFREE; | |
SOLVE_PRESERVES_CONFLICTFREE] THEN | |
MATCH_MP_TAC SOLVE_PRESERVES_DEFREE THEN ASM_REWRITE_TAC[]);; | |
let SOLVE_WORKS = prove | |
(`!env. | |
LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> CONFLICTFREE(SOLVE [] env) /\ | |
(!i. (!x t. MEM (x,t) env ==> (i x = termsubst i t)) <=> | |
(!x t. MEM (x,t) (SOLVE [] env) ==> (i x = termsubst i t))) /\ | |
!x y s t. MEM (x,t) (SOLVE [] env) /\ MEM (y,s) (SOLVE [] env) | |
==> ~(x IN FVT s)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!x:num t:term. MEM (x,t) env = MEM (x,t) (APPEND [] env)` | |
(fun th -> REWRITE_TAC[th]) THENL [REWRITE_TAC[APPEND]; ALL_TAC] THEN | |
MATCH_MP_TAC SOLVE_WORKS_GENERAL THEN | |
ASM_REWRITE_TAC[MEM; APPEND; GSYM EXISTS_REFL]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The "actual code". *) | |
(* ------------------------------------------------------------------------- *) | |
let retval_INDUCT,retval_RECURSION = define_type | |
"retval = TT | FF | Exception";; | |
let retval_DISTINCT = prove_constructors_distinct retval_RECURSION;; | |
let ISTRIV_EXISTS = prove | |
(`!env x. LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> ?istriv. !t. istriv t = | |
if t = V x then TT | |
else if ?y. (t = V y) /\ MEM y (MAP FST env) | |
then istriv (ASSOC (@y. (t = V y) /\ MEM y (MAP FST env)) env) | |
else if x IN FVT(t) then Exception | |
else if ?y s. y IN FVT(t) /\ MEM (y,s) env /\ ~(istriv s = FF) | |
then Exception else FF`, | |
REWRITE_TAC[CONFLICTFREE] THEN REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP WF_REC o MATCH_MP LOOPFREE_WF_TERM) THEN | |
REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
TRY(ASM (GEN_MESON_TAC 0 10 1) []) THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[FVT; IN_INSERT; term_INJ] THEN | |
SUBGOAL_THEN `(@y. (z = y) /\ MEM y (MAP FST (env:(num#term)list))) = z` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC SELECT_UNIQUE THEN | |
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN | |
ASM_SIMP_TAC[]; ALL_TAC] THEN | |
UNDISCH_TAC `MEM z (MAP FST (env:(num#term)list))` THEN | |
UNDISCH_TAC `!x. LENGTH (FILTER (\(y:num,s:term). y = x) env) <= 1` THEN | |
DISCH_THEN(MP_TAC o SPEC `z:num`) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; MEM; ASSOC; FILTER] THEN | |
SPEC_TAC(`h:num#term`,`h:num#term`) THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`] THEN | |
REWRITE_TAC[FST; SND] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_CASES_TAC `y:num = z` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; | |
let istriv_raw = | |
new_specification ["istriv"] | |
(REWRITE_RULE[SKOLEM_THM; RIGHT_IMP_EXISTS_THM] ISTRIV_EXISTS);; | |
let istriv = prove | |
(`!env x. | |
LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> (!x y. istriv env x (V y) = | |
if y = x then TT | |
else if MEM y (MAP FST env) then | |
istriv env x (ASSOC y env) | |
else FF) /\ | |
(!f args. istriv env x (Fn f args) = | |
if EX (\a. ~(istriv env x a = FF)) args | |
then Exception else FF)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC LAND_CONV [MATCH_MP istriv_raw th]) THEN | |
REWRITE_TAC[term_INJ; term_DISTINCT] THENL | |
[COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
REWRITE_TAC[UNWIND_THM1] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; UNWIND_THM2] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THENL | |
[AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC SELECT_UNIQUE THEN | |
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN | |
ASM_SIMP_TAC[]; ALL_TAC] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
UNDISCH_TAC `~MEM y (MAP FST (env:(num#term)list))` THEN | |
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN | |
FIRST_ASSUM(CHOOSE_THEN (MP_TAC o CONJUNCT1)) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 (SUBST1_TAC o SYM) MP_TAC) THEN | |
ASM_SIMP_TAC[FST]; ALL_TAC] THEN | |
ASM_CASES_TAC `x IN FVT(Fn f args)` THEN ASM_REWRITE_TAC[] THENL | |
[COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `~EX (\a. ~(istriv env x a = FF)) args` THEN | |
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN | |
UNDISCH_TAC `x IN FVT (Fn f args)` THEN | |
REWRITE_TAC[FVT; IN_LIST_UNION; EX_MAP] THEN | |
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] | |
EX_IMP) THEN | |
REWRITE_TAC[o_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
TRY(DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC)) THEN | |
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP istriv_raw th]) THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[FVT; IN_INSERT; NOT_IN_EMPTY]) THEN | |
ASM_REWRITE_TAC[retval_DISTINCT]; | |
ASM_REWRITE_TAC[term_DISTINCT; retval_DISTINCT]]; ALL_TAC] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[FVT; IN_LIST_UNION; EX_MAP] THEN | |
REWRITE_TAC[LEFT_AND_EX_THM] THEN REWRITE_TAC[EXISTS_EX] THEN | |
REWRITE_TAC[o_THM] THEN UNDISCH_TAC `~(x IN FVT (Fn f args))` THEN | |
REWRITE_TAC[FVT; IN_LIST_UNION; EX_MAP] THEN | |
MATCH_MP_TAC EX_ADHOC THEN X_GEN_TAC `t:term` THEN | |
REWRITE_TAC[o_THM] THEN DISCH_TAC THEN | |
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC | |
(RAND_CONV o RAND_CONV o LAND_CONV) [MATCH_MP istriv_raw th]) THEN | |
COND_CASES_TAC THENL | |
[UNDISCH_TAC `~(x IN FVT t)` THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `?y. (t = V y) /\ MEM y (MAP FST (env:(num#term)list))` THEN | |
ASM_REWRITE_TAC[] THENL | |
[ALL_TAC; COND_CASES_TAC THEN ASM_REWRITE_TAC[retval_DISTINCT]] THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; term_INJ] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN | |
SUBGOAL_THEN `(@z. (y = z) /\ MEM z (MAP FST (env:(num#term)list))) = y` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC SELECT_UNIQUE THEN | |
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN | |
ASM_SIMP_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!s. MEM (y:num,s:term) env <=> (s = ASSOC y env)` | |
(fun th -> MESON_TAC[th]) THEN | |
GEN_TAC THEN UNDISCH_TAC `MEM y (MAP FST (env:(num#term)list))` THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[MEM; MAP] THEN | |
SPEC_TAC(`h:num#term`,`h:num#term`) THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`] THEN | |
REWRITE_TAC[FST; SND; PAIR_EQ; ASSOC] THEN | |
ASM_CASES_TAC `x:num = y` THEN ASM_REWRITE_TAC[] THENL | |
[MATCH_MP_TAC(TAUT `(b ==> ~a) ==> (a ==> (c \/ b <=> c))`) THEN | |
DISCH_TAC THEN REWRITE_TAC[CONFLICTFREE] THEN | |
DISCH_THEN(MP_TAC o SPEC `y:num`) THEN | |
REWRITE_TAC[FILTER; LENGTH] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[LENGTH; ARITH_RULE `~(SUC n <= 1) <=> ~(n = 0)`] THEN | |
REWRITE_TAC[LENGTH_EQ_NIL] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `MEM (y:num,s:term)`) THEN | |
ASM_REWRITE_TAC[MEM; MEM_FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REFL_TAC; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `CONFLICTFREE t` (fun th -> ASM_MESON_TAC[th]) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONFLICTFREE]) THEN | |
REWRITE_TAC[CONFLICTFREE; MEM; FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN | |
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Prove that it works. *) | |
(* ------------------------------------------------------------------------- *) | |
let EQV = new_definition | |
`EQV env x y = MEM (x,V y) env`;; | |
let EQV_IMP_OCC = prove | |
(`!env x y. EQV env x y ==> OCC env x y`, | |
REWRITE_TAC[EQV; OCC] THEN MESON_TAC[IN_INSERT; FVT]);; | |
let ISTRIV_WORKS = prove | |
(`!env x t. LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> (istriv env x t = | |
