Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The type "real^2" regarded as the complex numbers. *) | |
(* *) | |
(* (c) Copyright, John Harrison 1998-2008 *) | |
(* (c) Copyright, Valentina Bruno 2010 *) | |
(* ========================================================================= *) | |
needs "Multivariate/convex.ml";; | |
new_type_abbrev("complex",`:real^2`);; | |
let prioritize_complex() = | |
overload_interface("--",`vector_neg:complex->complex`); | |
overload_interface("+",`vector_add:complex->complex->complex`); | |
overload_interface("-",`vector_sub:complex->complex->complex`); | |
overload_interface("*",`complex_mul:complex->complex->complex`); | |
overload_interface("/",`complex_div:complex->complex->complex`); | |
overload_interface("pow",`complex_pow:complex->num->complex`); | |
overload_interface("inv",`complex_inv:complex->complex`);; | |
prioritize_complex();; | |
(* ------------------------------------------------------------------------- *) | |
(* Real and imaginary parts of a number. *) | |
(* ------------------------------------------------------------------------- *) | |
let RE_DEF = new_definition | |
`Re(z:complex) = z$1`;; | |
let IM_DEF = new_definition | |
`Im(z:complex) = z$2`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Real injection and imaginary unit. *) | |
(* ------------------------------------------------------------------------- *) | |
let complex = new_definition | |
`complex(x,y) = vector[x;y]:complex`;; | |
let CX_DEF = new_definition | |
`Cx(a) = complex(a,&0)`;; | |
let ii = new_definition | |
`ii = complex(&0,&1)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex multiplication. *) | |
(* ------------------------------------------------------------------------- *) | |
let complex_mul = new_definition | |
`w * z = complex(Re(w) * Re(z) - Im(w) * Im(z), | |
Re(w) * Im(z) + Im(w) * Re(z))`;; | |
let complex_inv = new_definition | |
`inv(z) = complex(Re(z) / (Re(z) pow 2 + Im(z) pow 2), | |
--(Im(z)) / (Re(z) pow 2 + Im(z) pow 2))`;; | |
let complex_div = new_definition | |
`w / z = w * inv(z)`;; | |
let complex_pow = define | |
`(x pow 0 = Cx(&1)) /\ | |
(!n. x pow (SUC n) = x * x pow n)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Various handy rewrites. *) | |
(* ------------------------------------------------------------------------- *) | |
let RE = prove | |
(`(Re(complex(x,y)) = x)`, | |
REWRITE_TAC[RE_DEF; complex; VECTOR_2]);; | |
let IM = prove | |
(`Im(complex(x,y)) = y`, | |
REWRITE_TAC[IM_DEF; complex; VECTOR_2]);; | |
let COMPLEX_EQ = prove | |
(`!w z. (w = z) <=> (Re(w) = Re(z)) /\ (Im(w) = Im(z))`, | |
SIMP_TAC[CART_EQ; FORALL_2; DIMINDEX_2; RE_DEF; IM_DEF]);; | |
let COMPLEX = prove | |
(`!z. complex(Re(z),Im(z)) = z`, | |
REWRITE_TAC[COMPLEX_EQ; RE; IM]);; | |
let COMPLEX_EQ_0 = prove | |
(`z = Cx(&0) <=> Re(z) pow 2 + Im(z) pow 2 = &0`, | |
REWRITE_TAC[COMPLEX_EQ; CX_DEF; RE; IM] THEN | |
EQ_TAC THEN SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH | |
`!x y:real. x + y = &0 ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN | |
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_ENTIRE]);; | |
let FORALL_COMPLEX = prove | |
(`(!z. P z) <=> (!x y. P(complex(x,y)))`, | |
MESON_TAC[COMPLEX]);; | |
let EXISTS_COMPLEX = prove | |
(`(?z. P z) <=> (?x y. P(complex(x,y)))`, | |
MESON_TAC[COMPLEX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Pseudo-definitions of other general vector concepts over R^2. *) | |
(* ------------------------------------------------------------------------- *) | |
let complex_neg = prove | |
(`--z = complex(--(Re(z)),--(Im(z)))`, | |
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[RE_DEF; IM_DEF] THEN | |
SIMP_TAC[VECTOR_NEG_COMPONENT; DIMINDEX_2; ARITH]);; | |
let complex_add = prove | |
(`w + z = complex(Re(w) + Re(z),Im(w) + Im(z))`, | |
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN REWRITE_TAC[RE_DEF; IM_DEF] THEN | |
SIMP_TAC[VECTOR_ADD_COMPONENT; DIMINDEX_2; ARITH]);; | |
let complex_sub = VECTOR_ARITH `(w:complex) - z = w + --z`;; | |
let complex_norm = prove | |
(`norm(z) = sqrt(Re(z) pow 2 + Im(z) pow 2)`, | |
REWRITE_TAC[vector_norm; dot; RE_DEF; IM_DEF; SUM_2; DIMINDEX_2] THEN | |
AP_TERM_TAC THEN REAL_ARITH_TAC);; | |
let COMPLEX_SQNORM = prove | |
(`norm(z) pow 2 = Re(z) pow 2 + Im(z) pow 2`, | |
REWRITE_TAC[NORM_POW_2; dot; RE_DEF; IM_DEF; SUM_2; DIMINDEX_2] THEN | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Crude tactic to automate very simple algebraic equivalences. *) | |
(* ------------------------------------------------------------------------- *) | |
let SIMPLE_COMPLEX_ARITH_TAC = | |
REWRITE_TAC[COMPLEX_EQ; RE; IM; CX_DEF; | |
complex_add; complex_neg; complex_sub; complex_mul; | |
complex_inv; complex_div] THEN | |
CONV_TAC REAL_FIELD;; | |
let SIMPLE_COMPLEX_ARITH tm = prove(tm,SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic algebraic properties that can be proved automatically by this. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_ADD_SYM = prove | |
(`!x y. x + y = y + x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_ASSOC = prove | |
(`!x y z. x + y + z = (x + y) + z`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_LID = prove | |
(`!x. Cx(&0) + x = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_LINV = prove | |
(`!x. --x + x = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_SYM = prove | |
(`!x y. x * y = y * x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_ASSOC = prove | |
(`!x y z. x * y * z = (x * y) * z`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_LID = prove | |
(`!x. Cx(&1) * x = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_LDISTRIB = prove | |
(`!x y z. x * (y + z) = x * y + x * z`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_AC = prove | |
(`(m + n = n + m) /\ ((m + n) + p = m + n + p) /\ (m + n + p = n + m + p)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_AC = prove | |
(`(m * n = n * m) /\ ((m * n) * p = m * n * p) /\ (m * n * p = n * m * p)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_RID = prove | |
(`!x. x + Cx(&0) = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_RID = prove | |
(`!x. x * Cx(&1) = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_RINV = prove | |
(`!x. x + --x = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_RDISTRIB = prove | |
(`!x y z. (x + y) * z = x * z + y * z`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_ADD_LCANCEL = prove | |
(`!x y z. (x + y = x + z) <=> (y = z)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_ADD_RCANCEL = prove | |
(`!x y z. (x + z = y + z) <=> (x = y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_RZERO = prove | |
(`!x. x * Cx(&0) = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_LZERO = prove | |
(`!x. Cx(&0) * x = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_NEG = prove | |
(`!x. --(--x) = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_RNEG = prove | |
(`!x y. x * --y = --(x * y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_LNEG = prove | |
(`!x y. --x * y = --(x * y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_ADD = prove | |
(`!x y. --(x + y) = --x + --y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_0 = prove | |
(`--Cx(&0) = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_ADD_LCANCEL_0 = prove | |
(`!x y. (x + y = x) <=> (y = Cx(&0))`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_ADD_RCANCEL_0 = prove | |
(`!x y. (x + y = y) <=> (x = Cx(&0))`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_LNEG_UNIQ = prove | |
(`!x y. (x + y = Cx(&0)) <=> (x = --y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_RNEG_UNIQ = prove | |
(`!x y. (x + y = Cx(&0)) <=> (y = --x)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_LMUL = prove | |
(`!x y. --(x * y) = --x * y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_RMUL = prove | |
(`!x y. --(x * y) = x * --y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_MUL2 = prove | |
(`!x y. --x * --y = x * y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_ADD = prove | |
(`!x y. x - y + y = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_ADD2 = prove | |
(`!x y. y + x - y = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_REFL = prove | |
(`!x. x - x = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_0 = prove | |
(`!x y. (x - y = Cx(&0)) <=> (x = y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_EQ_0 = prove | |
(`!x. (--x = Cx(&0)) <=> (x = Cx(&0))`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_SUB = prove | |
(`!x y. --(x - y) = y - x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_SUB = prove | |
(`!x y. (x + y) - x = y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_EQ = prove | |
(`!x y. (--x = y) <=> (x = --y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NEG_MINUS1 = prove | |
(`!x. --x = --Cx(&1) * x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_SUB = prove | |
(`!x y. x - y - x = --y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD2_SUB2 = prove | |
(`!a b c d. (a + b) - (c + d) = a - c + b - d`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_LZERO = prove | |
(`!x. Cx(&0) - x = --x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_RZERO = prove | |
(`!x. x - Cx(&0) = x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_LNEG = prove | |
(`!x y. --x - y = --(x + y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_RNEG = prove | |
(`!x y. x - --y = x + y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_NEG2 = prove | |
(`!x y. --x - --y = y - x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_TRIANGLE = prove | |
(`!a b c. a - b + b - c = a - c`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_SUB_LADD = prove | |
(`!x y z. (x = y - z) <=> (x + z = y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_SUB_RADD = prove | |
(`!x y z. (x - y = z) <=> (x = z + y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_SUB2 = prove | |
(`!x y. x - (x - y) = y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ADD_SUB2 = prove | |
(`!x y. x - (x + y) = --y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_DIFFSQ = prove | |
(`!x y. (x + y) * (x - y) = x * x - y * y`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_EQ_NEG2 = prove | |
(`!x y. (--x = --y) <=> (x = y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_LDISTRIB = prove | |
(`!x y z. x * (y - z) = x * y - x * z`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_SUB_RDISTRIB = prove | |
(`!x y z. (x - y) * z = x * z - y * z`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_2 = prove | |
(`!x. Cx(&2) * x = x + x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Sometimes here we need to tweak non-zeroness assertions. *) | |