if ?y. (t = V y) /\ RTC (EQV env) y x then TT | |
else if ?y. y IN FVT t /\ RTC (OCC env) y x then Exception | |
else FF)`, | |
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN | |
GEN_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP LOOPFREE_WF_TERM o CONJUNCT1) THEN | |
REWRITE_TAC[WF_IND] THEN DISCH_THEN MATCH_MP_TAC THEN | |
X_GEN_TAC `t:term` THEN DISCH_TAC THEN | |
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP istriv_raw th]) THEN | |
ASM_CASES_TAC `t = V x` THEN ASM_REWRITE_TAC[] THENL | |
[COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[term_INJ; RTC_REFL]; ALL_TAC] THEN | |
ASM_CASES_TAC `?y. (t = V y) /\ MEM y (MAP FST (env:(num#term)list))` THEN | |
ASM_REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[term_INJ; UNWIND_THM1] THEN | |
SUBGOAL_THEN `(@y. (z = y) /\ MEM y (MAP FST (env:(num#term)list))) = z` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC SELECT_UNIQUE THEN | |
X_GEN_TAC `w:num` THEN REWRITE_TAC[] THEN EQ_TAC THEN | |
ASM_SIMP_TAC[]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `ASSOC z (env:(num#term)list)`) THEN | |
ANTS_TAC THENL | |
[EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[FVT; IN_INSERT] THEN | |
UNDISCH_TAC `MEM z (MAP FST (env:(num#term)list))` THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN REWRITE_TAC[CONFLICTFREE] THEN | |
DISCH_THEN(MP_TAC o SPEC `z:num`) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; MEM; ASSOC; FILTER] THEN | |
SPEC_TAC(`h:num#term`,`h:num#term`) THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`] THEN | |
REWRITE_TAC[FST; SND] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_CASES_TAC `y:num = z` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; UNWIND_THM2] THEN | |
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [RTC_CASES_R] THEN | |
ASM_CASES_TAC `x:num = z` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[OCC; EQV] THEN | |
SUBGOAL_THEN `!s. MEM (z:num,s:term) env = (s = ASSOC z env)` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[GEN_TAC THEN UNDISCH_TAC `MEM z (MAP FST (env:(num#term)list))` THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[MEM; MAP] THEN | |
SPEC_TAC(`h:num#term`,`h:num#term`) THEN | |
ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`] THEN | |
REWRITE_TAC[FST; SND; PAIR_EQ; ASSOC] THEN | |
ASM_CASES_TAC `x:num = z` THEN ASM_REWRITE_TAC[] THENL | |
[MATCH_MP_TAC(TAUT `(b ==> ~a) ==> (a ==> (c \/ b <=> c))`) THEN | |
DISCH_TAC THEN REWRITE_TAC[CONFLICTFREE] THEN | |
DISCH_THEN(MP_TAC o SPEC `z:num`) THEN | |
REWRITE_TAC[FILTER; LENGTH] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[LENGTH; ARITH_RULE `~(SUC n <= 1) <=> ~(n = 0)`] THEN | |
REWRITE_TAC[LENGTH_EQ_NIL] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `MEM (z:num,s:term)`) THEN | |
ASM_REWRITE_TAC[MEM; MEM_FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REFL_TAC; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `CONFLICTFREE t` (fun th -> ASM_MESON_TAC[th]) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONFLICTFREE]) THEN | |
REWRITE_TAC[CONFLICTFREE; MEM; FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN | |
COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN ARITH_TAC; ALL_TAC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV o BINDER_CONV o | |
LAND_CONV) [EQ_SYM_EQ] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[UNWIND_THM2]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(?y. (t = V y) /\ RTC (EQV env) y x)` ASSUME_TAC THENL | |
[UNDISCH_TAC | |
`~(?y. (t = V y) /\ MEM y (MAP FST (env:(num#term)list)))` THEN | |
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN REWRITE_TAC[EQV] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:num` THEN | |
ASM_CASES_TAC `y = x:num` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[MEM_MAP] THEN MESON_TAC[FST]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `x IN FVT(t)` THEN | |
ASM_REWRITE_TAC[] THENL | |
[SUBGOAL_THEN `?y. y IN FVT t /\ RTC (OCC env) y x` | |
(fun th -> REWRITE_TAC[th]) THEN | |
ASM_MESON_TAC[RTC_REFL]; ALL_TAC] THEN | |
AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `y:num` THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_TAC THEN | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN | |
ASM_CASES_TAC `y = x:num` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[OCC; LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `s:term` THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `s:term`) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN | |
ASM_CASES_TAC `?y. (s = V y) /\ RTC (EQV env) y x` THEN | |
ASM_REWRITE_TAC[retval_DISTINCT] THENL | |
[FIRST_X_ASSUM(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `z:num` THEN ASM_REWRITE_TAC[FVT; IN_INSERT] THEN | |
ASM_MESON_TAC[RTC_MONO; EQV_IMP_OCC]; ALL_TAC] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[retval_DISTINCT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Wellfoundedness lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let SUB1 = new_definition | |
`SUB1 s t <=> ?f args. (t = Fn f args) /\ MEM s args`;; | |
let WF_SUB1 = prove | |
(`WF(SUB1)`, | |
SIMP_TAC[WF_IND; SUB1; LEFT_IMP_EXISTS_THM] THEN | |
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[term_DISTINCT; term_INJ] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[GSYM ALL_MEM]) THEN ASM_MESON_TAC[]);; | |
let RTC_SUB1 = prove | |
(`!x t. RTC(SUB1) (V x) t <=> x IN FVT(t)`, | |
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; IN_LIST_UNION] THEN CONJ_TAC THEN | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_L] THEN | |
REWRITE_TAC[SUB1; term_INJ; term_DISTINCT] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `?y. RTC SUB1 (V x) y /\ MEM y l` THEN CONJ_TAC THENL | |
[MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[EX_MAP; o_DEF] THEN | |
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP ALL_ADHOC) THEN | |
REWRITE_TAC[EX_MEM]);; | |
let WF_SUBCOMPONENT = prove | |
(`LOOPFREE(env) ==> WF(\s t. ?x. MEM (x,s) env /\ RTC(SUB1) (V x) t)`, | |
REWRITE_TAC[RTC_SUB1] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN | |
REWRITE_TAC[LOOPFREE_WF_TERM]);; | |
let WF_DESCENT = prove | |
(`LOOPFREE(env) | |
==> WF(\s t. (?x. (t = V x) /\ MEM (x,s) env) \/ | |
(?f args. (t = Fn f args) /\ MEM s args))`, | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DISJ_SYM] THEN | |
MATCH_MP_TAC WF_DISJ THEN REWRITE_TAC[GSYM SUB1] THEN | |
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[WF_SUB1] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2] THEN | |
ASM_SIMP_TAC[WF_SUBCOMPONENT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Existence of unify. *) | |
(* ------------------------------------------------------------------------- *) | |
let termcases = new_recursive_definition term_RECURSION | |
`(termcases cv cf (V v) = cv v) /\ | |
(termcases cv cf (Fn f args) = cf f args)`;; | |
let tpcases_def = new_definition | |
`tpcases c1 c2 c3 (t1,t2) = | |
termcases (\v1. termcases | |
(\v2. c2 v1 (V v2)) | |
(\f2 args2. c2 v1 (Fn f2 args2)) t2) | |
(\f1 args1. termcases | |
(\v2. c3 f1 args1 v2) | |
(\f2 args2. c1 f1 args1 f2 args2) t2) | |
t1`;; | |
let tpcases = prove | |
(`(tpcases c1 c2 c3 (Fn f1 args1,Fn f2 args2) = c1 f1 args1 f2 args2) /\ | |
(tpcases c1 c2 c3 (V v1,t2) = c2 v1 t2) /\ | |
(tpcases c1 c2 c3 (Fn f1 args1,V v2) = c3 f1 args1 v2)`, | |
SPEC_TAC(`t2:term`,`t2:term`) THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[tpcases_def; termcases]);; | |
let MLEFT = new_definition | |
`MLEFT (env,eqs) = | |
CARD(FVT(Fn 0 (MAP FST eqs)) UNION | |
FVT(Fn 0 (MAP SND eqs)) UNION | |
FVT(Fn 0 (MAP SND env)) UNION | |
FVT(Fn 0 (MAP (V o FST) env))) - | |
CARD(FVT(Fn 0 (MAP (V o FST) env)))`;; | |
let CRIGHT = new_definition | |
`CRIGHT (env',eqs') (env,eqs) <=> | |
LOOPFREE(env) /\ | |
(env' = env) /\ | |
((?f args1 args2 oth. | |
(LENGTH args1 = LENGTH args2) /\ | |
(eqs = CONS (Fn f args1,Fn f args2) oth) /\ | |
(eqs' = APPEND (ZIP args1 args2) oth)) \/ | |
(?x t oth. (eqs = CONS (V x,t) oth) /\ | |
(MEM x (MAP FST env) /\ | |
(eqs' = CONS (ASSOC x env,t) oth) \/ | |
~(MEM x (MAP FST env)) /\ | |
(istriv env x t = TT) /\ | |
(eqs' = oth))) \/ | |
(?x f args oth. (eqs = CONS (Fn f args,V x) oth) /\ | |
(eqs' = CONS (V x,Fn f args) oth)))`;; | |
let CALLORDER = new_definition | |
`CALLORDER (env',eqs') (env,eqs) <=> | |
MEASURE MLEFT (env',eqs') (env,eqs) \/ | |
CRIGHT (env',eqs') (env,eqs)`;; | |
let PAIRED_ETA_THM = prove | |
(`!g:A#B->C. (\(p1,p2). g (p1,p2)) = g`, | |
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);; | |
let WF_CRIGHT = prove | |
(`WF CRIGHT`, | |
SUBGOAL_THEN `CRIGHT = \(env',eqs') (env,eqs). CRIGHT (env',eqs') (env,eqs)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[PAIRED_ETA_THM] THEN | |
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN REFL_TAC; ALL_TAC] THEN | |
REWRITE_TAC[CRIGHT] THEN MATCH_MP_TAC WF_PROJ_EQ THEN | |
X_GEN_TAC `env:(num#term)list` THEN DISCH_TAC THEN REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP WF_DESCENT) THEN | |
DISCH_THEN(MP_TAC o GEN_ALL o MATCH_MP (ONCE_REWRITE_RULE | |
[IMP_CONJ] WF_ALTERNATION)) THEN | |
DISCH_THEN(MP_TAC o SPEC | |
`\s t. (?f args. s = Fn f args) /\ (?x. t = V x)`) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL [MESON_TAC[term_DISTINCT]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP WF_MULTIZIP) THEN | |
MATCH_MP_TAC(ONCE_REWRITE_RULE | |
[IMP_CONJ] WF_SUBSET) THEN | |
MAP_EVERY X_GEN_TAC [`eqs2:(term#term)list`; `eqs1:(term#term)list`] THEN | |
REWRITE_TAC[] THEN STRIP_TAC THENL | |
[MAP_EVERY EXISTS_TAC | |
[`(Fn f args1,Fn f args2)`; | |
`oth:(term#term)list`; | |
`(ZIP args1 args2):(term#term)list`] THEN | |
ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`s:term`; `t:term`] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
DISCH_TAC THEN DISJ1_TAC THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN | |
MAP_EVERY EXISTS_TAC | |
[`f:num`; `args1:term list`; `f:num`; `args2:term list`] THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP MAP_FST_ZIP); | |
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP MAP_SND_ZIP)] THEN | |
REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[FST; SND]; | |
MAP_EVERY EXISTS_TAC | |
[`(V x,t:term)`; | |
`oth:(term#term)list`; | |
`[ASSOC x (env:(num#term)list),t:term]`] THEN | |
ASM_REWRITE_TAC[APPEND] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[MEM; PAIR_EQ] THEN | |
DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN | |
DISJ2_TAC THEN DISJ1_TAC THEN REWRITE_TAC[] THEN EXISTS_TAC `x:num` THEN | |
ASM_REWRITE_TAC[MEM_ASSOC]; | |
MAP_EVERY EXISTS_TAC | |
[`(V x,t:term)`; `oth:(term#term)list`; `[]:(term#term)list`] THEN | |
ASM_REWRITE_TAC[APPEND; MEM]; | |
MAP_EVERY EXISTS_TAC | |
[`(Fn f args,V x)`; `oth:(term#term)list`; `[V x,Fn f args]`] THEN | |
ASM_REWRITE_TAC[APPEND] THEN GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[MEM; PAIR_EQ] THEN | |
DISCH_THEN(CONJUNCTS_THEN SUBST_ALL_TAC) THEN REWRITE_TAC[] THEN | |
REPEAT DISJ2_TAC THEN MESON_TAC[]]);; | |
let WF_CALLORDER = prove | |
(`WF CALLORDER`, | |
SUBGOAL_THEN | |
`CALLORDER = \(env',eqs') (env,eqs). CALLORDER (env',eqs') (env,eqs)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[PAIRED_ETA_THM] THEN | |
CONV_TAC(TOP_DEPTH_CONV ETA_CONV) THEN REFL_TAC; ALL_TAC] THEN | |
REWRITE_TAC[CALLORDER] THEN | |
REWRITE_TAC[PAIRED_ETA_THM] THEN | |
MATCH_MP_TAC WF_MEASURE_OR_NONINC THEN | |
REWRITE_TAC[WF_CRIGHT; FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC | |
[`env':(num#term)list`; `eqs':(term#term)list`; | |
`env:(num#term)list`; `eqs:(term#term)list`] THEN | |
REWRITE_TAC[CRIGHT; MLEFT] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN | |
MATCH_MP_TAC(ARITH_RULE `a <= c:num ==> a - b <= c - b`) THEN | |
MATCH_MP_TAC CARD_SUBSET THEN | |
REWRITE_TAC[FINITE_UNION; FVT_FINITE] THEN | |
REWRITE_TAC[SUBSET; IN_UNION] THEN X_GEN_TAC `x:num` THEN | |
FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[MAP; MAP_APPEND; FVT; LIST_UNION; LIST_UNION_APPEND] THEN | |
REWRITE_TAC[IN_UNION; GSYM DISJ_ASSOC] THENL | |
[MATCH_MP_TAC(TAUT `(a' <=> a) /\ (c' <=> c) | |
==> a \/ b \/ c \/ d ==> a' \/ b \/ c' \/ d`) THEN | |
ASM_SIMP_TAC[MAP_FST_ZIP; MAP_SND_ZIP]; | |
MATCH_MP_TAC(TAUT | |
`(a ==> e) | |
==> a \/ b \/ c \/ d \/ e \/ f | |
==> a' \/ b \/ c \/ d \/ e \/ f`) THEN | |
UNDISCH_TAC `MEM x' (MAP FST (env:(num#term)list))` THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; MAP; ASSOC] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[LIST_UNION; IN_UNION]; | |
CONV_TAC TAUT; | |
CONV_TAC TAUT]);; | |
let UNIFY_EXISTS_RAW = prove | |
(`?unify. | |
!pr. unify pr = | |
if ~LOOPFREE(FST pr) then NONE | |
else if SND pr = [] then SOME(FST pr) | |
else tpcases | |
(\f fargs g gargs. | |
if (f = g) /\ (LENGTH fargs = LENGTH gargs) | |
then unify (FST pr,APPEND (ZIP fargs gargs) | |
(TL(SND pr))) | |
else NONE) | |
(\x t. if MEM x (MAP FST (FST pr)) then | |
unify (FST pr,CONS (ASSOC x (FST pr),t) | |
(TL(SND pr))) | |
else if istriv (FST pr) x t = Exception then | |
NONE | |
else if istriv (FST pr) x t = TT then | |
unify(FST pr,TL(SND pr)) | |
else | |
unify(CONS (x,t) (FST pr),TL(SND pr))) | |
(\f args x. unify (FST pr, | |
CONS (V x,Fn f args) | |
(TL(SND pr)))) | |
(HD(SND pr))`, | |
MATCH_MP_TAC(MATCH_MP WF_REC WF_CALLORDER) THEN | |
MAP_EVERY X_GEN_TAC | |
[`unify1:(num#term)list#(term#term)list->((num#term)list)option`; | |
`unify2:(num#term)list#(term#term)list->((num#term)list)option`] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`env1:(num#term)list`; `eqs1:(term#term)list`] THEN | |
DISCH_THEN(MP_TAC o GENL | |
[`env2:(num#term)list`; `eqs2:(term#term)list`] o SPEC | |
`(env2,eqs2):(num#term)list#(term#term)list`) THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[FST; SND] THEN DISCH_TAC THEN | |
ASM_CASES_TAC `LOOPFREE env1` THEN ASM_REWRITE_TAC[] THEN | |
MP_TAC(ISPEC `eqs1:(term#term)list` list_CASES) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `hpr:term#term` (X_CHOOSE_THEN | |
`oth:(term#term)list` SUBST_ALL_TAC)) THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD; TL] THEN | |
SUBST_ALL_TAC(GSYM(ISPEC `hpr:term#term` PAIR)) THEN | |
MP_TAC(ISPEC `FST(hpr:term#term)` term_CASES) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 | |
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) | |
(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `fargs:term list` SUBST_ALL_TAC))) | |
THENL | |
[ABBREV_TAC `t = SND(hpr:term#term)`; | |
MP_TAC(ISPEC `SND(hpr:term#term)` term_CASES) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 | |
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) | |
(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `gargs:term list` | |
SUBST_ALL_TAC)))] THEN | |
REWRITE_TAC[tpcases] THENL | |
[ALL_TAC; | |
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN | |
DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN | |
REPEAT DISJ2_TAC THEN ASM_MESON_TAC[]; | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[CALLORDER] THEN DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN | |
ASM_MESON_TAC[]] THEN | |
ASM_CASES_TAC `MEM x (MAP FST (env1:(num#term)list))` THEN | |
ASM_REWRITE_TAC[] THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN | |
DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN | |
DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_CASES_TAC `istriv env1 x t = Exception` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `istriv env1 x t = TT` THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN | |
DISJ2_TAC THEN ASM_REWRITE_TAC[CRIGHT] THEN | |
DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[CALLORDER] THEN | |
DISJ1_TAC THEN REWRITE_TAC[MEASURE; MLEFT] THEN | |
REWRITE_TAC[MAP; FST; SND; LENGTH] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`(a' = a) /\ (b' = b + 1) /\ b' <= a' ==> a' - b' < a - b`) THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS ((V o FST) (x,t:term)) (MAP (V o FST) env1))) = | |
x INSERT FVT(Fn 0 (MAP (V o FST) (env1:(num#term)list)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS (V x) (MAP FST (oth:(term#term)list)))) = | |
x INSERT FVT(Fn 0 (MAP FST oth))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS t (MAP SND env1))) = | |
FVT(t) UNION FVT(Fn 0 (MAP SND (env1:(num#term)list)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS t (MAP SND oth))) = | |
FVT(t) UNION FVT(Fn 0 (MAP SND (oth:(term#term)list)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN | |
REPEAT CONJ_TAC THENL | |
[AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI; IN_INSERT]; | |
SIMP_TAC[CARD_CLAUSES; FVT_FINITE; ADD1] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
UNDISCH_TAC `x IN FVT (Fn 0 (MAP (V o FST) (env1:(num#term)list)))` THEN | |
UNDISCH_TAC `~MEM x (MAP FST (env1:(num#term)list))` THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> b ==> c`) THEN | |
SPEC_TAC(`env1:(num#term)list`,`env1:(num#term)list`) THEN | |
REWRITE_TAC[FVT] THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[LIST_UNION; MEM; MAP; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[o_THM; FVT; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[]; | |
MATCH_MP_TAC CARD_SUBSET THEN | |
REWRITE_TAC[FINITE_UNION; FVT_FINITE; FINITE_INSERT] THEN | |
REWRITE_TAC[SUBSET; IN_UNION; IN_INSERT] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]);; | |
let unify_raw = new_specification ["unify"] UNIFY_EXISTS_RAW;; | |
let unify = prove | |
(`LOOPFREE(env) | |
==> (unify (env,CONS (Fn f fargs,Fn g gargs) oth) = | |
if (f = g) /\ (LENGTH fargs = LENGTH gargs) | |
then unify (env,APPEND (ZIP fargs gargs) oth) | |
else NONE) /\ | |
(unify (env,CONS (V x,t) oth) = | |
if MEM x (MAP FST env) then unify (env,CONS (ASSOC x env,t) oth) | |
else if istriv env x t = Exception then NONE | |
else if istriv env x t = TT then unify (env,oth) | |
else unify (CONS (x,t) env,oth)) /\ | |
(unify (env,CONS (Fn f fargs,V x) oth) = | |
unify (env,CONS (V x,Fn f fargs) oth))`, | |
DISCH_TAC THEN REPEAT CONJ_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [unify_raw] THEN | |
ASM_REWRITE_TAC[FST; SND; HD; TL; NOT_CONS_NIL; tpcases]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that it does indeed work. *) | |
(* ------------------------------------------------------------------------- *) | |
let unifies = new_definition | |
`unifies i l <=> ALL (\(s,t). termsubst i s = termsubst i t) l`;; | |
let OPTION_DISTINCT = prove_constructors_distinct option_RECURSION;; | |
let OPTION_INJ = prove_constructors_injective option_RECURSION;; | |
let TC_SUB1_IRREFL = prove | |
(`!s t. TC SUB1 s t ==> ~(s = t)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[TAUT `a ==> ~b <=> b ==> ~a`] THEN | |
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC WF_REFL THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN | |
REWRITE_TAC[WF_TC; WF_SUB1]);; | |
let UNIFY_OCCURS = prove | |
(`!env i. | |
ALL (\(x,t). i x = termsubst i t) env | |
==> !x y. RTC (OCC env) x y ==> RTC SUB1 (i y) (i x)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC RTC_INDUCT THEN | |
REWRITE_TAC[RTC_REFL] THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[RTC_TRANS]] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[OCC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:term` STRIP_ASSUME_TAC) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN | |
DISCH_THEN(MP_TAC o SPEC `(x:num,t:term)`) THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[] THEN | |
DISCH_TAC THEN UNDISCH_TAC `y IN FVT(t)` THEN SPEC_TAC(`y:num`,`y:num`) THEN | |
SPEC_TAC(`t:term`,`t:term`) THEN MATCH_MP_TAC term_INDUCT THEN | |
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; termsubst; RTC_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN | |
DISCH_TAC THEN X_GEN_TAC `z:num` THEN REWRITE_TAC[IN_LIST_UNION] THEN | |
REWRITE_TAC[EX_MAP; o_DEF] THEN REWRITE_TAC[GSYM EX_MEM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `termsubst i s` THEN CONJ_TAC THENL | |
[UNDISCH_TAC | |
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (i y) (termsubst i t)) args` THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[SUB1] THEN EXISTS_TAC `f:num` THEN | |
EXISTS_TAC `MAP (termsubst i) args` THEN | |
REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[]]);; | |
let UNIFY_OCCURS_PROPER = prove | |
(`!env i. | |
ALL (\(x,t). i x = termsubst i t) env | |
==> !x y. RTC (OCC env) x y | |
==> RTC (EQV env) x y \/ TC SUB1 (i y) (i x)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC RTC_INDUCT THEN | |
REWRITE_TAC[RTC_REFL] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REPEAT STRIP_TAC THENL | |
[ASM_MESON_TAC[RTC_TRANS]; | |
DISJ2_TAC THEN ONCE_REWRITE_TAC[TC_TC_RTC_CASES]; | |
DISJ2_TAC THEN ONCE_REWRITE_TAC[TC_RTC_TC_CASES]; | |
ASM_MESON_TAC[TC_TRANS]] THEN | |
EXISTS_TAC `(i:num->term) y` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP UNIFY_OCCURS) THEN | |
ASM_MESON_TAC[EQV_IMP_OCC; RTC_MONO]] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[OCC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:term` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM ALL_MEM]) THEN | |
DISCH_THEN(MP_TAC o SPEC `(x:num,t:term)`) THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`!t y. y IN FVT t ==> (t = V y) \/ TC SUB1 (i y) (termsubst i t)` | |
MP_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[EQV; RTC_INC]] THEN | |
SUBGOAL_THEN `!t y. y IN FVT t ==> RTC SUB1 (V y) t` MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[RTC; RC_CASES] THEN | |
SUBGOAL_THEN | |
`!s t. TC SUB1 s t ==> TC SUB1 (termsubst i s) (termsubst i t)` | |
(fun th -> MESON_TAC[th; termsubst]) THEN | |
MATCH_MP_TAC TC_INDUCT THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[TC_TRANS]] THEN | |
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN | |
DISCH_THEN(fun th -> MATCH_MP_TAC TC_INC THEN MP_TAC th) THEN | |
REWRITE_TAC[SUB1] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `args:term list` | |
STRIP_ASSUME_TAC)) THEN | |
MAP_EVERY EXISTS_TAC [`f:num`; `MAP (termsubst i) args`] THEN | |
ASM_REWRITE_TAC[termsubst; MEM_MAP] THEN ASM_MESON_TAC[]] THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; RTC_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN | |
DISCH_TAC THEN REWRITE_TAC[IN_LIST_UNION] THEN | |
REWRITE_TAC[EX_MAP; o_DEF] THEN X_GEN_TAC `z:num` THEN | |
REWRITE_TAC[GSYM EX_MEM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `s:term` THEN CONJ_TAC THENL | |
[UNDISCH_TAC | |