(* ------------------------------------------------------------------------- *) | |
let II_NZ = prove | |
(`~(ii = Cx(&0))`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_LINV = prove | |
(`!z. ~(z = Cx(&0)) ==> (inv(z) * z = Cx(&1))`, | |
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_ENTIRE = prove | |
(`!x y. (x * y = Cx(&0)) <=> (x = Cx(&0)) \/ (y = Cx(&0))`, | |
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_MUL_RINV = prove | |
(`!z. ~(z = Cx(&0)) ==> (z * inv(z) = Cx(&1))`, | |
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_DIV_REFL = prove | |
(`!x. ~(x = Cx(&0)) ==> (x / x = Cx(&1))`, | |
REWRITE_TAC[COMPLEX_EQ_0] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_VEC_0 = prove | |
(`vec 0 = Cx(&0)`, | |
SIMP_TAC[CART_EQ; VEC_COMPONENT; CX_DEF; complex; | |
DIMINDEX_2; FORALL_2; VECTOR_2]);; | |
let COMPLEX_CMUL = prove | |
(`!c x. c % x = Cx(c) * x`, | |
SIMP_TAC[CART_EQ; VECTOR_MUL_COMPONENT; CX_DEF; complex; | |
complex_mul; DIMINDEX_2; FORALL_2; IM_DEF; RE_DEF; VECTOR_2] THEN | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* More about powers. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_POW_ADD = prove | |
(`!x m n. x pow (m + n) = x pow m * x pow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[ADD_CLAUSES; complex_pow; | |
COMPLEX_MUL_LID; COMPLEX_MUL_ASSOC]);; | |
let COMPLEX_POW_POW = prove | |
(`!x m n. (x pow m) pow n = x pow (m * n)`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; MULT_CLAUSES; COMPLEX_POW_ADD]);; | |
let COMPLEX_POW_1 = prove | |
(`!x. x pow 1 = x`, | |
REWRITE_TAC[num_CONV `1`] THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_RID]);; | |
let COMPLEX_POW_2 = prove | |
(`!x. x pow 2 = x * x`, | |
REWRITE_TAC[num_CONV `2`] THEN REWRITE_TAC[complex_pow; COMPLEX_POW_1]);; | |
let COMPLEX_POW_NEG = prove | |
(`!x n. (--x) pow n = if EVEN n then x pow n else --(x pow n)`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; EVEN] THEN | |
ASM_CASES_TAC `EVEN n` THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_RNEG; COMPLEX_MUL_LNEG; COMPLEX_NEG_NEG]);; | |
let COMPLEX_POW_ONE = prove | |
(`!n. Cx(&1) pow n = Cx(&1)`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID]);; | |
let COMPLEX_POW_MUL = prove | |
(`!x y n. (x * y) pow n = (x pow n) * (y pow n)`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_AC]);; | |
let COMPLEX_POW_II_2 = prove | |
(`ii pow 2 = --Cx(&1)`, | |
REWRITE_TAC[ii; COMPLEX_POW_2; complex_mul; CX_DEF; RE; IM; complex_neg] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let COMPLEX_POW_EQ_0 = prove | |
(`!x n. (x pow n = Cx(&0)) <=> (x = Cx(&0)) /\ ~(n = 0)`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[NOT_SUC; complex_pow; COMPLEX_ENTIRE] THENL | |
[SIMPLE_COMPLEX_ARITH_TAC; CONV_TAC TAUT]);; | |
let COMPLEX_POW_ZERO = prove | |
(`!n. Cx(&0) pow n = if n = 0 then Cx(&1) else Cx(&0)`, | |
INDUCT_TAC THEN REWRITE_TAC[complex_pow; COMPLEX_MUL_LZERO; NOT_SUC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Homomorphic embedding properties for Cx mapping. *) | |
(* ------------------------------------------------------------------------- *) | |
let CX_INJ = prove | |
(`!x y. (Cx(x) = Cx(y)) <=> (x = y)`, | |
REWRITE_TAC[CX_DEF; COMPLEX_EQ; RE; IM]);; | |
let CX_NEG = prove | |
(`!x. Cx(--x) = --(Cx(x))`, | |
REWRITE_TAC[CX_DEF; complex_neg; RE; IM; REAL_NEG_0]);; | |
let CX_ADD = prove | |
(`!x y. Cx(x + y) = Cx(x) + Cx(y)`, | |
REWRITE_TAC[CX_DEF; complex_add; RE; IM; REAL_ADD_LID]);; | |
let CX_SUB = prove | |
(`!x y. Cx(x - y) = Cx(x) - Cx(y)`, | |
REWRITE_TAC[complex_sub; real_sub; CX_ADD; CX_NEG]);; | |
let CX_INV = prove | |
(`!x. Cx(inv x) = inv(Cx x)`, | |
GEN_TAC THEN REWRITE_TAC[CX_DEF; complex_inv; RE; IM; COMPLEX_EQ] THEN | |
ASM_CASES_TAC `x = &0` THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);; | |
let CX_MUL = prove | |
(`!x y. Cx(x * y) = Cx(x) * Cx(y)`, | |
REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN | |
REWRITE_TAC[REAL_SUB_RZERO; REAL_ADD_RID]);; | |
let CX_POW = prove | |
(`!x n. Cx(x pow n) = Cx(x) pow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; real_pow; CX_MUL]);; | |
let CX_DIV = prove | |
(`!x y. Cx(x / y) = Cx(x) / Cx(y)`, | |
REWRITE_TAC[complex_div; real_div; CX_MUL; CX_INV]);; | |
let CX_ABS = prove | |
(`!x. Cx(abs x) = Cx(norm(Cx(x)))`, | |
REWRITE_TAC[CX_DEF; complex_norm; COMPLEX_EQ; RE; IM] THEN | |
REWRITE_TAC[REAL_POW_2; REAL_MUL_LZERO; REAL_ADD_RID] THEN | |
REWRITE_TAC[GSYM REAL_POW_2; POW_2_SQRT_ABS]);; | |
let COMPLEX_NORM_CX = prove | |
(`!x. norm(Cx(x)) = abs(x)`, | |
REWRITE_TAC[GSYM CX_INJ; CX_ABS]);; | |
let DIST_CX = prove | |
(`!x y. dist(Cx x,Cx y) = abs(x - y)`, | |
REWRITE_TAC[dist; GSYM CX_SUB; COMPLEX_NORM_CX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some "linear" things hold for Re and Im too. *) | |
(* ------------------------------------------------------------------------- *) | |
let RE_CX = prove | |
(`!x. Re(Cx x) = x`, | |
REWRITE_TAC[RE; CX_DEF]);; | |
let RE_NEG = prove | |
(`!x. Re(--x) = --Re(x)`, | |
REWRITE_TAC[complex_neg; RE]);; | |
let RE_ADD = prove | |
(`!x y. Re(x + y) = Re(x) + Re(y)`, | |
REWRITE_TAC[complex_add; RE]);; | |
let RE_SUB = prove | |
(`!x y. Re(x - y) = Re(x) - Re(y)`, | |
REWRITE_TAC[complex_sub; real_sub; RE_ADD; RE_NEG]);; | |
let IM_CX = prove | |
(`!x. Im(Cx x) = &0`, | |
REWRITE_TAC[IM; CX_DEF]);; | |
let IM_NEG = prove | |
(`!x. Im(--x) = --Im(x)`, | |
REWRITE_TAC[complex_neg; IM]);; | |
let IM_ADD = prove | |
(`!x y. Im(x + y) = Im(x) + Im(y)`, | |
REWRITE_TAC[complex_add; IM]);; | |
let IM_SUB = prove | |
(`!x y. Im(x - y) = Im(x) - Im(y)`, | |
REWRITE_TAC[complex_sub; real_sub; IM_ADD; IM_NEG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* An "expansion" theorem into the traditional notation. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_EXPAND = prove | |
(`!z. z = Cx(Re z) + ii * Cx(Im z)`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_TRAD = prove | |
(`!x y. complex(x,y) = Cx(x) + ii * Cx(y)`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Real and complex parts of ii and multiples. *) | |
(* ------------------------------------------------------------------------- *) | |
let RE_II = prove | |
(`Re ii = &0`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let IM_II = prove | |
(`Im ii = &1`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let RE_MUL_II = prove | |
(`!z. Re(z * ii) = --(Im z) /\ Re(ii * z) = --(Im z)`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let IM_MUL_II = prove | |
(`!z. Im(z * ii) = Re z /\ Im(ii * z) = Re z`, | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_NORM_II = prove | |
(`norm ii = &1`, | |
REWRITE_TAC[complex_norm; RE_II; IM_II] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SQRT_1]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Limited "multiplicative" theorems for Re and Im. *) | |
(* ------------------------------------------------------------------------- *) | |
let RE_CMUL = prove | |
(`!a z. Re(a % z) = a * Re z`, | |
SIMP_TAC[RE_DEF; VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH]);; | |
let IM_CMUL = prove | |
(`!a z. Im(a % z) = a * Im z`, | |
SIMP_TAC[IM_DEF; VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH]);; | |
let RE_MUL_CX = prove | |
(`!x z. Re(Cx(x) * z) = x * Re z /\ | |
Re(z * Cx(x)) = Re z * x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let IM_MUL_CX = prove | |
(`!x z. Im(Cx(x) * z) = x * Im z /\ | |
Im(z * Cx(x)) = Im z * x`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let RE_DIV_CX = prove | |
(`!z x. Re(z / Cx(x)) = Re(z) / x`, | |
REWRITE_TAC[complex_div; real_div; GSYM CX_INV; RE_MUL_CX]);; | |
let IM_DIV_CX = prove | |
(`!z x. Im(z / Cx(x)) = Im(z) / x`, | |
REWRITE_TAC[complex_div; real_div; GSYM CX_INV; IM_MUL_CX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Syntax constructors etc. for complex constants. *) | |
(* ------------------------------------------------------------------------- *) | |
let is_complex_const = | |
let cx_tm = `Cx` in | |
fun tm -> | |
is_comb tm && | |
let l,r = dest_comb tm in l = cx_tm && is_ratconst r;; | |
let dest_complex_const = | |
let cx_tm = `Cx` in | |
fun tm -> | |
let l,r = dest_comb tm in | |
if l = cx_tm then rat_of_term r | |
else failwith "dest_complex_const";; | |
let mk_complex_const = | |
let cx_tm = `Cx` in | |
fun r -> | |
mk_comb(cx_tm,term_of_rat r);; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversions for arithmetic on complex constants. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_RAT_EQ_CONV = | |
GEN_REWRITE_CONV I [CX_INJ] THENC REAL_RAT_EQ_CONV;; | |
let COMPLEX_RAT_MUL_CONV = | |
GEN_REWRITE_CONV I [GSYM CX_MUL] THENC RAND_CONV REAL_RAT_MUL_CONV;; | |
let COMPLEX_RAT_ADD_CONV = | |
GEN_REWRITE_CONV I [GSYM CX_ADD] THENC RAND_CONV REAL_RAT_ADD_CONV;; | |
let COMPLEX_RAT_POW_CONV = | |
let x_tm = `x:real` | |
and n_tm = `n:num` in | |
let pth = SYM(SPECL [x_tm; n_tm] CX_POW) in | |
fun tm -> | |
let lop,r = dest_comb tm in | |
let op,bod = dest_comb lop in | |
let th1 = INST [rand bod,x_tm; r,n_tm] pth in | |
let tm1,tm2 = dest_comb(concl th1) in | |
if rand tm1 <> tm then failwith "COMPLEX_RAT_POW_CONV" else | |
let tm3,tm4 = dest_comb tm2 in | |
TRANS th1 (AP_TERM tm3 (REAL_RAT_REDUCE_CONV tm4));; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex polynomial normalizer. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_POLY_CLAUSES = prove | |
(`(!x y z. x + (y + z) = (x + y) + z) /\ | |
(!x y. x + y = y + x) /\ | |
(!x. Cx(&0) + x = x) /\ | |
(!x y z. x * (y * z) = (x * y) * z) /\ | |
(!x y. x * y = y * x) /\ | |
(!x. Cx(&1) * x = x) /\ | |
(!x. Cx(&0) * x = Cx(&0)) /\ | |
(!x y z. x * (y + z) = x * y + x * z) /\ | |
(!x. x pow 0 = Cx(&1)) /\ | |
(!x n. x pow (SUC n) = x * x pow n)`, | |
REWRITE_TAC[complex_pow] THEN SIMPLE_COMPLEX_ARITH_TAC) | |
and COMPLEX_POLY_NEG_CLAUSES = prove | |
(`(!x. --x = Cx(-- &1) * x) /\ | |
(!x y. x - y = x + Cx(-- &1) * y)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_POLY_NEG_CONV,COMPLEX_POLY_ADD_CONV,COMPLEX_POLY_SUB_CONV, | |
COMPLEX_POLY_MUL_CONV,COMPLEX_POLY_POW_CONV,COMPLEX_POLY_CONV = | |
SEMIRING_NORMALIZERS_CONV COMPLEX_POLY_CLAUSES COMPLEX_POLY_NEG_CLAUSES | |
(is_complex_const, | |
COMPLEX_RAT_ADD_CONV,COMPLEX_RAT_MUL_CONV,COMPLEX_RAT_POW_CONV) | |
(<);; | |
(* ------------------------------------------------------------------------- *) | |
(* Extend it to handle "inv" and division, by constants after normalization. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_RAT_INV_CONV = | |
REWR_CONV(GSYM CX_INV) THENC RAND_CONV REAL_RAT_INV_CONV;; | |
let COMPLEX_POLY_CONV = | |
let neg_tm = `(--):complex->complex` | |
and inv_tm = `inv:complex->complex` | |
and add_tm = `(+):complex->complex->complex` | |
and sub_tm = `(-):complex->complex->complex` | |
and mul_tm = `(*):complex->complex->complex` | |
and div_tm = `(/):complex->complex->complex` | |
and pow_tm = `(pow):complex->num->complex` | |
and div_conv = REWR_CONV complex_div in | |
let rec COMPLEX_POLY_CONV tm = | |
if not(is_comb tm) || is_ratconst tm then REFL tm else | |
let lop,r = dest_comb tm in | |
if lop = neg_tm then | |
let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in | |
TRANS th1 (COMPLEX_POLY_NEG_CONV (rand(concl th1))) | |
else if lop = inv_tm then | |
let th1 = AP_TERM lop (COMPLEX_POLY_CONV r) in | |
TRANS th1 (TRY_CONV COMPLEX_RAT_INV_CONV (rand(concl th1))) | |
else if not(is_comb lop) then REFL tm else | |
let op,l = dest_comb lop in | |
if op = pow_tm then | |
let th1 = AP_THM (AP_TERM op (COMPLEX_POLY_CONV l)) r in | |
TRANS th1 (TRY_CONV COMPLEX_POLY_POW_CONV (rand(concl th1))) | |
else if op = add_tm || op = mul_tm || op = sub_tm then | |
let th1 = MK_COMB(AP_TERM op (COMPLEX_POLY_CONV l), | |
COMPLEX_POLY_CONV r) in | |
let fn = if op = add_tm then COMPLEX_POLY_ADD_CONV | |
else if op = mul_tm then COMPLEX_POLY_MUL_CONV | |
else COMPLEX_POLY_SUB_CONV in | |
TRANS th1 (fn (rand(concl th1))) | |
else if op = div_tm then | |
let th1 = div_conv tm in | |
TRANS th1 (COMPLEX_POLY_CONV (rand(concl th1))) | |
else REFL tm in | |
COMPLEX_POLY_CONV;; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex number version of usual ring procedure. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_RING,complex_ideal_cofactors = | |
let COMPLEX_INTEGRAL = prove | |
(`(!x. Cx(&0) * x = Cx(&0)) /\ | |
(!x y z. (x + y = x + z) <=> (y = z)) /\ | |
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))`, | |
REWRITE_TAC[COMPLEX_ENTIRE; SIMPLE_COMPLEX_ARITH | |
`(w * y + x * z = w * z + x * y) <=> | |
(w - x) * (y - z) = Cx(&0)`] THEN | |
SIMPLE_COMPLEX_ARITH_TAC) | |
and COMPLEX_RABINOWITSCH = prove | |
(`!x y:complex. ~(x = y) <=> ?z. (x - y) * z = Cx(&1)`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_SUB_0] THEN | |
MESON_TAC[COMPLEX_MUL_RINV; COMPLEX_MUL_LZERO; | |
SIMPLE_COMPLEX_ARITH `~(Cx(&1) = Cx(&0))`]) | |
and COMPLEX_IIII = prove | |
(`ii * ii + Cx(&1) = Cx(&0)`, | |
REWRITE_TAC[ii; CX_DEF; complex_mul; complex_add; RE; IM] THEN | |
AP_TERM_TAC THEN BINOP_TAC THEN REAL_ARITH_TAC) in | |
let ring,ideal = | |
RING_AND_IDEAL_CONV | |
(dest_complex_const,mk_complex_const,COMPLEX_RAT_EQ_CONV, | |
`(--):complex->complex`,`(+):complex->complex->complex`, | |
`(-):complex->complex->complex`,`(inv):complex->complex`, | |
`(*):complex->complex->complex`,`(/):complex->complex->complex`, | |
`(pow):complex->num->complex`, | |
COMPLEX_INTEGRAL,COMPLEX_RABINOWITSCH,COMPLEX_POLY_CONV) | |
and ii_tm = `ii` and iiii_tm = concl COMPLEX_IIII in | |
(fun tm -> if free_in ii_tm tm then | |
MP (ring (mk_imp(iiii_tm,tm))) COMPLEX_IIII | |
else ring tm), | |
ideal;; | |
(* ------------------------------------------------------------------------- *) | |
(* Most basic properties of inverses. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_INV_0 = prove | |
(`inv(Cx(&0)) = Cx(&0)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_INV_1 = prove | |
(`inv(Cx(&1)) = Cx(&1)`, | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_INV_MUL = prove | |
(`!w z. inv(w * z) = inv(w) * inv(z)`, | |
REPEAT GEN_TAC THEN | |
MAP_EVERY ASM_CASES_TAC [`w = Cx(&0)`; `z = Cx(&0)`] THEN | |
ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN | |
REWRITE_TAC[complex_mul; complex_inv; RE; IM; COMPLEX_EQ; CX_DEF] THEN | |
REWRITE_TAC[GSYM REAL_SOS_EQ_0] THEN CONV_TAC REAL_FIELD);; | |
let COMPLEX_POW_INV = prove | |
(`!x n. (inv x) pow n = inv(x pow n)`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; COMPLEX_INV_1; COMPLEX_INV_MUL]);; | |
let COMPLEX_INV_INV = prove | |
(`!x:complex. inv(inv x) = x`, | |
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN | |
POP_ASSUM MP_TAC THEN | |
MAP_EVERY (fun t -> MP_TAC(SPEC t COMPLEX_MUL_RINV)) | |
[`x:complex`; `inv(x):complex`] THEN | |
CONV_TAC COMPLEX_RING);; | |
let COMPLEX_INV_DIV = prove | |
(`!w z:complex. inv(w / z) = z / w`, | |
REWRITE_TAC[complex_div; COMPLEX_INV_MUL; COMPLEX_INV_INV] THEN | |
REWRITE_TAC[COMPLEX_MUL_AC]);; | |
let COMPLEX_EQ_INV2 = prove | |
(`!w z:complex. inv w = inv z <=> w = z`, | |
MESON_TAC[COMPLEX_INV_INV]);; | |
let SGN_RE_COMPLEX_INV = prove | |
(`!z. real_sgn(Re(inv z)) = real_sgn(Re z)`, | |
GEN_TAC THEN ASM_CASES_TAC `z = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN | |
REWRITE_TAC[RE; complex_inv; REAL_SGN_DIV] THEN | |
SUBGOAL_THEN `real_sgn (Re z pow 2 + Im z pow 2) = &1` | |
(fun th -> REWRITE_TAC[REAL_DIV_1; th]) THEN | |
REWRITE_TAC[REAL_SGN_EQ; real_gt; GSYM COMPLEX_SQNORM] THEN | |
ASM_SIMP_TAC[REAL_POW_LT; NORM_POS_LT; COMPLEX_VEC_0]);; | |
let RE_COMPLEX_INV_GT_0 = prove | |
(`!z. &0 < Re(inv z) <=> &0 < Re z`, | |
REWRITE_TAC[GSYM real_gt; GSYM REAL_SGN_EQ; SGN_RE_COMPLEX_INV]);; | |
let RE_COMPLEX_INV_GE_0 = prove | |
(`!z. &0 <= Re(inv z) <=> &0 <= Re z`, | |
REWRITE_TAC[GSYM REAL_NOT_LT] THEN | |
REWRITE_TAC[GSYM REAL_SGN_EQ; SGN_RE_COMPLEX_INV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And also field procedure. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_EQ_MUL_LCANCEL = prove | |
(`!x y z. (x * y = x * z) <=> (x = Cx(&0)) \/ (y = z)`, | |
CONV_TAC COMPLEX_RING);; | |
let COMPLEX_EQ_MUL_RCANCEL = prove | |
(`!x y z. (x * z = y * z) <=> (x = y) \/ (z = Cx(&0))`, | |
CONV_TAC COMPLEX_RING);; | |
let COMPLEX_FIELD = | |
let norm_net = | |
itlist (net_of_thm false o SPEC_ALL) | |
[FORALL_SIMP; EXISTS_SIMP; complex_div; COMPLEX_INV_INV; COMPLEX_INV_MUL; | |
COMPLEX_POW_ADD] | |
(net_of_conv | |
`inv((x:complex) pow n)` | |
(REWR_CONV(GSYM COMPLEX_POW_INV) o check (is_numeral o rand o rand)) | |
empty_net) | |
and easy_nz_conv = | |
LAND_CONV | |
(GEN_REWRITE_CONV TRY_CONV[MESON[COMPLEX_POW_EQ_0; REAL_OF_NUM_EQ; CX_INJ] | |
`~(x pow n = Cx(&0)) <=> | |
~((x:complex) = Cx(&0)) \/ | |
(Cx(&n) = Cx(&0)) \/ | |
~(x pow n = Cx(&0))`] THENC | |
TOP_DEPTH_CONV(REWR_CONV CX_INJ THENC REAL_RAT_EQ_CONV)) THENC | |
GEN_REWRITE_CONV TRY_CONV [TAUT `(T ==> p) <=> p`] in | |
let prenex_conv = | |
TOP_DEPTH_CONV BETA_CONV THENC | |
NUM_REDUCE_CONV THENC | |
TOP_DEPTH_CONV(REWRITES_CONV norm_net) THENC | |
NNFC_CONV THENC DEPTH_BINOP_CONV `(/\)` CONDS_CELIM_CONV THENC | |
PRENEX_CONV | |
and setup_conv = NNF_CONV THENC WEAK_CNF_CONV THENC CONJ_CANON_CONV | |
and is_inv = | |
let inv_tm = `inv:complex->complex` | |
and is_div = is_binop `(/):complex->complex->complex` in | |
fun tm -> (is_div tm || (is_comb tm && rator tm = inv_tm)) && | |
not(is_ratconst(rand tm)) in | |
let BASIC_COMPLEX_FIELD tm = | |
let is_freeinv t = is_inv t && free_in t tm in | |
let itms = setify(map rand (find_terms is_freeinv tm)) in | |
let hyps = map | |
(fun t -> CONV_RULE easy_nz_conv (SPEC t COMPLEX_MUL_RINV)) itms in | |
let tm' = itlist (fun th t -> mk_imp(concl th,t)) hyps tm in | |
let th1 = setup_conv tm' in | |
let cjs = conjuncts(rand(concl th1)) in | |
let ths = map COMPLEX_RING cjs in | |
let th2 = EQ_MP (SYM th1) (end_itlist CONJ ths) in | |
rev_itlist (C MP) hyps th2 in | |
fun tm -> | |
let th0 = prenex_conv tm in | |
let tm0 = rand(concl th0) in | |
let avs,bod = strip_forall tm0 in | |
let th1 = setup_conv bod in | |
let ths = map BASIC_COMPLEX_FIELD (conjuncts(rand(concl th1))) in | |
EQ_MP (SYM th0) (GENL avs (EQ_MP (SYM th1) (end_itlist CONJ ths)));; | |
(* ------------------------------------------------------------------------- *) | |
(* More trivial lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_DIV_1 = prove | |
(`!z. z / Cx(&1) = z`, | |
CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_DIV_LMUL = prove | |
(`!x y. ~(y = Cx(&0)) ==> y * x / y = x`, | |
CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_DIV_RMUL = prove | |
(`!x y. ~(y = Cx(&0)) ==> x / y * y = x`, | |
CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_INV_II = prove | |
(`inv ii = --ii`, | |
CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_INV_EQ_0 = prove | |
(`!x. inv x = Cx(&0) <=> x = Cx(&0)`, | |
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN POP_ASSUM MP_TAC THEN | |
CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_INV_NEG = prove | |
(`!x:complex. inv(--x) = --(inv x)`, | |
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_INV_0; COMPLEX_NEG_0] THEN | |
POP_ASSUM MP_TAC THEN CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_NEG_INV = prove | |
(`!x:complex. --(inv x) = inv(--x)`, | |
REWRITE_TAC[COMPLEX_INV_NEG]);; | |
let COMPLEX_INV_EQ_1 = prove | |
(`!x. inv x = Cx(&1) <=> x = Cx(&1)`, | |
GEN_TAC THEN ASM_CASES_TAC `x = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_INV_0] THEN POP_ASSUM MP_TAC THEN | |
CONV_TAC COMPLEX_FIELD);; | |
let COMPLEX_DIV_EQ_0 = prove | |
(`!w z. w / z = Cx(&0) <=> w = Cx(&0) \/ z = Cx(&0)`, | |
REWRITE_TAC[complex_div; COMPLEX_INV_EQ_0; COMPLEX_ENTIRE]);; | |
let COMPLEX_POW_DIV = prove | |
(`!x y n. (x / y) pow n = (x pow n) / (y pow n)`, | |
REWRITE_TAC[complex_div; COMPLEX_POW_MUL; COMPLEX_POW_INV]);; | |
let COMPLEX_DIV_POW = prove | |
(`!x:complex n k:num. | |
~(x= Cx(&0)) /\ k <= n /\ ~(k = 0) | |
==> x pow (n - k) = x pow n / x pow k`, | |
REPEAT STRIP_TAC THEN SUBGOAL_THEN `x:complex pow (n - k) * x pow k = | |
x pow n / x pow k * x pow k` (fun th-> ASM_MESON_TAC | |
[th;COMPLEX_POW_EQ_0;COMPLEX_EQ_MUL_RCANCEL]) | |
THEN ASM_SIMP_TAC[GSYM COMPLEX_POW_ADD;SUB_ADD] THEN | |
MP_TAC (MESON [COMPLEX_POW_EQ_0;ASSUME `~(k = 0)`; ASSUME `~(x = Cx(&0))`] | |
`~(x pow k = Cx(&0))`) THEN ASM_SIMP_TAC[COMPLEX_DIV_RMUL]);; | |
let COMPLEX_DIV_POW2 = prove | |
(`!z m n. ~(z = Cx(&0)) | |
==> z pow m / z pow n = | |
if n <= m then z pow (m - n) else inv(z pow (n - m))`, | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[COMPLEX_POW_EQ_0; COMPLEX_FIELD | |
`~(b = Cx(&0)) /\ ~(c = Cx(&0)) | |
==> (a / b = inv c <=> a * c = b)`] THEN | |
ASM_SIMP_TAC[COMPLEX_POW_EQ_0; COMPLEX_FIELD | |
`~(b = Cx(&0)) ==> (a / b = c <=> b * c = a)`] THEN | |
REWRITE_TAC[GSYM COMPLEX_POW_ADD] THEN AP_TERM_TAC THEN ASM_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Norms (aka "moduli"). *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_NORM_ZERO = prove | |
(`!z. (norm z = &0) <=> (z = Cx(&0))`, | |
REWRITE_TAC[NORM_EQ_0; COMPLEX_VEC_0]);; | |
let COMPLEX_NORM_NUM = prove | |
(`!n. norm(Cx(&n)) = &n`, | |
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM]);; | |
let COMPLEX_NORM_0 = prove | |
(`norm(Cx(&0)) = &0`, | |
MESON_TAC[COMPLEX_NORM_ZERO]);; | |
let COMPLEX_NORM_NZ = prove | |
(`!z. &0 < norm(z) <=> ~(z = Cx(&0))`, | |