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (V y) t) args` THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[SUB1] THEN ASM_MESON_TAC[]]);; | |
let GOODLOOP_UNIFIABLE = prove | |
(`!env x t. | |
LOOPFREE(env) /\ CONFLICTFREE(env) /\ (istriv env x t = TT) | |
==> !i. unifies i (CONS (V x,t) (MAP (\(x,t). V x,t) env)) = | |
unifies i (MAP (\(x,t). V x,t) env)`, | |
REPEAT GEN_TAC THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_SIMP_TAC[ISTRIV_WORKS] THEN | |
REPEAT(COND_CASES_TAC THEN REWRITE_TAC[retval_DISTINCT]) THEN | |
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[unifies; ALL] THEN | |
ONCE_REWRITE_TAC[TAUT `(a /\ b <=> b) <=> (b ==> a)`] THEN | |
REWRITE_TAC[ALL_MAP; o_DEF] THEN | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM PAIRED_ETA_THM] THEN | |
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[termsubst] THEN DISCH_TAC THEN | |
UNDISCH_TAC `?y. (t = V y) /\ RTC (EQV env) y x` THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
SPEC_TAC(`x:num`,`x:num`) THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN | |
SUBGOAL_THEN `!x y. RTC (EQV env) x y ==> (i x :term = i y)` | |
(fun th -> MESON_TAC[th; termsubst]) THEN | |
MATCH_MP_TAC RTC_INDUCT THEN CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
MAP_EVERY X_GEN_TAC [`u:num`; `v:num`] THEN REWRITE_TAC[EQV] THEN | |
UNDISCH_TAC `ALL (\(p1,p2). i p1 = termsubst i p2) env` THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[ALL; MEM] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[termsubst]);; | |
let BADLOOP_UNUNIFIABLE = prove | |
(`!env x t. | |
LOOPFREE(env) /\ CONFLICTFREE(env) /\ (istriv env x t = Exception) | |
==> !i. ~(unifies i (CONS (V x,t) (MAP (\(x,t). V x,t) env)))`, | |
REPEAT GEN_TAC THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_SIMP_TAC[ISTRIV_WORKS] THEN | |
REPEAT(COND_CASES_TAC THEN REWRITE_TAC[retval_DISTINCT]) THEN | |
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[unifies; ALL] THEN | |
MATCH_MP_TAC(TAUT `(b ==> ~a) ==> ~(a /\ b)`) THEN | |
REWRITE_TAC[ALL_MAP; o_DEF] THEN | |
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM PAIRED_ETA_THM] THEN | |
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[termsubst] THEN DISCH_TAC THEN | |
UNDISCH_TAC `?y. y IN FVT t /\ RTC (OCC env) y x` THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:num` THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
DISCH_THEN(MP_TAC o SPEC `y:num`) THEN | |
ASM_CASES_TAC `RTC (EQV env) y x` THEN ASM_REWRITE_TAC[] THENL | |
[DISCH_TAC THEN STRIP_TAC THEN MATCH_MP_TAC TC_SUB1_IRREFL THEN | |
ONCE_REWRITE_TAC[TC_RTC_TC_CASES] THEN | |
EXISTS_TAC `(i:num->term) y` THEN CONJ_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP UNIFY_OCCURS) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!t y. y IN FVT t ==> (t = V y) \/ TC SUB1 (i y) (termsubst i t)` | |
(fun th -> ASM_MESON_TAC[th]) THEN | |
SUBGOAL_THEN `!t y. y IN FVT t ==> RTC SUB1 (V y) t` MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[RTC; RC_CASES] THEN | |
SUBGOAL_THEN | |
`!s t. TC SUB1 s t ==> TC SUB1 (termsubst i s) (termsubst i t)` | |
(fun th -> MESON_TAC[th; termsubst]) THEN | |
MATCH_MP_TAC TC_INDUCT THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[TC_TRANS]] THEN | |
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN | |
DISCH_THEN(fun th -> MATCH_MP_TAC TC_INC THEN MP_TAC th) THEN | |
REWRITE_TAC[SUB1] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `args:term list` | |
STRIP_ASSUME_TAC)) THEN | |
MAP_EVERY EXISTS_TAC [`f:num`; `MAP (termsubst i) args`] THEN | |
ASM_REWRITE_TAC[termsubst; MEM_MAP] THEN ASM_MESON_TAC[]] THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; RTC_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN | |
DISCH_TAC THEN REWRITE_TAC[IN_LIST_UNION] THEN | |
REWRITE_TAC[EX_MAP; o_DEF] THEN X_GEN_TAC `z:num` THEN | |
REWRITE_TAC[GSYM EX_MEM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `s:term` THEN CONJ_TAC THENL | |
[UNDISCH_TAC | |
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (V y) t) args` THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[SUB1] THEN ASM_MESON_TAC[]]; | |
ALL_TAC] THEN | |
STRIP_TAC THEN MATCH_MP_TAC TC_SUB1_IRREFL THEN | |
ONCE_REWRITE_TAC[TC_TC_RTC_CASES] THEN | |
EXISTS_TAC `(i:num->term) y` THEN CONJ_TAC THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP UNIFY_OCCURS_PROPER) THEN | |
DISCH_THEN(MP_TAC o SPECL [`y:num`; `x:num`]) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!t y. y IN FVT t ==> RTC SUB1 (V y) t` MP_TAC THENL | |
[ALL_TAC; | |
SUBGOAL_THEN | |
`!s t. RTC SUB1 s t ==> RTC SUB1 (termsubst i s) (termsubst i t)` | |
(fun th -> ASM_MESON_TAC[th; termsubst]) THEN | |
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[RTC_REFL] THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[RTC_TRANS]] THEN | |
MAP_EVERY X_GEN_TAC [`s:term`; `u:term`] THEN | |
DISCH_THEN(fun th -> MATCH_MP_TAC RTC_INC THEN MP_TAC th) THEN | |
REWRITE_TAC[SUB1] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `args:term list` | |
STRIP_ASSUME_TAC)) THEN | |
MAP_EVERY EXISTS_TAC [`f:num`; `MAP (termsubst i) args`] THEN | |
ASM_REWRITE_TAC[termsubst; MEM_MAP] THEN ASM_MESON_TAC[]] THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
SIMP_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; RTC_REFL] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `args:term list`] THEN | |
DISCH_TAC THEN REWRITE_TAC[IN_LIST_UNION] THEN | |
REWRITE_TAC[EX_MAP; o_DEF] THEN X_GEN_TAC `z:num` THEN | |
REWRITE_TAC[GSYM EX_MEM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC RTC_TRANS_L THEN EXISTS_TAC `s:term` THEN CONJ_TAC THENL | |
[UNDISCH_TAC | |
`ALL (\t. !y. y IN FVT t ==> RTC SUB1 (V y) t) args` THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN ASM_MESON_TAC[]; | |
REWRITE_TAC[SUB1] THEN ASM_MESON_TAC[]]);; | |
let UNIFY_WORKS_RAW = prove | |
(`!pr. LOOPFREE(FST pr) /\ CONFLICTFREE(FST pr) | |
==> ((unify pr = NONE) | |
==> !i. ~(unifies i (APPEND (MAP (\(x,t). V x,t) (FST pr)) | |
(SND pr)))) /\ | |
!ans. (unify pr = SOME ans) | |
==> LOOPFREE(ans) /\ CONFLICTFREE(ans) /\ | |
!i. unifies i (APPEND (MAP (\(x,t). V x,t) (FST pr)) | |
(SND pr)) = | |
unifies i (MAP (\(x,t). V x,t) ans)`, | |
MATCH_MP_TAC(REWRITE_RULE[WF_IND] WF_CALLORDER) THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`env:(num#term)list`; `eqs:(term#term)list`] THEN | |
DISCH_THEN(MP_TAC o GENL [`env':(num#term)list`; `eqs':(term#term)list`] o | |
SPEC `env':(num#term)list,eqs':(term#term)list`) THEN | |
REWRITE_TAC[FST; SND] THEN DISCH_TAC THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
ONCE_REWRITE_TAC[unify_raw] THEN | |
ASM_REWRITE_TAC[FST; SND] THEN | |
MP_TAC(ISPEC `eqs:(term#term)list` list_CASES) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL | |
[ASM_REWRITE_TAC[APPEND_NIL; OPTION_INJ; OPTION_DISTINCT] THEN | |
GEN_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [EXISTS_PAIR_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:term` (X_CHOOSE_THEN `t:term` | |
(X_CHOOSE_THEN `oth:(term#term)list` SUBST_ALL_TAC))) THEN | |
REWRITE_TAC[NOT_CONS_NIL; HD; TL] THEN | |
MP_TAC(SPEC `s:term` term_CASES) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 | |
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) | |
(X_CHOOSE_THEN `f:num` (X_CHOOSE_THEN `fargs:term list` | |
SUBST_ALL_TAC))) | |
THENL | |
[ALL_TAC; | |
MP_TAC(ISPEC `t:term` term_CASES) THEN | |
DISCH_THEN(DISJ_CASES_THEN2 | |
(X_CHOOSE_THEN `x:num` SUBST_ALL_TAC) | |
(X_CHOOSE_THEN `g:num` (X_CHOOSE_THEN `gargs:term list` | |