REWRITE_TAC[NORM_POS_LT; COMPLEX_VEC_0]);; | |
let COMPLEX_NORM_MUL = prove | |
(`!w z. norm(w * z) = norm(w) * norm(z)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[complex_norm; complex_mul; RE; IM] THEN | |
SIMP_TAC[GSYM SQRT_MUL; REAL_POW_2; REAL_LE_ADD; REAL_LE_SQUARE] THEN | |
AP_TERM_TAC THEN REAL_ARITH_TAC);; | |
let COMPLEX_NORM_POW = prove | |
(`!z n. norm(z pow n) = norm(z) pow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; real_pow; COMPLEX_NORM_NUM; COMPLEX_NORM_MUL]);; | |
let COMPLEX_NORM_INV = prove | |
(`!z. norm(inv z) = inv(norm z)`, | |
GEN_TAC THEN REWRITE_TAC[complex_norm; complex_inv; RE; IM] THEN | |
REWRITE_TAC[REAL_POW_2; real_div] THEN | |
REWRITE_TAC[REAL_ARITH `(r * d) * r * d + (--i * d) * --i * d = | |
(r * r + i * i) * d * d:real`] THEN | |
ASM_CASES_TAC `Re z * Re z + Im z * Im z = &0` THENL | |
[ASM_REWRITE_TAC[REAL_INV_0; SQRT_0; REAL_MUL_LZERO]; ALL_TAC] THEN | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MUL_RINV_UNIQ THEN | |
SIMP_TAC[GSYM SQRT_MUL; REAL_LE_MUL; REAL_LE_INV_EQ; REAL_LE_ADD; | |
REAL_LE_SQUARE] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`a * a * b * b:real = (a * b) * (a * b)`] THEN | |
ASM_SIMP_TAC[REAL_MUL_RINV; REAL_MUL_LID; SQRT_1]);; | |
let COMPLEX_NORM_DIV = prove | |
(`!w z. norm(w / z) = norm(w) / norm(z)`, | |
REWRITE_TAC[complex_div; real_div; COMPLEX_NORM_INV; COMPLEX_NORM_MUL]);; | |
let COMPLEX_NORM_TRIANGLE_SUB = prove | |
(`!w z. norm(w) <= norm(w + z) + norm(z)`, | |
MESON_TAC[NORM_TRIANGLE; NORM_NEG; COMPLEX_ADD_ASSOC; | |
COMPLEX_ADD_RINV; COMPLEX_ADD_RID]);; | |
let COMPLEX_NORM_ABS_NORM = prove | |
(`!w z. abs(norm w - norm z) <= norm(w - z)`, | |
REPEAT GEN_TAC THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`a - b <= x /\ b - a <= x ==> abs(a - b) <= x:real`) THEN | |
MESON_TAC[COMPLEX_NEG_SUB; NORM_NEG; REAL_LE_SUB_RADD; complex_sub; | |
COMPLEX_NORM_TRIANGLE_SUB]);; | |
let COMPLEX_POW_EQ_1 = prove | |
(`!z n. z pow n = Cx(&1) ==> norm(z) = &1 \/ n = 0`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o AP_TERM `norm:complex->real`) THEN | |
SIMP_TAC[COMPLEX_NORM_POW; COMPLEX_NORM_CX; REAL_POW_EQ_1; REAL_ABS_NUM] THEN | |
SIMP_TAC[REAL_ABS_NORM] THEN CONV_TAC TAUT);; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex conjugate. *) | |
(* ------------------------------------------------------------------------- *) | |
let cnj = new_definition | |
`cnj(z) = complex(Re(z),--(Im(z)))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conjugation is an automorphism. *) | |
(* ------------------------------------------------------------------------- *) | |
let CNJ_INJ = prove | |
(`!w z. (cnj(w) = cnj(z)) <=> (w = z)`, | |
REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_EQ_NEG2]);; | |
let CNJ_CNJ = prove | |
(`!z. cnj(cnj z) = z`, | |
REWRITE_TAC[cnj; COMPLEX_EQ; RE; IM; REAL_NEG_NEG]);; | |
let CNJ_CX = prove | |
(`!x. cnj(Cx x) = Cx x`, | |
REWRITE_TAC[cnj; COMPLEX_EQ; CX_DEF; REAL_NEG_0; RE; IM]);; | |
let COMPLEX_NORM_CNJ = prove | |
(`!z. norm(cnj z) = norm(z)`, | |
REWRITE_TAC[complex_norm; cnj; REAL_POW_2] THEN | |
REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_RNEG; RE; IM; REAL_NEG_NEG]);; | |
let CNJ_NEG = prove | |
(`!z. cnj(--z) = --(cnj z)`, | |
REWRITE_TAC[cnj; complex_neg; COMPLEX_EQ; RE; IM]);; | |
let CNJ_INV = prove | |
(`!z. cnj(inv z) = inv(cnj z)`, | |
REWRITE_TAC[cnj; complex_inv; COMPLEX_EQ; RE; IM] THEN | |
REWRITE_TAC[real_div; REAL_NEG_NEG; REAL_POW_2; | |
REAL_MUL_LNEG; REAL_MUL_RNEG]);; | |
let CNJ_ADD = prove | |
(`!w z. cnj(w + z) = cnj(w) + cnj(z)`, | |
REWRITE_TAC[cnj; complex_add; COMPLEX_EQ; RE; IM] THEN | |
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);; | |
let CNJ_SUB = prove | |
(`!w z. cnj(w - z) = cnj(w) - cnj(z)`, | |
REWRITE_TAC[complex_sub; CNJ_ADD; CNJ_NEG]);; | |
let CNJ_MUL = prove | |
(`!w z. cnj(w * z) = cnj(w) * cnj(z)`, | |
REWRITE_TAC[cnj; complex_mul; COMPLEX_EQ; RE; IM] THEN | |
REWRITE_TAC[REAL_NEG_ADD; REAL_MUL_LNEG; REAL_MUL_RNEG; REAL_NEG_NEG]);; | |
let CNJ_DIV = prove | |
(`!w z. cnj(w / z) = cnj(w) / cnj(z)`, | |
REWRITE_TAC[complex_div; CNJ_MUL; CNJ_INV]);; | |
let CNJ_POW = prove | |
(`!z n. cnj(z pow n) = cnj(z) pow n`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_REWRITE_TAC[complex_pow; CNJ_MUL; CNJ_CX]);; | |
let RE_CNJ = prove | |
(`!z. Re(cnj z) = Re z`, | |
REWRITE_TAC[cnj; RE]);; | |
let IM_CNJ = prove | |
(`!z. Im(cnj z) = --Im z`, | |
REWRITE_TAC[cnj; IM]);; | |
let CNJ_EQ_CX = prove | |
(`!x z. cnj z = Cx x <=> z = Cx x`, | |
REWRITE_TAC[COMPLEX_EQ; RE_CNJ; IM_CNJ; RE_CX; IM_CX] THEN | |
CONV_TAC REAL_RING);; | |
let CNJ_EQ_0 = prove | |
(`!z. cnj z = Cx(&0) <=> z = Cx(&0)`, | |
REWRITE_TAC[CNJ_EQ_CX]);; | |
let COMPLEX_ADD_CNJ = prove | |
(`(!z. z + cnj z = Cx(&2 * Re z)) /\ (!z. cnj z + z = Cx(&2 * Re z))`, | |
REWRITE_TAC[COMPLEX_EQ; RE_CX; IM_CX; RE_ADD; IM_ADD; RE_CNJ; IM_CNJ] THEN | |
REAL_ARITH_TAC);; | |
let CNJ_II = prove | |
(`cnj ii = --ii`, | |
REWRITE_TAC[cnj; ii; RE; IM; complex_neg; REAL_NEG_0]);; | |
let CX_RE_CNJ = prove | |
(`!z. Cx(Re z) = (z + cnj z) / Cx(&2)`, | |
REWRITE_TAC[COMPLEX_EQ; RE_DIV_CX; IM_DIV_CX; RE_CX; IM_CX] THEN | |
REWRITE_TAC[RE_ADD; IM_ADD; RE_CNJ; IM_CNJ] THEN REAL_ARITH_TAC);; | |
let CX_IM_CNJ = prove | |
(`!z. Cx(Im z) = --ii * (z - cnj z) / Cx(&2)`, | |
REWRITE_TAC[COMPLEX_EQ; RE_DIV_CX; IM_DIV_CX; RE_CX; IM_CX; | |
COMPLEX_MUL_LNEG; RE_NEG; IM_NEG; RE_MUL_II; IM_MUL_II] THEN | |
REWRITE_TAC[RE_SUB; IM_SUB; RE_CNJ; IM_CNJ] THEN REAL_ARITH_TAC);; | |
let FORALL_CNJ = prove | |
(`(!z. P(cnj z)) <=> (!z. P z)`, | |
MESON_TAC[CNJ_CNJ]);; | |
let EXISTS_CNJ = prove | |
(`(?z. P(cnj z)) <=> (?z. P z)`, | |
MESON_TAC[CNJ_CNJ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Slightly ad hoc theorems relating multiplication, inverse and conjugation *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_NORM_POW_2 = prove | |
(`!z. Cx(norm z) pow 2 = z * cnj z`, | |
GEN_TAC THEN REWRITE_TAC [GSYM CX_POW; COMPLEX_SQNORM] THEN | |
REWRITE_TAC [cnj; complex_mul; CX_DEF; RE; IM; COMPLEX_EQ] THEN | |
CONV_TAC REAL_RING);; | |
let COMPLEX_MUL_CNJ = prove | |
(`!z. cnj z * z = Cx(norm(z)) pow 2 /\ z * cnj z = Cx(norm(z)) pow 2`, | |
GEN_TAC THEN REWRITE_TAC[COMPLEX_MUL_SYM] THEN | |
REWRITE_TAC[cnj; complex_mul; RE; IM; GSYM CX_POW; COMPLEX_SQNORM] THEN | |
REWRITE_TAC[CX_DEF] THEN AP_TERM_TAC THEN BINOP_TAC THEN | |
CONV_TAC REAL_RING);; | |
let COMPLEX_INV_CNJ = prove | |
(`!z. inv z = cnj z / Cx(norm z) pow 2`, | |
GEN_TAC THEN ASM_CASES_TAC `z = Cx(&0)` THENL | |
[ASM_REWRITE_TAC[CNJ_CX; complex_div; COMPLEX_INV_0; COMPLEX_MUL_LZERO]; | |
MATCH_MP_TAC(COMPLEX_FIELD | |
`x * y = z /\ ~(x = Cx(&0)) /\ ~(z = Cx(&0)) ==> inv x = y / z`) THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_CNJ; GSYM CX_POW; CX_INJ; REAL_POW_EQ_0] THEN | |
ASM_REWRITE_TAC[COMPLEX_NORM_ZERO; ARITH]]);; | |
let COMPLEX_DIV_CNJ = prove | |
(`!a b. a / b = (a * cnj b) / Cx(norm b) pow 2`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[complex_div; GSYM COMPLEX_MUL_ASSOC] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC LAND_CONV [COMPLEX_INV_CNJ] THEN | |
REWRITE_TAC[complex_div]);; | |
let RE_COMPLEX_DIV_EQ_0 = prove | |
(`!a b. Re(a / b) = &0 <=> Re(a * cnj b) = &0`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN | |
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN | |
REWRITE_TAC[RE_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH; | |
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN | |
ASM_CASES_TAC `b = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; RE_CX]);; | |
let IM_COMPLEX_DIV_EQ_0 = prove | |
(`!a b. Im(a / b) = &0 <=> Im(a * cnj b) = &0`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN | |
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN | |
REWRITE_TAC[IM_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH; | |
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN | |
ASM_CASES_TAC `b = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; IM_CX]);; | |
let RE_COMPLEX_DIV_GT_0 = prove | |
(`!a b. &0 < Re(a / b) <=> &0 < Re(a * cnj b)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN | |
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN | |
REWRITE_TAC[RE_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH; | |
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN | |
ASM_CASES_TAC `b = Cx(&0)` THEN | |
ASM_REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; RE_CX; REAL_MUL_LZERO] THEN | |
REWRITE_TAC[REAL_ARITH `&0 < a * x <=> &0 * x < a * x`] THEN | |
ASM_SIMP_TAC[REAL_LT_RMUL_EQ; REAL_LT_INV_EQ; REAL_POW_LT; ARITH; | |
COMPLEX_NORM_NZ]);; | |
let IM_COMPLEX_DIV_GT_0 = prove | |
(`!a b. &0 < Im(a / b) <=> &0 < Im(a * cnj b)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN | |
REWRITE_TAC[complex_div; GSYM CX_POW; GSYM CX_INV] THEN | |
REWRITE_TAC[IM_MUL_CX; REAL_INV_EQ_0; REAL_POW_EQ_0; ARITH; | |
REAL_ENTIRE; COMPLEX_NORM_ZERO] THEN | |
ASM_CASES_TAC `b = Cx(&0)` THEN | |
ASM_REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; IM_CX; REAL_MUL_LZERO] THEN | |
REWRITE_TAC[REAL_ARITH `&0 < a * x <=> &0 * x < a * x`] THEN | |
ASM_SIMP_TAC[REAL_LT_RMUL_EQ; REAL_LT_INV_EQ; REAL_POW_LT; ARITH; | |
COMPLEX_NORM_NZ]);; | |
let RE_COMPLEX_DIV_GE_0 = prove | |
(`!a b. &0 <= Re(a / b) <=> &0 <= Re(a * cnj b)`, | |
REWRITE_TAC[REAL_ARITH `&0 <= x <=> &0 < x \/ x = &0`] THEN | |
REWRITE_TAC[RE_COMPLEX_DIV_GT_0; RE_COMPLEX_DIV_EQ_0]);; | |
let IM_COMPLEX_DIV_GE_0 = prove | |
(`!a b. &0 <= Im(a / b) <=> &0 <= Im(a * cnj b)`, | |
REWRITE_TAC[REAL_ARITH `&0 <= x <=> &0 < x \/ x = &0`] THEN | |
REWRITE_TAC[IM_COMPLEX_DIV_GT_0; IM_COMPLEX_DIV_EQ_0]);; | |
let RE_COMPLEX_DIV_LE_0 = prove | |
(`!a b. Re(a / b) <= &0 <=> Re(a * cnj b) <= &0`, | |
REWRITE_TAC[GSYM REAL_NOT_LT; RE_COMPLEX_DIV_GT_0]);; | |
let IM_COMPLEX_DIV_LE_0 = prove | |
(`!a b. Im(a / b) <= &0 <=> Im(a * cnj b) <= &0`, | |
REWRITE_TAC[GSYM REAL_NOT_LT; IM_COMPLEX_DIV_GT_0]);; | |
let RE_COMPLEX_DIV_LT_0 = prove | |
(`!a b. Re(a / b) < &0 <=> Re(a * cnj b) < &0`, | |
REWRITE_TAC[GSYM REAL_NOT_LE; RE_COMPLEX_DIV_GE_0]);; | |
let IM_COMPLEX_DIV_LT_0 = prove | |
(`!a b. Im(a / b) < &0 <=> Im(a * cnj b) < &0`, | |
REWRITE_TAC[GSYM REAL_NOT_LE; IM_COMPLEX_DIV_GE_0]);; | |
let IM_COMPLEX_INV_GE_0 = prove | |
(`!z. &0 <= Im(inv z) <=> Im(z) <= &0`, | |
GEN_TAC THEN MP_TAC(ISPECL [`Cx(&1)`; `z:complex`] IM_COMPLEX_DIV_GE_0) THEN | |
REWRITE_TAC[complex_div; COMPLEX_MUL_LID; IM_CNJ] THEN REAL_ARITH_TAC);; | |
let IM_COMPLEX_INV_LE_0 = prove | |
(`!z. Im(inv z) <= &0 <=> &0 <= Im(z)`, | |
MESON_TAC[IM_COMPLEX_INV_GE_0; COMPLEX_INV_INV]);; | |
let IM_COMPLEX_INV_GT_0 = prove | |
(`!z. &0 < Im(inv z) <=> Im(z) < &0`, | |
REWRITE_TAC[REAL_ARITH `&0 < a <=> ~(a <= &0)`; IM_COMPLEX_INV_LE_0] THEN | |