SUBST_ALL_TAC)))] THEN | |
REWRITE_TAC[tpcases] THENL | |
[ASM_CASES_TAC `MEM x (MAP FST (env:(num#term)list))` THEN | |
ASM_REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL | |
[`env:(num#term)list`; | |
`CONS (ASSOC (x:num) env,t) (oth:(term#term)list)`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN | |
DISJ2_TAC THEN DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!i. unifies i | |
(APPEND (MAP (\(x,t). V x,t) env) (CONS (ASSOC x env,t) oth)) = | |
unifies i | |
(APPEND (MAP (\(x,t). V x,t) env) (CONS (V x,t) oth))` | |
(fun th -> REWRITE_TAC[th]) THEN | |
X_GEN_TAC `i:num->term` THEN | |
REWRITE_TAC[unifies; ALL; ALL_APPEND] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[ALL_MAP] THEN | |
MATCH_MP_TAC(TAUT | |
`(a ==> (b <=> b')) ==> (a /\ b /\ c <=> a /\ b' /\ c)`) THEN | |
UNDISCH_TAC `MEM x (MAP FST (env:(num#term)list))` THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
MATCH_MP_TAC list_INDUCT THEN REWRITE_TAC[MEM; ALL; MAP] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`y:num`; `s:term`; `eev:(num#term)list`] THEN | |
REWRITE_TAC[FST; SND; o_DEF] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_CASES_TAC `x = y:num` THEN ASM_REWRITE_TAC[ASSOC] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
ASM_CASES_TAC `istriv env x t = Exception` THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[OPTION_DISTINCT] THEN | |
MP_TAC(SPECL [`env:(num#term)list`; `x:num`; `t:term`] | |
BADLOOP_UNUNIFIABLE) THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[unifies; ALL_APPEND; ALL] THEN | |
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN CONV_TAC TAUT; ALL_TAC] THEN | |
ASM_CASES_TAC `istriv env x t = TT` THEN ASM_REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL | |
[`env:(num#term)list`; `oth:(term#term)list`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN | |
DISJ2_TAC THEN DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!i. unifies i | |
(APPEND (MAP (\(x,t). V x,t) env) (CONS (V x,t) oth)) = | |
unifies i | |
(APPEND (MAP (\(x,t). V x,t) env) oth)` | |
(fun th -> REWRITE_TAC[th]) THEN | |
MP_TAC(SPECL [`env:(num#term)list`; `x:num`; `t:term`] | |
GOODLOOP_UNIFIABLE) THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[unifies; ALL_APPEND; ALL] THEN | |
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN CONV_TAC TAUT; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL | |
[`CONS (x:num,t:term) env`; `oth:(term#term)list`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[CALLORDER] THEN DISJ1_TAC THEN | |
REWRITE_TAC[MEASURE; MLEFT] THEN | |
REWRITE_TAC[MAP; FST; SND; LENGTH] THEN | |
MATCH_MP_TAC(ARITH_RULE | |
`(a' = a) /\ (b' = b + 1) /\ b' <= a' ==> a' - b' < a - b`) THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS ((V o FST) (x,t:term)) (MAP (V o FST) env))) = | |
x INSERT FVT(Fn 0 (MAP (V o FST) (env:(num#term)list)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS (V x) (MAP FST (oth:(term#term)list)))) = | |
x INSERT FVT(Fn 0 (MAP FST oth))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST] THEN SET_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS t (MAP SND env))) = | |
FVT(t) UNION FVT(Fn 0 (MAP SND (env:(num#term)list)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`FVT(Fn 0 (CONS t (MAP SND oth))) = | |
FVT(t) UNION FVT(Fn 0 (MAP SND (oth:(term#term)list)))` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[FVT; MAP; LIST_UNION; o_THM; FST]; ALL_TAC] THEN | |
REPEAT CONJ_TAC THENL | |
[AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI; IN_INSERT]; | |
SIMP_TAC[CARD_CLAUSES; FVT_FINITE; ADD1] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN | |
UNDISCH_TAC | |
`x IN FVT (Fn 0 (MAP (V o FST) (env:(num#term)list)))` THEN | |
UNDISCH_TAC `~MEM x (MAP FST (env:(num#term)list))` THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> b ==> c`) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
REWRITE_TAC[FVT] THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[LIST_UNION; MEM; MAP; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[o_THM; FVT; IN_UNION; IN_INSERT; NOT_IN_EMPTY] THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[]; | |
MATCH_MP_TAC CARD_SUBSET THEN | |
REWRITE_TAC[FINITE_UNION; FVT_FINITE; FINITE_INSERT] THEN | |
REWRITE_TAC[SUBSET; IN_UNION; IN_INSERT] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]]; ALL_TAC] THEN | |
ANTS_TAC THENL | |
[MP_TAC(SPECL [`env:(num#term)list`; `x:num`; `t:term`] ISTRIV_WORKS) THEN | |
ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
ASM_SIMP_TAC[LOOPFREE_PRESERVE_EQ] THEN | |
UNDISCH_TAC `CONFLICTFREE env` THEN | |
REWRITE_TAC[CONFLICTFREE; LENGTH; FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `y:num` THEN | |
ASM_CASES_TAC `x:num = y` THEN ASM_REWRITE_TAC[LENGTH] THEN | |
MATCH_MP_TAC(ARITH_RULE `(x = 0) ==> y <= z ==> SUC x <= 1`) THEN | |
UNDISCH_THEN `x:num = y` (SUBST_ALL_TAC o SYM) THEN | |
REWRITE_TAC[LENGTH_EQ_NIL] THEN | |
UNDISCH_TAC `~(MEM x (MAP FST (env:(num#term)list)))` THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[MEM; MAP; FILTER; NOT_CONS_NIL] THEN | |
SUBST1_TAC(SYM(ISPEC `h:num#term` PAIR)) THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[FST; SND] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!i. unifies i (APPEND (MAP (\(x,t). V x,t) (CONS (x,t) env)) oth) = | |
unifies i (APPEND (MAP (\(x,t). V x,t) env) (CONS (V x,t) oth))` | |
(fun th -> REWRITE_TAC[th]) THEN | |
REWRITE_TAC[unifies; ALL_APPEND; ALL; MAP] THEN GEN_TAC THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN CONV_TAC TAUT; | |
FIRST_X_ASSUM(MP_TAC o SPECL | |
[`env:(num#term)list`; `CONS (V x,Fn f fargs) oth`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN | |
REPEAT DISJ2_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[unifies; ALL_APPEND; ALL] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[EQ_SYM_EQ]; | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[OPTION_DISTINCT] THENL | |
[ALL_TAC; | |
REWRITE_TAC[unifies; ALL; ALL_APPEND] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[termsubst; term_INJ] THEN | |
ASM_MESON_TAC[LENGTH_MAP]] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL | |
[`env:(num#term)list`; | |
`APPEND (ZIP fargs gargs) (oth:(term#term)list)`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[CALLORDER; CRIGHT] THEN | |
DISJ2_TAC THEN DISJ1_TAC THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!i. unifies i (APPEND (MAP (\(x,t). V x,t) env) | |
(APPEND (ZIP fargs gargs) oth)) = | |
unifies i (APPEND (MAP (\(x,t). V x,t) env) | |
(CONS (Fn g fargs,Fn g gargs) oth))` | |
(fun th -> REWRITE_TAC[th]) THEN | |
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[unifies; ALL; ALL_APPEND] THEN | |
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[termsubst; term_INJ] THEN | |
FIRST_ASSUM(MP_TAC o CONJUNCT2) THEN | |
SPEC_TAC(`gargs:term list`,`gargs:term list`) THEN | |
SPEC_TAC(`fargs:term list`,`fargs:term list`) THEN | |
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[LENGTH; ALL; MAP; NOT_SUC; ZIP] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_SIMP_TAC[SUC_INJ; CONS_11]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Constructively show that unifiers exist via "solve". *) | |
(* ------------------------------------------------------------------------- *) | |
let THE = new_recursive_definition option_RECURSION | |
`THE(SOME x) = x`;; | |
let unifier = new_definition | |
`unifier env = | |
let sol = SOLVE [] env in ITLIST valmod sol V`;; | |
let ITLIST_VALMOD_LEMMA = prove | |