REAL_ARITH_TAC);; | |
let IM_COMPLEX_INV_LT_0 = prove | |
(`!z. Im(inv z) < &0 <=> &0 < Im(z)`, | |
REWRITE_TAC[REAL_ARITH `a < &0 <=> ~(&0 <= a)`; IM_COMPLEX_INV_GE_0] THEN | |
REAL_ARITH_TAC);; | |
let IM_COMPLEX_INV_EQ_0 = prove | |
(`!z. Im(inv z) = &0 <=> Im(z) = &0`, | |
SIMP_TAC[GSYM REAL_LE_ANTISYM; IM_COMPLEX_INV_LE_0; IM_COMPLEX_INV_GE_0] THEN | |
REAL_ARITH_TAC);; | |
let REAL_SGN_RE_COMPLEX_DIV = prove | |
(`!w z. real_sgn(Re(w / z)) = real_sgn(Re(w * cnj z))`, | |
REWRITE_TAC[real_sgn; RE_COMPLEX_DIV_GT_0; RE_COMPLEX_DIV_GE_0; | |
REAL_ARITH `x < &0 <=> ~(&0 <= x)`]);; | |
let REAL_SGN_IM_COMPLEX_DIV = prove | |
(`!w z. real_sgn(Im(w / z)) = real_sgn(Im(w * cnj z))`, | |
REWRITE_TAC[real_sgn; IM_COMPLEX_DIV_GT_0; IM_COMPLEX_DIV_GE_0; | |
REAL_ARITH `x < &0 <=> ~(&0 <= x)`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Norm versus components for complex numbers. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_NORM_GE_RE_IM = prove | |
(`!z. abs(Re(z)) <= norm(z) /\ abs(Im(z)) <= norm(z)`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN | |
REWRITE_TAC[complex_norm] THEN | |
CONJ_TAC THEN | |
MATCH_MP_TAC SQRT_MONO_LE THEN | |
ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_ADDL; REAL_POW_2; REAL_LE_SQUARE]);; | |
let COMPLEX_NORM_LE_RE_IM = prove | |
(`!z. norm(z) <= abs(Re z) + abs(Im z)`, | |
GEN_TAC THEN MP_TAC(ISPEC `z:complex` NORM_LE_L1) THEN | |
REWRITE_TAC[DIMINDEX_2; SUM_2; RE_DEF; IM_DEF]);; | |
let COMPLEX_L1_LE_NORM = prove | |
(`!z. sqrt(&2) / &2 * (abs(Re z) + abs(Im z)) <= norm z`, | |
GEN_TAC THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `sqrt(&2)` THEN | |
SIMP_TAC[REAL_ARITH `x * x / &2 * y = (x pow 2) / &2 * y`; | |
SQRT_POW_2; REAL_POS; SQRT_POS_LT; REAL_OF_NUM_LT; ARITH] THEN | |
MP_TAC(ISPEC `z:complex` L1_LE_NORM) THEN | |
REWRITE_TAC[DIMINDEX_2; SUM_2; RE_DEF; IM_DEF] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex square roots. *) | |
(* ------------------------------------------------------------------------- *) | |
let csqrt = new_definition | |
`csqrt(z) = if Im(z) = &0 then | |
if &0 <= Re(z) then complex(sqrt(Re(z)),&0) | |
else complex(&0,sqrt(--Re(z))) | |
else complex(sqrt((norm(z) + Re(z)) / &2), | |
(Im(z) / abs(Im(z))) * | |
sqrt((norm(z) - Re(z)) / &2))`;; | |
let CSQRT = prove | |
(`!z. csqrt(z) pow 2 = z`, | |
GEN_TAC THEN REWRITE_TAC[COMPLEX_POW_2; csqrt] THEN COND_CASES_TAC THENL | |
[COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[CX_DEF; complex_mul; RE; IM; REAL_MUL_RZERO; REAL_MUL_LZERO; | |
REAL_SUB_LZERO; REAL_SUB_RZERO; REAL_ADD_LID; COMPLEX_EQ] THEN | |
REWRITE_TAC[REAL_NEG_EQ; GSYM REAL_POW_2] THEN | |
ASM_SIMP_TAC[SQRT_POW_2; REAL_ARITH `~(&0 <= x) ==> &0 <= --x`]; | |
ALL_TAC] THEN | |
REWRITE_TAC[complex_mul; RE; IM] THEN | |
ONCE_REWRITE_TAC[REAL_ARITH | |
`(s * s - (i * s') * (i * s') = s * s - (i * i) * (s' * s')) /\ | |
(s * i * s' + (i * s')* s = &2 * i * s * s')`] THEN | |
REWRITE_TAC[GSYM REAL_POW_2] THEN | |
SUBGOAL_THEN `&0 <= norm(z) + Re(z) /\ &0 <= norm(z) - Re(z)` | |
STRIP_ASSUME_TAC THENL | |
[MP_TAC(SPEC `z:complex` COMPLEX_NORM_GE_RE_IM) THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; GSYM SQRT_MUL; SQRT_POW_2] THEN | |
REWRITE_TAC[COMPLEX_EQ; RE; IM] THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[REAL_POW_DIV; REAL_POW2_ABS; | |
REAL_POW_EQ_0; REAL_DIV_REFL] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LID; GSYM REAL_SUB_RDISTRIB] THEN | |
REWRITE_TAC[REAL_ARITH `(m + r) - (m - r) = r * &2`] THEN | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[REAL_MUL_RID]; ALL_TAC] THEN | |
REWRITE_TAC[real_div] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`(a * b) * a' * b = (a * a') * (b * b:real)`] THEN | |
REWRITE_TAC[REAL_DIFFSQ] THEN | |
REWRITE_TAC[complex_norm; GSYM REAL_POW_2] THEN | |
SIMP_TAC[SQRT_POW_2; REAL_LE_ADD; | |
REWRITE_RULE[GSYM REAL_POW_2] REAL_LE_SQUARE] THEN | |
REWRITE_TAC[REAL_ADD_SUB; GSYM REAL_POW_MUL] THEN | |
REWRITE_TAC[POW_2_SQRT_ABS] THEN | |
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_INV; REAL_ABS_NUM] THEN | |
ONCE_REWRITE_TAC[AC REAL_MUL_AC | |
`&2 * (i * a') * a * h = i * (&2 * h) * a * a'`] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[REAL_MUL_LID; GSYM real_div] THEN | |
ASM_SIMP_TAC[REAL_DIV_REFL; REAL_ABS_ZERO; REAL_MUL_RID]);; | |
let CX_SQRT = prove | |
(`!x. &0 <= x ==> Cx(sqrt x) = csqrt(Cx x)`, | |
SIMP_TAC[csqrt; IM_CX; RE_CX; COMPLEX_EQ; RE; IM]);; | |
let CSQRT_CX = prove | |
(`!x. &0 <= x ==> csqrt(Cx x) = Cx(sqrt x)`, | |
SIMP_TAC[CX_SQRT]);; | |
let CSQRT_0 = prove | |
(`csqrt(Cx(&0)) = Cx(&0)`, | |
SIMP_TAC[CSQRT_CX; REAL_POS; SQRT_0]);; | |
let CSQRT_1 = prove | |
(`csqrt(Cx(&1)) = Cx(&1)`, | |
SIMP_TAC[CSQRT_CX; REAL_POS; SQRT_1]);; | |
let CSQRT_PRINCIPAL = prove | |
(`!z. &0 < Re(csqrt(z)) \/ Re(csqrt(z)) = &0 /\ &0 <= Im(csqrt(z))`, | |
GEN_TAC THEN REWRITE_TAC[csqrt] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[RE; IM]) THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP SQRT_POS_LE) THEN REAL_ARITH_TAC; | |
DISJ2_TAC THEN REWRITE_TAC[real_ge] THEN MATCH_MP_TAC SQRT_POS_LE THEN | |
ASM_REAL_ARITH_TAC; | |
DISJ1_TAC THEN MATCH_MP_TAC SQRT_POS_LT THEN | |
MATCH_MP_TAC(REAL_ARITH `abs(y) < x ==> &0 < (x + y) / &2`) THEN | |
REWRITE_TAC[complex_norm] THEN REWRITE_TAC[GSYM POW_2_SQRT_ABS] THEN | |
MATCH_MP_TAC SQRT_MONO_LT THEN | |
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE; REAL_LT_ADDR] THEN | |
REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN | |
ASM_REWRITE_TAC[REAL_LE_SQUARE; REAL_ENTIRE]]);; | |
let RE_CSQRT = prove | |
(`!z. &0 <= Re(csqrt z)`, | |
MP_TAC CSQRT_PRINCIPAL THEN MATCH_MP_TAC MONO_FORALL THEN REAL_ARITH_TAC);; | |
let CSQRT_UNIQUE = prove | |
(`!s z. s pow 2 = z /\ (&0 < Re s \/ Re s = &0 /\ &0 <= Im s) | |
==> csqrt z = s`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN | |
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN | |
MP_TAC(SPEC `(s:complex) pow 2` CSQRT) THEN | |
SIMP_TAC[COMPLEX_RING `a pow 2 = b pow 2 <=> a = b \/ a = --b:complex`] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[COMPLEX_RING `--z = z <=> z = Cx(&0)`] THEN | |
FIRST_ASSUM(MP_TAC o AP_TERM `Re`) THEN | |
FIRST_X_ASSUM(MP_TAC o AP_TERM `Im`) THEN | |
REWRITE_TAC[RE_NEG; IM_NEG; COMPLEX_EQ; RE_CX; IM_CX] THEN | |
MP_TAC(SPEC `(s:complex) pow 2` CSQRT_PRINCIPAL) THEN | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);; | |
let POW_2_CSQRT = prove | |
(`!z. &0 < Re z \/ Re(z) = &0 /\ &0 <= Im(z) ==> csqrt(z pow 2) = z`, | |
MESON_TAC[CSQRT_UNIQUE]);; | |
let CSQRT_EQ_0 = prove | |
(`!z. csqrt z = Cx(&0) <=> z = Cx(&0)`, | |
GEN_TAC THEN MP_TAC (SPEC `z:complex` CSQRT) THEN CONV_TAC COMPLEX_RING);; | |
(* ------------------------------------------------------------------------- *) | |
(* A few more complex-specific cases of vector notions. *) | |
(* ------------------------------------------------------------------------- *) | |
let DOT_COMPLEX_MUL_CNJ = prove | |
(`!w z. w dot z = Re(w * cnj z)`, | |
REWRITE_TAC[cnj; complex_mul; RE; IM] THEN | |
REWRITE_TAC[DOT_2; RE_DEF; IM_DEF] THEN REAL_ARITH_TAC);; | |
let DOT_CNJ = prove | |
(`!w z. cnj w dot cnj z = w dot z`, | |
REWRITE_TAC[DOT_2; GSYM RE_DEF; GSYM IM_DEF] THEN | |
REWRITE_TAC[cnj; RE; IM] THEN REAL_ARITH_TAC);; | |
let LINEAR_COMPLEX_MUL = prove | |
(`!c. linear (\x. c * x)`, | |
REWRITE_TAC[linear; COMPLEX_CMUL] THEN CONV_TAC COMPLEX_RING);; | |
let BILINEAR_COMPLEX_MUL = prove | |
(`bilinear( * )`, | |
REWRITE_TAC[bilinear; linear; COMPLEX_CMUL] THEN CONV_TAC COMPLEX_RING);; | |
let LINEAR_CNJ = prove | |
(`linear cnj`, | |
REWRITE_TAC[linear; COMPLEX_CMUL; CNJ_ADD; CNJ_MUL; CNJ_CX]);; | |
let ORTHOGONAL_TRANSFORMATION_CNJ = prove | |
(`orthogonal_transformation cnj`, | |
REWRITE_TAC[orthogonal_transformation; LINEAR_CNJ; DOT_CNJ]);; | |
let LINEAR_COMPLEX_LMUL = prove | |
(`!f:real^N->complex c. linear f ==> linear (\x. c * f x)`, | |
SIMP_TAC[linear; COMPLEX_CMUL] THEN | |
REPEAT STRIP_TAC THEN CONV_TAC COMPLEX_RING);; | |
let LINEAR_COMPLEX_RMUL = prove | |
(`!f:real^N->complex c. linear f ==> linear (\x. f x * c)`, | |
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[LINEAR_COMPLEX_LMUL]);; | |
let COMPLEX_CAUCHY_SCHWARZ_EQ = prove | |
(`!w z. (w dot z) pow 2 + ((ii * w) dot z) pow 2 = | |
norm(w) pow 2 * norm(z) pow 2`, | |
REWRITE_TAC[NORM_POW_2; DOT_2; GSYM RE_DEF; GSYM IM_DEF] THEN | |
REWRITE_TAC[ii; complex_mul; RE; IM] THEN REAL_ARITH_TAC);; | |
let COMPLEX_BASIS = prove | |
(`basis 1 = Cx(&1) /\ basis 2 = ii`, | |
SIMP_TAC[CART_EQ; FORALL_2; BASIS_COMPONENT; DIMINDEX_2; ARITH] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE_CX; IM_CX] THEN | |
REWRITE_TAC[ii] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let COMPLEX_LINEAR = prove | |
(`!f:complex->complex. | |
(?c. f = \z. c * z) <=> | |
linear f /\ | |
(matrix f)$1$1 = (matrix f)$2$2 /\ | |
(matrix f)$1$2 = --((matrix f)$2$1)`, | |
GEN_TAC THEN EQ_TAC THENL | |
[STRIP_TAC THEN ASM_REWRITE_TAC[LINEAR_COMPLEX_MUL] THEN | |
SIMP_TAC[matrix; LAMBDA_BETA; DIMINDEX_2; ARITH] THEN | |
REWRITE_TAC[COMPLEX_BASIS; GSYM RE_DEF; GSYM IM_DEF; ii] THEN | |
SIMPLE_COMPLEX_ARITH_TAC; | |
STRIP_TAC THEN | |
EXISTS_TAC `complex(matrix(f:complex->complex)$1$1,matrix f$2$1)` THEN | |
FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC LAND_CONV [MATCH_MP MATRIX_VECTOR_MUL th]) THEN | |
ASM_SIMP_TAC[CART_EQ; matrix_vector_mul; DIMINDEX_2; SUM_2; ARITH; | |
FORALL_2; FUN_EQ_THM; LAMBDA_BETA] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; IM; RE; complex_mul] THEN | |
REAL_ARITH_TAC]);; | |
let COMPLEX_LINEAR_ALT = prove | |
(`!f:complex->complex. | |
(?c. f = \z. c * z) <=> linear f /\ f(ii) = ii * f(Cx(&1))`, | |
GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[LINEAR_COMPLEX_MUL] THENL | |
[SIMPLE_COMPLEX_ARITH_TAC; ASM_REWRITE_TAC[COMPLEX_LINEAR]] THEN | |
FIRST_ASSUM(MP_TAC o SYM) THEN | |
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) | |
[MATCH_MP MATRIX_VECTOR_MUL th]) THEN | |
REWRITE_TAC[CART_EQ; FORALL_2; DIMINDEX_2] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; RE_MUL_II; IM_MUL_II] THEN | |
REWRITE_TAC[MATRIX_VECTOR_MUL_COMPONENT; IM_DEF; RE_DEF] THEN | |
SIMP_TAC[MATRIX_VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH; DOT_2] THEN | |
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; CX_DEF; RE; IM; RE_II; IM_II] THEN | |
REAL_ARITH_TAC);; | |
let ORTHOGONAL_TRANSFORMATION_COMPLEX_MUL = prove | |
(`!c. orthogonal_transformation(\z. c * z) <=> norm c = &1`, | |
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; LINEAR_COMPLEX_MUL] THEN | |
GEN_TAC THEN REWRITE_TAC[COMPLEX_NORM_MUL] THEN | |
REWRITE_TAC[REAL_RING `c * v:real = v <=> c = &1 \/ v = &0`] THEN | |