(`!env x. CONFLICTFREE(env) | |
==> !t. (ITLIST valmod env V x = t) <=> | |
MEM (x,t) env \/ (t = V x) /\ ~(MEM x (MAP FST env))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[CONFLICTFREE] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[FILTER; LENGTH; ITLIST; MAP; MEM] THENL | |
[MESON_TAC[]; ALL_TAC] THEN | |
SPEC_TAC(`h:num#term`,`h:num#term`) THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`z:num`; `s:term`] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_CASES_TAC `z = x:num` THEN | |
ASM_REWRITE_TAC[PAIR_EQ; LENGTH; valmod] THEN | |
REWRITE_TAC[ARITH_RULE `SUC n <= 1 <=> (n = 0)`; LENGTH_EQ_NIL] THEN | |
REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN GEN_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> ~c) /\ (b <=> b') ==> a ==> (b <=> b' \/ c)`) THEN | |
CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[EQ_SYM_EQ]] THEN | |
DISCH_THEN(MP_TAC o AP_TERM `MEM (x:num,t':term)`) THEN | |
REWRITE_TAC[MEM; MEM_FILTER] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[]);; | |
let UNIFIER_WORKS = prove | |
(`!env. LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> unifies (unifier env) (MAP (\(x,t). V x,t) env)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[unifier] THEN LET_TAC THEN | |
MP_TAC(SPEC `env:(num#term)list` SOLVE_WORKS) THEN ASM_REWRITE_TAC[] THEN | |
ABBREV_TAC `i = ITLIST valmod sol V` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o SPEC `i:num->term`) MP_TAC) THEN | |
DISCH_TAC THEN | |
REWRITE_TAC[unifies; ALL_MAP; o_DEF] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM PAIRED_ETA_THM] THEN | |
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[termsubst; GSYM ALL_MEM] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN ASM_REWRITE_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `t:term`] THEN DISCH_TAC THEN | |
EXPAND_TAC "i" THEN ASM_SIMP_TAC[ITLIST_VALMOD_LEMMA] THEN | |
SUBGOAL_THEN `termsubst i t = t` (fun th -> ASM_REWRITE_TAC[th]) THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM TERMSUBST_TRIV] THEN | |
MATCH_MP_TAC TERMSUBST_VALUATION THEN X_GEN_TAC `z:num` THEN DISCH_TAC THEN | |
EXPAND_TAC "i" THEN ASM_SIMP_TAC[ITLIST_VALMOD_LEMMA] THEN | |
DISJ2_TAC THEN REWRITE_TAC[MEM_MAP] THEN | |
ONCE_REWRITE_TAC[EXISTS_PAIR_THM] THEN ASM_MESON_TAC[FST]);; | |
let UNIFIER_MGU = prove | |
(`!env. LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> !i. unifies i (MAP (\(x,t). V x,t) env) | |
==> (termsubst i = | |
termsubst i o | |
termsubst (ITLIST valmod env V))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN | |
X_GEN_TAC `s:term` THEN REWRITE_TAC[TERMSUBST_TERMSUBST] THEN | |
MATCH_MP_TAC TERMSUBST_VALUATION THEN X_GEN_TAC `y:num` THEN | |
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[o_THM] THEN | |
UNDISCH_TAC `unifies i (MAP (\(x,t). V x,t) env)` THEN | |
REWRITE_TAC[unifies; ALL_MAP; o_DEF] THEN | |
GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM PAIRED_ETA_THM] THEN | |
REWRITE_TAC[] THEN CONV_TAC(REDEPTH_CONV GEN_BETA_CONV) THEN | |
SPEC_TAC(`env:(num#term)list`,`env:(num#term)list`) THEN | |
REWRITE_TAC[termsubst] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[ITLIST; TERMSUBST_TRIV; termsubst] THEN | |
SPEC_TAC(`h:num#term`,`h:num#term`) THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`z:num`; `s:term`] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[unifies; ALL; MAP] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN | |
UNDISCH_THEN `y = z:num` (SUBST_ALL_TAC o SYM) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (SUBST_ALL_TAC o SYM) ASSUME_TAC) THEN | |
ASM_SIMP_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence we can strengthen the main theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let UNIFY_WORKS = prove | |
(`!env eqs. | |
LOOPFREE(env) /\ CONFLICTFREE(env) | |
==> ((unify (env,eqs) = NONE) | |
==> !i. ~(unifies i (APPEND (MAP (\(x,t). V x,t) env) eqs))) /\ | |
((unify (env,eqs) = SOME ans) | |
==> LOOPFREE(ans) /\ CONFLICTFREE(ans) /\ | |
unifies (unifier ans) (APPEND (MAP (\(x,t). V x,t) env) eqs) /\ | |
!i. unifies i (APPEND (MAP (\(x,t). V x,t) env) eqs) | |
==> (termsubst i = termsubst i o termsubst (unifier ans)))`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
MP_TAC(SPEC `env:(num#term)list,eqs:(term#term)list` UNIFY_WORKS_RAW) THEN | |
ASM_REWRITE_TAC[FST; SND] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `ans:(num#term)list`) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[unifier] THEN LET_TAC THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
MP_TAC(SPEC `ans:(num#term)list` SOLVE_WORKS) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN | |
MP_TAC(SPEC `ans:(num#term)list` UNIFIER_WORKS) THEN | |
MP_TAC(SPEC `sol:(num#term)list` UNIFIER_MGU) THEN | |
SUBGOAL_THEN `LOOPFREE(sol)` ASSUME_TAC THENL | |
[REWRITE_TAC[LOOPFREE] THEN X_GEN_TAC `z:num` THEN | |
ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN | |
REWRITE_TAC[OCC] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `!i. unifies i (MAP (\(x,t). V x,t) ans) = | |
unifies i (MAP (\(x,t). V x,t) sol)` | |
(fun th -> SIMP_TAC[th]) | |
THENL | |
[GEN_TAC THEN REWRITE_TAC[unifies; ALL_MAP; o_DEF] THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN ONCE_REWRITE_TAC[FORALL_PAIR_THM] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN | |
ASM_REWRITE_TAC[termsubst]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[unifier] THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special case where there is no initial environment. *) | |
(* ------------------------------------------------------------------------- *) | |
let UNIFY_WORKS_SIMPLE = prove | |
(`!eqs. ((unify ([],eqs) = NONE) ==> !i. ~(unifies i eqs)) /\ | |
((unify ([],eqs) = SOME ans) | |
==> LOOPFREE(ans) /\ CONFLICTFREE(ans) /\ | |
unifies (unifier ans) eqs /\ | |
!i. unifies i eqs | |
==> (termsubst i = termsubst i o termsubst (unifier ans)))`, | |
GEN_TAC THEN MP_TAC(SPEC `[]:(num#term)list` UNIFY_WORKS) THEN | |
REWRITE_TAC[MAP; APPEND] THEN DISCH_THEN MATCH_MP_TAC THEN | |
REWRITE_TAC[LOOPFREE; CONFLICTFREE; LENGTH; FILTER; ARITH] THEN | |
ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[OCC; MEM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Slight variant: MGU of a set (not list of pairs) of formulas (not terms) *) | |
(* ------------------------------------------------------------------------- *) | |
let Unifies_DEF = new_definition | |
`Unifies i s <=> !p q. p IN s /\ q IN s ==> (formsubst i p = formsubst i q)`;; | |
let UNIFIES = prove | |
(`Unifies i s <=> ?q. !p. p IN s ==> (formsubst i p = q)`, | |
MESON_TAC[Unifies_DEF]);; | |
let UNIFIER_FORMPAIR_TERMLIST = prove | |
(`!p q. qfree(p) /\ qfree(q) | |
==> ?l. !i. (formsubst i p = formsubst i q) <=> unifies i l`, | |
let lemma = prove | |
(`?l. !i. ~(unifies i l)`, | |
EXISTS_TAC `[Fn 0 [], Fn 1 []]` THEN | |
REWRITE_TAC[ALL; unifies] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[termsubst; term_INJ; ARITH]) in | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree] THEN | |
REPEAT CONJ_TAC THENL | |
[ALL_TAC; | |
MAP_EVERY X_GEN_TAC [`f:num`; `fargs:term list`]; | |
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`] THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC] THEN | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree] THEN | |
REWRITE_TAC[formsubst; form_DISTINCT; lemma] THENL | |
[EXISTS_TAC `[]:(term#term)list` THEN REWRITE_TAC[unifies; ALL]; | |
MAP_EVERY X_GEN_TAC [`g:num`; `gargs:term list`] THEN | |
REWRITE_TAC[form_INJ] THEN | |
ASM_CASES_TAC `f:num = g` THEN ASM_REWRITE_TAC[lemma] THEN | |
ASM_CASES_TAC `LENGTH(fargs:term list) = LENGTH(gargs:term list)` THENL | |
[ALL_TAC; ASM_MESON_TAC[LENGTH_MAP; lemma]] THEN | |
EXISTS_TAC `ZIP (fargs:term list) (gargs:term list)` THEN | |
REWRITE_TAC[unifies] THEN X_GEN_TAC `i:num->term` THEN | |
UNDISCH_TAC `LENGTH(fargs:term list) = LENGTH(gargs:term list)` THEN | |
SPEC_TAC(`gargs:term list`,`gargs:term list`) THEN | |
SPEC_TAC(`fargs:term list`,`fargs:term list`) THEN | |
LIST_INDUCT_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[LENGTH; NOT_SUC; MAP; ZIP; ALL; SUC_INJ] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_SIMP_TAC[CONS_11]; | |
MAP_EVERY X_GEN_TAC [`r:form`; `s:form`] THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_SIMP_TAC[form_INJ] THEN | |
UNDISCH_TAC | |
`!q. qfree q | |
==> (?l. !i. (formsubst i p = formsubst i q) <=> unifies i l)` THEN | |
DISCH_THEN(MP_TAC o SPEC `r:form`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `l1:(term#term)list` | |
(fun th -> REWRITE_TAC[th])) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `s:form`) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `l2:(term#term)list` | |
(fun th -> REWRITE_TAC[th])) THEN | |
EXISTS_TAC `APPEND (l1:(term#term)list) l2` THEN | |
REWRITE_TAC[unifies; ALL_APPEND]]);; | |
let UNIFIER_SUBTERMS = prove | |
(`!A. FINITE A /\ (!p. p IN A ==> qfree p) | |
==> ?l. !i. Unifies i A = unifies i l`, | |
REPEAT STRIP_TAC THEN | |
ABBREV_TAC `B = {(x:form,y) | x IN A /\ y IN A}` THEN | |
SUBGOAL_THEN `!i. Unifies i A = | |
!p q. (p,q) IN B ==> (formsubst i p = formsubst i q)` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[EXPAND_TAC "B" THEN | |
REWRITE_TAC[IN_ELIM_THM; Unifies_DEF; PAIR_EQ] THEN MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!p q. (p,q) IN B ==> qfree p /\ qfree q` MP_TAC THENL | |
[EXPAND_TAC "B" THEN | |
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `FINITE(B:(form#form)->bool)` MP_TAC THENL | |
[EXPAND_TAC "B" THEN MATCH_MP_TAC FINITE_PRODUCT THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SPEC_TAC(`B:(form#form)->bool`,`B:(form#form)->bool`) THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN MATCH_MP_TAC FINITE_INDUCT THEN | |
CONJ_TAC THENL | |
[STRIP_TAC THEN EXISTS_TAC `[]:(term#term)list` THEN | |
REWRITE_TAC[NOT_IN_EMPTY; ALL; unifies]; ALL_TAC] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`p:form`; `q:form`; `B:(form#form)->bool`] THEN | |
REWRITE_TAC[IN_INSERT; PAIR_EQ] THEN | |
REWRITE_TAC[TAUT `a \/ b ==> c <=> (a ==> c) /\ (b ==> c)`] THEN | |
SIMP_TAC[FORALL_AND_THM; LEFT_FORALL_IMP_THM; EXISTS_REFL; | |
LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM] THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `l:(term#term)list`) THEN | |
MP_TAC(SPECL [`p:form`; `q:form`] UNIFIER_FORMPAIR_TERMLIST) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_TAC `m:(term#term)list`) THEN | |
EXISTS_TAC `APPEND (l:(term#term)list) m` THEN | |
REWRITE_TAC[unifies; ALL_APPEND] THEN | |
ASM_REWRITE_TAC[GSYM unifies] THEN REWRITE_TAC[CONJ_ACI]);; | |
let MGU_EXISTS = prove | |
(`FINITE s /\ (!p. p IN s ==> qfree p) | |
==> ((?i. Unifies i s) <=> | |
(?i. Unifies i s /\ | |
!j. Unifies j s | |
==> !p. qfree p | |
==> (formsubst j p = formsubst j (formsubst i p))))`, | |
DISCH_THEN(X_CHOOSE_THEN `l:(term#term)list` (fun th -> REWRITE_TAC[th]) o | |
MATCH_MP UNIFIER_SUBTERMS) THEN | |
EQ_TAC THEN DISCH_THEN(X_CHOOSE_THEN `i:num->term` STRIP_ASSUME_TAC) THEN | |
ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN | |
EXISTS_TAC `unifier(THE(unify([],l)))` THEN | |
MP_TAC(GEN `ans:(num#term)list` | |
(SPEC `l:(term#term)list` UNIFY_WORKS_SIMPLE)) THEN | |
SPEC_TAC(`unify ([],l)`,`u:((num#term)list)option`) THEN | |
MATCH_MP_TAC option_INDUCT THEN | |
REWRITE_TAC[prove_constructors_distinct option_RECURSION; | |
prove_constructors_injective option_RECURSION] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `u:(num#term)list` THEN | |
DISCH_THEN(MP_TAC o SPEC `u:(num#term)list`) THEN REWRITE_TAC[THE] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN | |
X_GEN_TAC `j:num->term` THEN | |
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN | |
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN DISCH_THEN(ASSUME_TAC o GSYM) THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; qfree] THEN SIMP_TAC[] THEN | |
REWRITE_TAC[GSYM MAP_o] THEN | |
REPEAT GEN_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN | |
ASM_REWRITE_TAC[o_THM; ALL_T]);; | |
let mgu = new_definition | |
`mgu s = @i. Unifies i s /\ | |
!j. Unifies j s | |
==> !p. qfree p | |
==> (formsubst j p = | |
formsubst j (formsubst i p))`;; | |
let MGU = prove | |
(`!s. FINITE s /\ (!p. p IN s ==> qfree p) /\ (?i. Unifies i s) | |
==> Unifies (mgu s) s /\ | |
!i. Unifies i s | |
==> !p. qfree p | |
==> (formsubst i p = | |
formsubst i (formsubst (mgu s) p))`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[mgu] THEN | |
CONV_TAC SELECT_CONV THEN ASM_SIMP_TAC[GSYM MGU_EXISTS] THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* General notion of an MGU. *) | |
(* ------------------------------------------------------------------------- *) | |
let FORMSUBST_TERMSUBST_LEMMA = prove | |
(`(!p. qfree(p) ==> (formsubst i p = formsubst j (formsubst k p))) <=> | |
(termsubst i = termsubst j o termsubst k)`, | |
REWRITE_TAC[FUN_EQ_THM; o_THM] THEN EQ_TAC THEN DISCH_TAC THENL | |
[X_GEN_TAC `t:term` THEN FIRST_X_ASSUM(MP_TAC o SPEC `Atom p [t]`) THEN | |
REWRITE_TAC[qfree; formsubst; MAP; form_INJ; CONS_11]; | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[qfree] THEN | |
SIMP_TAC[formsubst] THEN REWRITE_TAC[form_INJ; GSYM MAP_o] THEN | |
GEN_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM; ALL_T]]);; | |
let ismgu = new_definition | |
`ismgu s i <=> Unifies i s /\ | |
!j. Unifies j s | |
==> ?k. (termsubst j = termsubst k o termsubst i)`;; | |
let ISMGU = prove | |
(`ismgu s i <=> Unifies i s /\ | |
!j. Unifies j s | |
==> ?k. !p. qfree(p) | |
==> (formsubst j p = | |
formsubst k (formsubst i p))`, | |
REWRITE_TAC[ismgu; FORMSUBST_TERMSUBST_LEMMA]);; | |
let ISMGU_MGU = prove | |
(`!s. FINITE(s) /\ (!p. p IN s ==> qfree p) /\ (?i. Unifies i s) | |
==> ismgu s (mgu s)`, | |
GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP MGU) THEN | |
ASM_REWRITE_TAC[ISMGU] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Renaming. Note that we assume a bijection; the usual definition demands *) | |
(* only the existence of a left inverse, but then you need to be explicit *) | |
(* about the fact that the support is finite, hence the right inverse exists *) | |
(* anyway. *) | |
(* ------------------------------------------------------------------------- *) | |
let renaming = new_definition | |
`renaming i <=> ?j. (termsubst j o termsubst i = I) /\ | |
(termsubst i o termsubst j = I)`;; | |
let RENAMING = prove | |
(`renaming i ==> (!x. ?y. i(x) = V y) /\ | |
(!x x'. (i(x') = i(x)) ==> (x' = x))`, | |
REWRITE_TAC[renaming; FUN_EQ_THM; o_THM; I_DEF] THEN | |
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN | |
CONJ_TAC THENL | |
[X_GEN_TAC `x:num` THEN FIRST_X_ASSUM(MP_TAC o SPEC `V x`) THEN | |
REWRITE_TAC[termsubst] THEN | |
MESON_TAC[term_CASES; termsubst; term_DISTINCT]; | |
MAP_EVERY X_GEN_TAC [`x1:num`; `x2:num`] THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC(SPEC `V x1` th) THEN | |
MP_TAC(SPEC `V x2` th)) THEN | |
REWRITE_TAC[termsubst] THEN MESON_TAC[term_INJ]]);; | |