ASM_CASES_TAC `norm(c:complex) = &1` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `Cx(&1)`) THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN | |
REAL_ARITH_TAC);; | |
let COMPLEX_ORTHOGONAL_ROTATION = prove | |
(`!f:complex->complex. | |
orthogonal_transformation f /\ det(matrix f) = &1 <=> | |
?c. norm c = &1 /\ f = \z. c * z`, | |
GEN_TAC THEN TRANS_TAC EQ_TRANS | |
`(!z. norm(f z) = norm z) /\ (?c. f = \z:complex. c * z)` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[COMPLEX_LINEAR] THEN | |
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> (q /\ p) /\ r`] THEN | |
REWRITE_TAC[GSYM ORTHOGONAL_TRANSFORMATION] THEN | |
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC] THEN AP_TERM_TAC THEN | |
REWRITE_TAC[ORTHOGONAL_MATRIX_2; DET_2] THEN CONV_TAC REAL_RING; | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `c:complex` THEN REWRITE_TAC[] THEN | |
ASM_CASES_TAC `f:complex->complex = \z. c * z` THEN | |
ASM_REWRITE_TAC[COMPLEX_NORM_MUL] THEN | |
REWRITE_TAC[REAL_RING `c * v:real = v <=> c = &1 \/ v = &0`] THEN | |
ASM_CASES_TAC `norm(c:complex) = &1` THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `Cx(&1)`) THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN | |
REAL_ARITH_TAC]);; | |
let COMPLEX_ORTHOGONAL_ROTOINVERSION = prove | |
(`!f:complex->complex. | |
orthogonal_transformation f /\ det(matrix f) = -- &1 <=> | |
?c. norm c = &1 /\ f = \z. c * cnj z`, | |
GEN_TAC THEN | |
SUBGOAL_THEN | |
`!c. (f = \z. c * cnj z) = (f o cnj = \z. c * z)` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[REWRITE_TAC[FUN_EQ_THM; o_THM] THEN MESON_TAC[CNJ_CNJ; CNJ_MUL]; | |
REWRITE_TAC[GSYM COMPLEX_ORTHOGONAL_ROTATION]] THEN | |
EQ_TAC THEN DISCH_TAC THENL | |
[ALL_TAC; | |
SUBGOAL_THEN `(f:complex->complex) = (f o cnj) o cnj` SUBST1_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM; o_THM; CNJ_CNJ]; | |
POP_ASSUM MP_TAC THEN | |
SPEC_TAC(`(f:complex->complex) o cnj`,`f:complex->complex`) THEN | |
REPEAT STRIP_TAC]] THEN | |
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_COMPOSE; MATRIX_COMPOSE; DET_MUL; | |
ORTHOGONAL_TRANSFORMATION_CNJ; ORTHOGONAL_TRANSFORMATION_LINEAR] THEN | |
SIMP_TAC[DET_2; MATRIX_COMPONENT; DIMINDEX_2; ARITH] THEN | |
REWRITE_TAC[COMPLEX_BASIS; CNJ_II; CNJ_CX] THEN | |
REWRITE_TAC[GSYM IM_DEF; GSYM RE_DEF; IM; RE; CX_DEF; ii; complex_neg] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV);; | |
let COMPLEX_ORTHOGONAL_TRANSFORMATION = prove | |
(`!f:complex->complex. | |
orthogonal_transformation f <=> | |
?c. norm c = &1 /\ ((f = \z. c * z) \/ (f = \z. c * cnj z))`, | |
GEN_TAC THEN | |
REWRITE_TAC[LEFT_OR_DISTRIB; EXISTS_OR_THM] THEN | |
REWRITE_TAC[GSYM COMPLEX_ORTHOGONAL_ROTATION; | |
GSYM COMPLEX_ORTHOGONAL_ROTOINVERSION] THEN | |
MESON_TAC[DET_ORTHOGONAL_MATRIX; ORTHOGONAL_TRANSFORMATION_MATRIX]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex-specific theorems about sums. *) | |
(* ------------------------------------------------------------------------- *) | |
let RE_VSUM = prove | |
(`!f s. FINITE s ==> Re(vsum s f) = sum s (\x. Re(f x))`, | |
SIMP_TAC[RE_DEF; VSUM_COMPONENT; DIMINDEX_2; ARITH]);; | |
let IM_VSUM = prove | |
(`!f s. FINITE s ==> Im(vsum s f) = sum s (\x. Im(f x))`, | |
SIMP_TAC[IM_DEF; VSUM_COMPONENT; DIMINDEX_2; ARITH]);; | |
let VSUM_COMPLEX_LMUL = prove | |
(`!c f s. FINITE(s) ==> vsum s (\x. c * f x) = c * vsum s f`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[VSUM_CLAUSES; COMPLEX_VEC_0; COMPLEX_MUL_RZERO] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let VSUM_COMPLEX_RMUL = prove | |
(`!c f s. FINITE(s) ==> vsum s (\x. f x * c) = vsum s f * c`, | |
ONCE_REWRITE_TAC[COMPLEX_MUL_SYM] THEN REWRITE_TAC[VSUM_COMPLEX_LMUL]);; | |
let VSUM_CX = prove | |
(`!f:A->real s. vsum s (\a. Cx(f a)) = Cx(sum s f)`, | |
SIMP_TAC[CART_EQ; VSUM_COMPONENT] THEN | |
REWRITE_TAC[DIMINDEX_2; FORALL_2; GSYM RE_DEF; GSYM IM_DEF] THEN | |
REWRITE_TAC[IM_CX; SUM_0; RE_CX; ETA_AX]);; | |
let CNJ_VSUM = prove | |
(`!f s. FINITE s ==> cnj(vsum s f) = vsum s (\x. cnj(f x))`, | |
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[VSUM_CLAUSES; CNJ_ADD; CNJ_CX; COMPLEX_VEC_0]);; | |
let VSUM_CX_NUMSEG = prove | |
(`!f m n. vsum (m..n) (\a. Cx(f a)) = Cx(sum (m..n) f)`, | |
SIMP_TAC[VSUM_CX; FINITE_NUMSEG]);; | |
let COMPLEX_SUB_POW = prove | |
(`!x y n. | |
1 <= n ==> x pow n - y pow n = | |
(x - y) * vsum(0..n-1) (\i. x pow i * y pow (n - 1 - i))`, | |
SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN | |
REWRITE_TAC[COMPLEX_RING | |
`(x - y) * (a * b):complex = (x * a) * b - a * (y * b)`] THEN | |
SIMP_TAC[GSYM complex_pow; ADD1; ARITH_RULE | |
`1 <= n /\ x <= n - 1 | |
==> n - 1 - x = n - (x + 1) /\ SUC(n - 1 - x) = n - x`] THEN | |
REWRITE_TAC[VSUM_DIFFS_ALT; LE_0] THEN | |
SIMP_TAC[SUB_0; SUB_ADD; SUB_REFL; | |
complex_pow; COMPLEX_MUL_LID; COMPLEX_MUL_RID]);; | |
let COMPLEX_SUB_POW_R1 = prove | |
(`!x n. 1 <= n | |
==> x pow n - Cx(&1) = (x - Cx(&1)) * vsum(0..n-1) (\i. x pow i)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o SPECL [`x:complex`; `Cx(&1)`] o | |
MATCH_MP COMPLEX_SUB_POW) THEN | |
REWRITE_TAC[COMPLEX_POW_ONE; COMPLEX_MUL_RID]);; | |
let COMPLEX_SUB_POW_L1 = prove | |
(`!x n. 1 <= n | |
==> Cx(&1) - x pow n = (Cx(&1) - x) * vsum(0..n-1) (\i. x pow i)`, | |
ONCE_REWRITE_TAC[GSYM COMPLEX_NEG_SUB] THEN | |
SIMP_TAC[COMPLEX_SUB_POW_R1] THEN REWRITE_TAC[COMPLEX_MUL_LNEG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The complex numbers that are real (zero imaginary part). *) | |
(* ------------------------------------------------------------------------- *) | |
let real = new_definition | |
`real z <=> Im z = &0`;; | |
let REAL = prove | |
(`!z. real z <=> Cx(Re z) = z`, | |
REWRITE_TAC[COMPLEX_EQ; real; CX_DEF; RE; IM] THEN REAL_ARITH_TAC);; | |
let REAL_CNJ = prove | |
(`!z. real z <=> cnj z = z`, | |
REWRITE_TAC[real; cnj; COMPLEX_EQ; RE; IM] THEN REAL_ARITH_TAC);; | |
let REAL_IMP_CNJ = prove | |
(`!z. real z ==> cnj z = z`, | |
REWRITE_TAC[REAL_CNJ]);; | |
let REAL_EXISTS = prove | |
(`!z. real z <=> ?x. z = Cx x`, | |
MESON_TAC[REAL; real; IM_CX]);; | |
let FORALL_REAL = prove | |
(`(!z. real z ==> P z) <=> (!x. P(Cx x))`, | |
MESON_TAC[REAL_EXISTS]);; | |
let EXISTS_REAL = prove | |
(`(?z. real z /\ P z) <=> (?x. P(Cx x))`, | |
MESON_TAC[REAL_EXISTS]);; | |
let REAL_CX = prove | |
(`!x. real(Cx x)`, | |
REWRITE_TAC[REAL_CNJ; CNJ_CX]);; | |
let REAL_MUL_CX = prove | |
(`!x z. real(Cx x * z) <=> x = &0 \/ real z`, | |
REWRITE_TAC[real; IM_MUL_CX; REAL_ENTIRE]);; | |
let REAL_ADD = prove | |
(`!w z. real w /\ real z ==> real(w + z)`, | |
SIMP_TAC[REAL_CNJ; CNJ_ADD]);; | |
let REAL_NEG = prove | |
(`!z. real z ==> real(--z)`, | |
SIMP_TAC[REAL_CNJ; CNJ_NEG]);; | |
let REAL_SUB = prove | |
(`!w z. real w /\ real z ==> real(w - z)`, | |
SIMP_TAC[REAL_CNJ; CNJ_SUB]);; | |
let REAL_MUL = prove | |
(`!w z. real w /\ real z ==> real(w * z)`, | |
SIMP_TAC[REAL_CNJ; CNJ_MUL]);; | |
let REAL_POW = prove | |
(`!z n. real z ==> real(z pow n)`, | |
SIMP_TAC[REAL_CNJ; CNJ_POW]);; | |
let REAL_INV = prove | |
(`!z. real z ==> real(inv z)`, | |
SIMP_TAC[REAL_CNJ; CNJ_INV]);; | |
let REAL_INV_EQ = prove | |
(`!z. real(inv z) = real z`, | |
MESON_TAC[REAL_INV; COMPLEX_INV_INV]);; | |
let REAL_DIV = prove | |
(`!w z. real w /\ real z ==> real(w / z)`, | |
SIMP_TAC[REAL_CNJ; CNJ_DIV]);; | |
let REAL_VSUM = prove | |
(`!f s. FINITE s /\ (!a. a IN s ==> real(f a)) ==> real(vsum s f)`, | |
SIMP_TAC[CNJ_VSUM; REAL_CNJ]);; | |
let REAL_MUL_CNJ = prove | |
(`(!z. real(z * cnj z)) /\ (!z. real(cnj z * z))`, | |
REWRITE_TAC[COMPLEX_MUL_CNJ; GSYM CX_POW; REAL_CX]);; | |
let REAL_SEGMENT = prove | |
(`!a b x. x IN segment[a,b] /\ real a /\ real b ==> real x`, | |
SIMP_TAC[segment; IN_ELIM_THM; real; COMPLEX_EQ; LEFT_AND_EXISTS_THM; | |
LEFT_IMP_EXISTS_THM; IM_ADD; IM_CMUL] THEN | |
REAL_ARITH_TAC);; | |
let IN_SEGMENT_CX = prove | |
(`!a b x. Cx(x) IN segment[Cx(a),Cx(b)] <=> | |
a <= x /\ x <= b \/ b <= x /\ x <= a`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[segment; IN_ELIM_THM] THEN | |
REWRITE_TAC[COMPLEX_CMUL; GSYM CX_ADD; CX_INJ; GSYM CX_MUL] THEN | |
ASM_CASES_TAC `a:real = b` THENL | |
[ASM_REWRITE_TAC[REAL_ARITH `(&1 - u) * b + u * b = b`] THEN | |
ASM_CASES_TAC `x:real = b` THEN ASM_REWRITE_TAC[REAL_LE_ANTISYM] THEN | |
EXISTS_TAC `&0` THEN REWRITE_TAC[REAL_POS]; | |
ALL_TAC] THEN | |
EQ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `u:real` | |
(CONJUNCTS_THEN2 STRIP_ASSUME_TAC SUBST1_TAC)) THEN | |
REWRITE_TAC[REAL_ARITH `a <= (&1 - u) * a + u * b <=> &0 <= u * (b - a)`; | |
REAL_ARITH `b <= (&1 - u) * a + u * b <=> &0 <= (&1 - u) * (a - b)`; | |
REAL_ARITH `(&1 - u) * a + u * b <= a <=> &0 <= u * (a - b)`; | |
REAL_ARITH `(&1 - u) * a + u * b <= b <=> &0 <= (&1 - u) * (b - a)`] THEN | |
DISJ_CASES_TAC(REAL_ARITH `a <= b \/ b <= a`) THENL | |
[DISJ1_TAC; DISJ2_TAC] THEN | |
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN | |
ASM_REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
STRIP_TAC THENL | |
[SUBGOAL_THEN `&0 < b - a` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; | |
EXISTS_TAC `(x - a:real) / (b - a)`]; | |
SUBGOAL_THEN `&0 < a - b` ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; | |
EXISTS_TAC `(a - x:real) / (a - b)`]] THEN | |
(CONJ_TAC THENL | |
[ALL_TAC; UNDISCH_TAC `~(a:real = b)` THEN CONV_TAC REAL_FIELD]) THEN | |
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN | |
ASM_REAL_ARITH_TAC);; | |
let IN_SEGMENT_CX_GEN = prove | |
(`!a b x. | |
x IN segment[Cx a,Cx b] <=> | |
Im(x) = &0 /\ (a <= Re x /\ Re x <= b \/ b <= Re x /\ Re x <= a)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM real] THEN | |
ASM_CASES_TAC `real x` THENL | |
[FIRST_X_ASSUM(SUBST1_TAC o SYM o REWRITE_RULE[REAL]) THEN | |
REWRITE_TAC[IN_SEGMENT_CX; REAL_CX; RE_CX] THEN REAL_ARITH_TAC; | |
ASM_MESON_TAC[REAL_SEGMENT; REAL_CX]]);; | |
let RE_POS_SEGMENT = prove | |
(`!a b x. x IN segment[a,b] /\ &0 < Re a /\ &0 < Re b ==> &0 < Re x`, | |
SIMP_TAC[segment; IN_ELIM_THM; real; COMPLEX_EQ; LEFT_AND_EXISTS_THM; | |
LEFT_IMP_EXISTS_THM; RE_ADD; RE_CMUL] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH | |
`&0 <= x /\ &0 <= y /\ ~(x = &0 /\ y = &0) ==> &0 < x + y`) THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_SUB_LE; REAL_LT_IMP_LE; REAL_ENTIRE] THEN | |
ASM_REAL_ARITH_TAC);; | |
let CONVEX_REAL = prove | |
(`convex real`, | |
REWRITE_TAC[convex; IN; COMPLEX_CMUL] THEN | |
SIMP_TAC[REAL_ADD; REAL_MUL; REAL_CX]);; | |
let IMAGE_CX = prove | |
(`!s. IMAGE Cx s = {z | real z /\ Re(z) IN s}`, | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[RE_CX; REAL]);; | |
let SUBSPACE_REAL = prove | |
(`subspace real`, | |
REWRITE_TAC[subspace] THEN | |
SIMP_TAC[COMPLEX_CMUL; COMPLEX_VEC_0; IN; REAL_CX; REAL_ADD; REAL_MUL]);; | |
let DIM_REAL = prove | |
(`dim real = 1`, | |
ONCE_REWRITE_TAC[SET_RULE `real = {x | real x}`] THEN | |
SIMP_TAC[real; IM_DEF; DIM_SPECIAL_HYPERPLANE; DIMINDEX_2; ARITH]);; | |
let INTERIOR_REAL = prove | |
(`interior real = {}`, | |
MATCH_MP_TAC EMPTY_INTERIOR_LOWDIM THEN | |
REWRITE_TAC[DIM_REAL; DIMINDEX_2; ARITH]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful bound-type theorems for real quantities. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_NORM = prove | |
(`!z. real z ==> norm(z) = abs(Re z)`, | |
SIMP_TAC[real; complex_norm] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[POW_2_SQRT_ABS; REAL_ADD_RID]);; | |
let REAL_NORM_POS = prove | |
(`!z. real z /\ &0 <= Re z ==> norm(z) = Re(z)`, | |
SIMP_TAC[REAL_NORM] THEN REAL_ARITH_TAC);; | |
let COMPLEX_NORM_VSUM_SUM_RE = prove | |
(`!f s. FINITE s /\ (!x. x IN s ==> real(f x) /\ &0 <= Re(f x)) | |
==> norm(vsum s f) = sum s (\x. Re(f x))`, | |
SIMP_TAC[GSYM RE_VSUM] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC REAL_NORM_POS THEN | |
ASM_SIMP_TAC[REAL_VSUM; RE_VSUM; SUM_POS_LE]);; | |
let COMPLEX_NORM_VSUM_BOUND = prove | |
(`!s f:A->complex g:A->complex. | |
FINITE s /\ (!x. x IN s ==> real(g x) /\ norm(f x) <= Re(g x)) | |
==> norm(vsum s f) <= norm(vsum s g)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum s (\x. norm((f:A->complex) x))` THEN | |
ASM_SIMP_TAC[VSUM_NORM] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `sum s (\x. Re((g:A->complex) x))` THEN | |
ASM_SIMP_TAC[SUM_LE] THEN | |
MATCH_MP_TAC(REAL_ARITH `x:real = y ==> y <= x`) THEN | |
MATCH_MP_TAC COMPLEX_NORM_VSUM_SUM_RE THEN | |
ASM_MESON_TAC[REAL_LE_TRANS; NORM_POS_LE]);; | |
let COMPLEX_NORM_VSUM_BOUND_SUBSET = prove | |
(`!f:A->complex g:A->complex s t. | |
FINITE s /\ t SUBSET s /\ | |
(!x. x IN s ==> real(g x) /\ norm(f x) <= Re(g x)) | |
==> norm(vsum t f) <= norm(vsum s g)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN | |
EXISTS_TAC `norm(vsum t (g:A->complex))` THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[COMPLEX_NORM_VSUM_BOUND; SUBSET; FINITE_SUBSET];ALL_TAC] THEN | |
SUBGOAL_THEN | |
`norm(vsum t (g:A->complex)) = sum t (\x. Re(g x)) /\ | |
norm(vsum s g) = sum s (\x. Re(g x))` | |
(CONJUNCTS_THEN SUBST1_TAC) | |
THENL | |
[CONJ_TAC THEN MATCH_MP_TAC COMPLEX_NORM_VSUM_SUM_RE; | |
MATCH_MP_TAC SUM_SUBSET THEN REWRITE_TAC[IN_DIFF]] THEN | |
ASM_MESON_TAC[REAL_LE_TRANS; NORM_POS_LE; FINITE_SUBSET; SUBSET]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Geometric progression. *) | |
(* ------------------------------------------------------------------------- *) | |
let VSUM_GP_BASIC = prove | |
(`!x n. (Cx(&1) - x) * vsum(0..n) (\i. x pow i) = Cx(&1) - x pow (SUC n)`, | |
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[VSUM_CLAUSES_NUMSEG] THEN | |
REWRITE_TAC[complex_pow; COMPLEX_MUL_RID; LE_0] THEN | |
ASM_REWRITE_TAC[COMPLEX_ADD_LDISTRIB; complex_pow] THEN | |
SIMPLE_COMPLEX_ARITH_TAC);; | |
let VSUM_GP_MULTIPLIED = prove | |
(`!x m n. m <= n | |
==> ((Cx(&1) - x) * vsum(m..n) (\i. x pow i) = | |
x pow m - x pow (SUC n))`, | |
REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[VSUM_OFFSET_0; COMPLEX_POW_ADD; FINITE_NUMSEG; | |
COMPLEX_MUL_ASSOC; VSUM_GP_BASIC; VSUM_COMPLEX_RMUL] THEN | |
REWRITE_TAC[COMPLEX_SUB_RDISTRIB; GSYM COMPLEX_POW_ADD; COMPLEX_MUL_LID] THEN | |
ASM_SIMP_TAC[ARITH_RULE `m <= n ==> (SUC(n - m) + m = SUC n)`]);; | |
let VSUM_GP = prove | |
(`!x m n. | |
vsum(m..n) (\i. x pow i) = | |
if n < m then Cx(&0) | |
else if x = Cx(&1) then Cx(&((n + 1) - m)) | |
else (x pow m - x pow (SUC n)) / (Cx(&1) - x)`, | |
REPEAT GEN_TAC THEN | |
DISJ_CASES_TAC(ARITH_RULE `n < m \/ ~(n < m) /\ m <= n:num`) THEN | |
ASM_SIMP_TAC[VSUM_TRIV_NUMSEG; COMPLEX_VEC_0] THEN COND_CASES_TAC THENL | |
[ASM_REWRITE_TAC[COMPLEX_POW_ONE; VSUM_CONST_NUMSEG; COMPLEX_MUL_RID]; | |
ALL_TAC] THEN | |
REWRITE_TAC[COMPLEX_CMUL; COMPLEX_MUL_RID] THEN | |
MATCH_MP_TAC(COMPLEX_FIELD | |
`~(z = Cx(&1)) /\ (Cx(&1) - z) * x = y ==> x = y / (Cx(&1) - z)`) THEN | |
ASM_SIMP_TAC[COMPLEX_DIV_LMUL; COMPLEX_SUB_0; VSUM_GP_MULTIPLIED]);; | |
let VSUM_GP_OFFSET = prove | |
(`!x m n. vsum(m..m+n) (\i. x pow i) = | |
if x = Cx(&1) then Cx(&n) + Cx(&1) | |
else x pow m * (Cx(&1) - x pow (SUC n)) / (Cx(&1) - x)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[VSUM_GP; ARITH_RULE `~(m + n < m:num)`] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[REWRITE_TAC[REAL_OF_NUM_ADD; GSYM CX_ADD] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN ARITH_TAC; | |
REWRITE_TAC[complex_div; complex_pow; COMPLEX_POW_ADD] THEN | |
SIMPLE_COMPLEX_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basics about polynomial functions: extremal behaviour and root counts. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_SUB_POLYFUN = prove | |
(`!a x y n. | |
1 <= n | |
==> vsum(0..n) (\i. a i * x pow i) - vsum(0..n) (\i. a i * y pow i) = | |
(x - y) * | |
vsum(0..n-1) (\j. vsum(j+1..n) (\i. a i * y pow (i - j - 1)) * x pow j)`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[GSYM VSUM_SUB_NUMSEG; GSYM COMPLEX_SUB_LDISTRIB] THEN | |
GEN_REWRITE_TAC LAND_CONV [MATCH_MP VSUM_CLAUSES_LEFT (SPEC_ALL LE_0)] THEN | |
REWRITE_TAC[COMPLEX_SUB_REFL; complex_pow; COMPLEX_MUL_RZERO; | |
COMPLEX_ADD_LID] THEN | |
SIMP_TAC[COMPLEX_SUB_POW; ADD_CLAUSES] THEN | |
ONCE_REWRITE_TAC[COMPLEX_RING `a * x * s:complex = x * a * s`] THEN | |
SIMP_TAC[VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN AP_TERM_TAC THEN | |
SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; GSYM VSUM_COMPLEX_RMUL; FINITE_NUMSEG; | |
VSUM_VSUM_PRODUCT; FINITE_NUMSEG] THEN | |
MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN | |
REPEAT(EXISTS_TAC `\(x:num,y:num). (y,x)`) THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN | |
REWRITE_TAC[ARITH_RULE `a - b - c:num = a - (b + c)`; ADD_SYM] THEN | |
REWRITE_TAC[COMPLEX_MUL_AC] THEN ARITH_TAC);; | |
let COMPLEX_SUB_POLYFUN_ALT = prove | |
(`!a x y n. | |
1 <= n | |
==> vsum(0..n) (\i. a i * x pow i) - vsum(0..n) (\i. a i * y pow i) = | |
(x - y) * | |
vsum(0..n-1) (\j. vsum(0..n-j-1) (\k. a(j+k+1) * y pow k) * x pow j)`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[COMPLEX_SUB_POLYFUN] THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC VSUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC VSUM_EQ_GENERAL_INVERSES THEN | |
MAP_EVERY EXISTS_TAC | |
[`\i. i - (j + 1)`; `\k. j + k + 1`] THEN | |
REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN | |
TRY(BINOP_TAC THEN AP_TERM_TAC) THEN ASM_ARITH_TAC);; | |
let COMPLEX_POLYFUN_LINEAR_FACTOR = prove | |
(`!a c n. ?b. !z. vsum(0..n) (\i. c(i) * z pow i) = | |
(z - a) * vsum(0..n-1) (\i. b(i) * z pow i) + | |
vsum(0..n) (\i. c(i) * a pow i)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM COMPLEX_EQ_SUB_RADD] THEN | |
ASM_CASES_TAC `n = 0` THENL | |
[EXISTS_TAC `\i:num. Cx(&0)` THEN | |
ASM_SIMP_TAC[VSUM_SING; NUMSEG_SING; complex_pow; COMPLEX_MUL_LZERO] THEN | |
REWRITE_TAC[COMPLEX_SUB_REFL; GSYM COMPLEX_VEC_0; VSUM_0] THEN | |
REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_MUL_RZERO]; | |
ASM_SIMP_TAC[COMPLEX_SUB_POLYFUN; LE_1] THEN | |
EXISTS_TAC `\j. vsum (j + 1..n) (\i. c i * a pow (i - j - 1))` THEN | |
REWRITE_TAC[]]);; | |
let COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT = prove | |
(`!a c n. vsum(0..n) (\i. c(i) * a pow i) = Cx(&0) | |
==> ?b. !z. vsum(0..n) (\i. c(i) * z pow i) = | |
(z - a) * vsum(0..n-1) (\i. b(i) * z pow i)`, | |
MESON_TAC[COMPLEX_POLYFUN_LINEAR_FACTOR; COMPLEX_ADD_RID]);; | |
let COMPLEX_POLYFUN_EXTREMAL_LEMMA = prove | |
(`!c n e. &0 < e | |
==> ?M. !z. M <= norm(z) | |
==> norm(vsum(0..n) (\i. c(i) * z pow i)) | |
<= e * norm(z) pow (n + 1)`, | |
GEN_TAC THEN INDUCT_TAC THEN SIMP_TAC[VSUM_CLAUSES_NUMSEG; LE_0] THEN | |
REPEAT STRIP_TAC THENL | |
[REWRITE_TAC[ADD_CLAUSES; complex_pow; REAL_POW_1; COMPLEX_MUL_RID] THEN | |
EXISTS_TAC `norm(c 0:complex) / e` THEN ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN | |
REWRITE_TAC[REAL_MUL_AC]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (REAL_ARITH `&0 < &1 / &2`)) THEN | |
DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN | |
EXISTS_TAC `max M ((&1 / &2 + norm(c(n+1):complex)) / e)` THEN | |
X_GEN_TAC `z:complex` THEN REWRITE_TAC[REAL_MAX_LE] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(NORM_ARITH | |
`a + norm(y) <= b ==> norm(x) <= a ==> norm(x + y) <= b`) THEN | |
SIMP_TAC[ADD1; COMPLEX_NORM_MUL; COMPLEX_NORM_POW; | |
GSYM REAL_ADD_RDISTRIB; ARITH_RULE `(n + 1) + 1 = 1 + n + 1`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_POW_ADD] THEN | |
REWRITE_TAC[REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_RMUL THEN | |
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_POW_LE; NORM_POS_LE; REAL_POW_1]);; | |
let COMPLEX_POLYFUN_EXTREMAL = prove | |
(`!c n. (!k. k IN 1..n ==> c(k) = Cx(&0)) \/ | |
!B. eventually (\z. norm(vsum(0..n) (\i. c(i) * z pow i)) >= B) | |
at_infinity`, | |
GEN_TAC THEN MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN | |
ASM_CASES_TAC `n = 0` THEN | |
ASM_REWRITE_TAC[NUMSEG_CLAUSES; ARITH; NOT_IN_EMPTY] THEN | |
MP_TAC(ARITH_RULE `0 <= n`) THEN SIMP_TAC[GSYM NUMSEG_RREC] THEN | |
DISCH_THEN(K ALL_TAC) THEN ASM_CASES_TAC `c(n:num) = Cx(&0)` THENL | |
[FIRST_X_ASSUM(MP_TAC o SPEC `n - 1`) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[GSYM NUMSEG_RREC; LE_1] THEN | |
SIMP_TAC[IN_INSERT; VSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_ADD_LID; COND_ID] THEN | |
ASM_MESON_TAC[]; | |
DISJ2_TAC THEN MP_TAC(ISPECL | |
[`c:num->complex`; `n - 1`; `norm(c(n:num):complex) / &2`] | |
COMPLEX_POLYFUN_EXTREMAL_LEMMA) THEN ASM_SIMP_TAC[SUB_ADD; LE_1] THEN | |
ASM_SIMP_TAC[COMPLEX_NORM_NZ; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN | |
SIMP_TAC[IN_INSERT; VSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN | |
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> ~(n <= n - 1)`] THEN | |
DISCH_THEN(X_CHOOSE_TAC `M:real`) THEN X_GEN_TAC `B:real` THEN | |
REWRITE_TAC[EVENTUALLY_AT_INFINITY] THEN EXISTS_TAC | |
`max M (max (&1) ((abs B + &1) / (norm(c(n:num):complex) / &2)))` THEN | |
X_GEN_TAC `z:complex` THEN REWRITE_TAC[real_ge; REAL_MAX_LE] THEN | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `z:complex`) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(NORM_ARITH | |
`abs b + &1 <= norm(y) - a ==> norm(x) <= a ==> b <= norm(y + x)`) THEN | |
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN | |
REWRITE_TAC[REAL_ARITH `c * x - c / &2 * x = x * c / &2`] THEN | |
ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; COMPLEX_NORM_NZ; REAL_LT_DIV; | |
REAL_OF_NUM_LT; ARITH] THEN | |
MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(z:complex) pow 1` THEN | |
CONJ_TAC THENL [ASM_REWRITE_TAC[REAL_POW_1]; ALL_TAC] THEN | |
MATCH_MP_TAC REAL_POW_MONO THEN ASM_SIMP_TAC[LE_1]]);; | |
let COMPLEX_POLYFUN_ROOTBOUND = prove | |
(`!n c. ~(!i. i IN 0..n ==> c(i) = Cx(&0)) | |
==> FINITE {z | vsum(0..n) (\i. c(i) * z pow i) = Cx(&0)} /\ | |
CARD {z | vsum(0..n) (\i. c(i) * z pow i) = Cx(&0)} <= n`, | |
REWRITE_TAC[TAUT `~a ==> b <=> a \/ b`] THEN INDUCT_TAC THEN GEN_TAC THENL | |
[SIMP_TAC[NUMSEG_SING; VSUM_SING; IN_SING; complex_pow] THEN | |
ASM_CASES_TAC `c 0 = Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_MUL_RID] THEN | |
REWRITE_TAC[EMPTY_GSPEC; FINITE_RULES; CARD_CLAUSES; LE_REFL]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `{z | vsum(0..SUC n) (\i. c(i) * z pow i) = Cx(&0)} = {}` THEN | |
ASM_REWRITE_TAC[FINITE_RULES; CARD_CLAUSES; LE_0] THEN | |
FIRST_X_ASSUM(X_CHOOSE_THEN `a:complex` MP_TAC o | |
GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP COMPLEX_POLYFUN_LINEAR_FACTOR_ROOT) THEN | |
DISCH_THEN(X_CHOOSE_TAC `b:num->complex`) THEN | |
ASM_REWRITE_TAC[COMPLEX_ENTIRE; COMPLEX_SUB_0; SUC_SUB1; SET_RULE | |
`{z | z = a \/ P z} = a INSERT {z | P z}`] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `b:num->complex`) THEN | |
STRIP_TAC THEN ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES] THENL | |
[DISJ1_TAC; ASM_ARITH_TAC] THEN | |
MP_TAC(SPECL [`c:num->complex`; `SUC n`] COMPLEX_POLYFUN_EXTREMAL) THEN | |
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `Cx(&0)`) THEN | |
ASM_SIMP_TAC[SUC_SUB1; COMPLEX_MUL_LZERO] THEN | |
SIMP_TAC[COMPLEX_POW_ZERO; COND_RAND; COMPLEX_MUL_RZERO] THEN | |
ASM_SIMP_TAC[VSUM_0; GSYM COMPLEX_VEC_0; VSUM_DELTA; IN_NUMSEG; LE_0] THEN | |
REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_MUL_RZERO; COMPLEX_NORM_NUM] THEN | |
REWRITE_TAC[COMPLEX_MUL_RID; real_ge; EVENTUALLY_AT_INFINITY] THEN | |
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[LE_1]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `&1`) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN | |
REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM] THEN X_GEN_TAC `b:real` THEN | |
MP_TAC(SPEC `b:real` (INST_TYPE [`:2`,`:N`] VECTOR_CHOOSE_SIZE)) THEN | |
ASM_MESON_TAC[NORM_POS_LE; REAL_LE_TOTAL; REAL_LE_TRANS]);; | |
let COMPLEX_POLYFUN_FINITE_ROOTS = prove | |
(`!n c. FINITE {x | vsum(0..n) (\i. c i * x pow i) = Cx(&0)} <=> | |
?i. i IN 0..n /\ ~(c i = Cx(&0))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `a /\ ~b <=> ~(a ==> b)`] THEN | |
REWRITE_TAC[GSYM NOT_FORALL_THM] THEN EQ_TAC THEN | |
SIMP_TAC[COMPLEX_POLYFUN_ROOTBOUND] THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
SIMP_TAC[COMPLEX_MUL_LZERO] THEN SIMP_TAC[GSYM COMPLEX_VEC_0; VSUM_0] THEN | |
REWRITE_TAC[SET_RULE `{x | T} = (:complex)`; GSYM INFINITE; | |
EUCLIDEAN_SPACE_INFINITE]);; | |
let COMPLEX_POLYFUN_EQ_0 = prove | |
(`!n c. (!z. vsum(0..n) (\i. c i * z pow i) = Cx(&0)) <=> | |
(!i. i IN 0..n ==> c i = Cx(&0))`, | |
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN DISCH_THEN(MP_TAC o MATCH_MP | |
COMPLEX_POLYFUN_ROOTBOUND) THEN | |
ASM_REWRITE_TAC[EUCLIDEAN_SPACE_INFINITE; GSYM INFINITE; DE_MORGAN_THM; | |
SET_RULE `{x | T} = (:complex)`]; | |
ASM_SIMP_TAC[IN_NUMSEG; LE_0; COMPLEX_MUL_LZERO] THEN | |
REWRITE_TAC[GSYM COMPLEX_VEC_0; VSUM_0]]);; | |
let COMPLEX_POLYFUN_EQ_CONST = prove | |
(`!n c k. (!z. vsum(0..n) (\i. c i * z pow i) = k) <=> | |
c 0 = k /\ (!i. i IN 1..n ==> c i = Cx(&0))`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC | |
`!x. vsum(0..n) (\i. (if i = 0 then c 0 - k else c i) * x pow i) = | |
Cx(&0)` THEN | |
CONJ_TAC THENL | |
[SIMP_TAC[VSUM_CLAUSES_LEFT; LE_0; complex_pow; COMPLEX_MUL_RID] THEN | |
REWRITE_TAC[COMPLEX_RING `(c - k) + s = Cx(&0) <=> c + s = k`] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN | |
REWRITE_TAC[IN_NUMSEG] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH]; | |
REWRITE_TAC[COMPLEX_POLYFUN_EQ_0; IN_NUMSEG; LE_0] THEN | |
GEN_REWRITE_TAC LAND_CONV [MESON[] | |
`(!n. P n) <=> P 0 /\ (!n. ~(n = 0) ==> P n)`] THEN | |
SIMP_TAC[LE_0; COMPLEX_SUB_0] THEN MESON_TAC[LE_1]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Complex products. *) | |
(* ------------------------------------------------------------------------- *) | |
let cproduct = new_definition | |
`cproduct = iterate (( * ):complex->complex->complex)`;; | |
let NEUTRAL_COMPLEX_MUL = prove | |
(`neutral(( * ):complex->complex->complex) = Cx(&1)`, | |
REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN | |
MESON_TAC[COMPLEX_MUL_LID; COMPLEX_MUL_RID]);; | |
let MONOIDAL_COMPLEX_MUL = prove | |
(`monoidal(( * ):complex->complex->complex)`, | |
REWRITE_TAC[monoidal; NEUTRAL_COMPLEX_MUL] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let CPRODUCT_CLAUSES = prove | |
(`(!f. cproduct {} f = Cx(&1)) /\ | |
(!x f s. FINITE(s) | |
==> (cproduct (x INSERT s) f = | |
if x IN s then cproduct s f else f(x) * cproduct s f))`, | |
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_COMPLEX_MUL]);; | |
let CPRODUCT_EQ_0 = prove | |
(`!f s. FINITE s ==> (cproduct s f = Cx(&0) <=> ?x. x IN s /\ f(x) = Cx(&0))`, | |
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_ENTIRE; IN_INSERT; CX_INJ; REAL_OF_NUM_EQ; | |
ARITH; NOT_IN_EMPTY] THEN | |
MESON_TAC[]);; | |
let CPRODUCT_INV = prove | |
(`!f s. FINITE s ==> cproduct s (\x. inv(f x)) = inv(cproduct s f)`, | |
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_INV_1; COMPLEX_INV_MUL]);; | |
let CPRODUCT_MUL = prove | |
(`!f g s. FINITE s | |
==> cproduct s (\x. f x * g x) = cproduct s f * cproduct s g`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_MUL_AC; COMPLEX_MUL_LID]);; | |
let CPRODUCT_EQ_1 = prove | |
(`!f s. (!x:A. x IN s ==> (f(x) = Cx(&1))) ==> (cproduct s f = Cx(&1))`, | |
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN | |
SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_COMPLEX_MUL]);; | |
let CPRODUCT_1 = prove | |
(`!s. cproduct s (\n. Cx(&1)) = Cx(&1)`, | |
SIMP_TAC[CPRODUCT_EQ_1]);; | |
let CPRODUCT_POW = prove | |
(`!f s n. FINITE s | |
==> cproduct s (\x. f x pow n) = (cproduct s f) pow n`, | |
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN | |
DISCH_TAC THEN INDUCT_TAC THEN | |
ASM_SIMP_TAC[complex_pow; CPRODUCT_MUL; CPRODUCT_1]);; | |
let NORM_CPRODUCT = prove | |
(`!f s. FINITE s ==> norm(cproduct s f) = product s (\x. norm(f x))`, | |
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_NORM_CX; REAL_ABS_NUM; | |
CPRODUCT_MUL; PRODUCT_CLAUSES; COMPLEX_NORM_MUL]);; | |
let CPRODUCT_EQ = prove | |
(`!f g s. (!x. x IN s ==> (f x = g x)) ==> cproduct s f = cproduct s g`, | |
REWRITE_TAC[cproduct] THEN MATCH_MP_TAC ITERATE_EQ THEN | |
REWRITE_TAC[MONOIDAL_COMPLEX_MUL]);; | |
let CPRODUCT_SING = prove | |
(`!f x. cproduct {x} f = f(x)`, | |
SIMP_TAC[CPRODUCT_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; COMPLEX_MUL_RID]);; | |
let CPRODUCT_CLAUSES_NUMSEG = prove | |
(`(!m. cproduct(m..0) f = if m = 0 then f(0) else Cx(&1)) /\ | |
(!m n. cproduct(m..SUC n) f = if m <= SUC n then cproduct(m..n) f * f(SUC n) | |
else cproduct(m..n) f)`, | |
REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN | |
COND_CASES_TAC THEN | |
ASM_SIMP_TAC[CPRODUCT_SING; CPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN | |
REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; COMPLEX_MUL_AC]);; | |
let CPRODUCT_CLAUSES_RIGHT = prove | |
(`!f m n. 0 < n /\ m <= n ==> cproduct(m..n) f = cproduct(m..n-1) f * (f n)`, | |
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN | |
SIMP_TAC[LT_REFL; CPRODUCT_CLAUSES_NUMSEG; SUC_SUB1]);; | |
let CPRODUCT_CLAUSES_LEFT = prove | |
(`!f m n. m <= n ==> cproduct(m..n) f = f m * cproduct(m + 1..n) f`, | |
SIMP_TAC[GSYM NUMSEG_LREC; CPRODUCT_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN | |
ARITH_TAC);; | |
let CPRODUCT_IMAGE = prove | |
(`!f g s. (!x y. x IN s /\ y IN s /\ f x = f y ==> (x = y)) | |
==> (cproduct (IMAGE f s) g = cproduct s (g o f))`, | |
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN | |
MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_COMPLEX_MUL]);; | |
let CPRODUCT_OFFSET = prove | |
(`!f m p. cproduct(m+p..n+p) f = cproduct(m..n) (\i. f(i + p))`, | |
SIMP_TAC[NUMSEG_OFFSET_IMAGE; CPRODUCT_IMAGE; | |
EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN | |
REWRITE_TAC[o_DEF]);; | |
let CPRODUCT_CONST = prove | |
(`!c s. FINITE s ==> cproduct s (\x. c) = c pow (CARD s)`, | |
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; CARD_CLAUSES; complex_pow]);; | |
let CPRODUCT_CONST_NUMSEG = prove | |
(`!c m n. cproduct (m..n) (\x. c) = c pow ((n + 1) - m)`, | |
SIMP_TAC[CPRODUCT_CONST; CARD_NUMSEG; FINITE_NUMSEG]);; | |
let CPRODUCT_PAIR = prove | |
(`!f m n. cproduct(2*m..2*n+1) f = cproduct(m..n) (\i. f(2*i) * f(2*i+1))`, | |
MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_COMPLEX_MUL) THEN | |
REWRITE_TAC[cproduct; NEUTRAL_COMPLEX_MUL]);; | |
let CPRODUCT_REFLECT = prove | |
(`!x m n. cproduct(m..n) x = | |
if n < m then Cx(&1) else cproduct(0..n-m) (\i. x(n - i))`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[cproduct] THEN | |
GEN_REWRITE_TAC LAND_CONV | |
[MATCH_MP ITERATE_REFLECT MONOIDAL_COMPLEX_MUL] THEN | |
REWRITE_TAC[NEUTRAL_COMPLEX_MUL]);; | |
let CNJ_CPRODUCT = prove | |
(`!f s. FINITE s ==> cnj(cproduct s f) = cproduct s (\i. cnj(f i))`, | |
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; CNJ_MUL; CNJ_CX]);; | |
let CX_PRODUCT = prove | |
(`!f s. FINITE s ==> Cx(product s f) = cproduct s (\i. Cx(f i))`, | |
GEN_TAC THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[CPRODUCT_CLAUSES; PRODUCT_CLAUSES; GSYM CX_MUL]);; | |
let CPRODUCT_SUPERSET = prove | |
(`!f:A->complex u v. | |
u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f(x) = Cx(&1)) | |
==> cproduct v f = cproduct u f`, | |
REWRITE_TAC[cproduct; GSYM NEUTRAL_COMPLEX_MUL] THEN | |
REWRITE_TAC[MATCH_MP ITERATE_SUPERSET MONOIDAL_COMPLEX_MUL]);; | |
let CPRODUCT_UNION = prove | |
(`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t | |
==> (cproduct (s UNION t) f = cproduct s f * cproduct t f)`, | |
SIMP_TAC[cproduct; ITERATE_UNION; MONOIDAL_COMPLEX_MUL]);; | |
let th = prove | |
(`(!f g s. (!x. x IN s ==> f(x) = g(x)) | |
==> cproduct s (\i. f(i)) = cproduct s g) /\ | |
(!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i)) | |
==> cproduct(a..b) (\i. f(i)) = cproduct(a..b) g) /\ | |
(!f g p. (!x. p x ==> f x = g x) | |
==> cproduct {y | p y} (\i. f(i)) = cproduct {y | p y} g)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CPRODUCT_EQ THEN | |
ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in | |
extend_basic_congs (map SPEC_ALL (CONJUNCTS th));; | |