Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* A library for vectors of complex numbers. *) | |
(* Much inspired from HOL-Light real vector library <"vectors.ml">. *) | |
(* *) | |
(* (c) Copyright, Sanaz Khan Afshar & Vincent Aravantinos 2011-13 *) | |
(* Hardware Verification Group, *) | |
(* Concordia University *) | |
(* *) | |
(* Contact: <s_khanaf@encs.concordia.ca> *) | |
(* <vincent.aravantinos@fortiss.org> *) | |
(* *) | |
(* Acknowledgements: *) | |
(* - Harsh Singhal: n-dimensional dot product, utility theorems *) | |
(* *) | |
(* Updated for the latest version of HOL Light (JULY 2014) *) | |
(* *) | |
(* Distributed under the same license as HOL Light. *) | |
(* ========================================================================= *) | |
needs "Multivariate/complexes.ml";; | |
needs "Multivariate/cross.ml";; | |
(* ========================================================================= *) | |
(* ADDITIONS TO THE BASE LIBRARY *) | |
(* ========================================================================= *) | |
(* ----------------------------------------------------------------------- *) | |
(* Additional tacticals *) | |
(* ----------------------------------------------------------------------- *) | |
let SINGLE f x = f [x];; | |
let distrib fs x = map (fun f -> f x) fs;; | |
let DISTRIB ttacs x = EVERY (distrib ttacs x);; | |
let REWRITE_TACS = MAP_EVERY (SINGLE REWRITE_TAC);; | |
let GCONJUNCTS thm = map GEN_ALL (CONJUNCTS (SPEC_ALL thm));; | |
(* ----------------------------------------------------------------------- *) | |
(* Additions to the vectors library *) | |
(* ----------------------------------------------------------------------- *) | |
let COMPONENT_LE_NORM_ALT = prove | |
(`!x:real^N i. 1 <= i /\ i <= dimindex (:N) ==> x$i <= norm x`, | |
MESON_TAC [REAL_ABS_LE;COMPONENT_LE_NORM;REAL_LE_TRANS]);; | |
(* ----------------------------------------------------------------------- *) | |
(* Additions to the library of complex numbers *) | |
(* ----------------------------------------------------------------------- *) | |
(* Lemmas *) | |
let RE_IM_NORM = prove | |
(`!x. Re x <= norm x /\ Im x <= norm x /\ abs(Re x) <= norm x | |
/\ abs(Im x) <= norm x`, | |
REWRITE_TAC[RE_DEF;IM_DEF] THEN GEN_TAC THEN REPEAT CONJ_TAC | |
THEN ((MATCH_MP_TAC COMPONENT_LE_NORM_ALT | |
THEN REWRITE_TAC[DIMINDEX_2] THEN ARITH_TAC) ORELSE SIMP_TAC [COMPONENT_LE_NORM]));; | |
let [RE_NORM;IM_NORM;ABS_RE_NORM;ABS_IM_NORM] = GCONJUNCTS RE_IM_NORM;; | |
let NORM_RE = prove | |
(`!x. &0 <= norm x + Re x /\ &0 <= norm x - Re x`, | |
GEN_TAC THEN MP_TAC (SPEC_ALL ABS_RE_NORM) THEN REAL_ARITH_TAC);; | |
let [NORM_RE_ADD;NORM_RE_SUB] = GCONJUNCTS NORM_RE;; | |
let NORM2_ADD_REAL = prove | |
(`!x y. | |
real x /\ real y ==> norm (x + ii * y) pow 2 = norm x pow 2 + norm y pow 2`, | |
SIMP_TAC[real;complex_norm;RE_ADD;IM_ADD;RE_MUL_II;IM_MUL_II;REAL_NEG_0; | |
REAL_ADD_LID;REAL_ADD_RID;REAL_POW_ZERO;ARITH_RULE `~(2=0)`;REAL_LE_POW_2; | |
SQRT_POW_2;REAL_LE_ADD]);; | |
let COMPLEX_EQ_RCANCEL_IMP = GEN_ALL (MATCH_MP (MESON [] | |
`(p <=> r \/ q) ==> (p /\ ~r ==> q) `) (SPEC_ALL COMPLEX_EQ_MUL_RCANCEL));; | |
let COMPLEX_BALANCE_DIV_MUL = prove | |
(`!x y z t. ~(z=Cx(&0)) ==> (x = y/z * t <=> x*z = y * t)`, | |
REPEAT STRIP_TAC THEN POP_ASSUM (fun x -> | |
ASSUME_TAC (REWRITE_RULE[x] (SPEC_ALL COMPLEX_EQ_MUL_RCANCEL)) | |
THEN ASSUME_TAC (REWRITE_RULE[x] (SPECL [`x:complex`;`z:complex`] | |
COMPLEX_DIV_RMUL))) | |
THEN SUBGOAL_THEN `x=y/z*t <=> x*z=(y/z*t)*z:complex` (SINGLE REWRITE_TAC) | |
THENL [ASM_REWRITE_TAC[]; | |
REWRITE_TAC[SIMPLE_COMPLEX_ARITH `(y/z*t)*z=(y/z*z)*t:complex`] | |
THEN ASM_REWRITE_TAC[]]);; | |
let CSQRT_MUL_LCX_LT = prove | |
(`!x y. &0 < x ==> csqrt(Cx x * y) = Cx(sqrt x) * csqrt y`, | |
REWRITE_TAC[csqrt;complex_mul;IM;RE;IM_CX;REAL_MUL_LZERO;REAL_ADD_RID;RE_CX; | |
REAL_SUB_RZERO] | |
THEN REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC | |
THEN FIRST_ASSUM (ASSUME_TAC o MATCH_MP REAL_LT_IMP_LE) | |
THEN ASM_SIMP_TAC[IM;RE;REAL_MUL_RZERO;SQRT_MUL] | |
THENL [ | |
REPEAT (POP_ASSUM MP_TAC) THEN REWRITE_TAC[REAL_ENTIRE;REAL_MUL_POS_LE] | |
THEN REPEAT STRIP_TAC | |
THEN ASM_REWRITE_TAC[SQRT_0;REAL_MUL_LZERO;REAL_MUL_RZERO]; | |
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE] | |
THEN MESON_TAC [REAL_LT_IMP_NZ]; | |
ASM_MESON_TAC [REAL_LE_MUL_EQ;REAL_ARITH `~(&0 <= y) = &0 > y`]; | |
SIMP_TAC [REAL_NEG_RMUL] THEN REPEAT (POP_ASSUM MP_TAC) | |
THEN SIMP_TAC [REAL_ARITH `~(&0 <= y) = y < &0`] | |
THEN SIMP_TAC [GSYM REAL_NEG_GT0] THEN MESON_TAC[REAL_LT_IMP_LE;SQRT_MUL]; | |
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE] | |
THEN MESON_TAC [REAL_LT_IMP_NZ]; | |
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE] | |
THEN SIMP_TAC [DE_MORGAN_THM]; | |
REPEAT (POP_ASSUM MP_TAC) THEN SIMP_TAC [REAL_ENTIRE] | |
THEN SIMP_TAC [DE_MORGAN_THM]; ALL_TAC] THENL [ | |
SIMP_TAC [REAL_NEG_0;SQRT_0;REAL_MUL_RZERO]; | |
ASM_MESON_TAC[REAL_ARITH `~(x<y /\ ~(x <=y))`]; | |
ASM_MESON_TAC[REAL_ARITH `~(x<y /\ y<x)`]; | |
ALL_TAC] | |
THEN REWRITE_TAC[GSYM (REWRITE_RULE[CX_DEF;complex_mul;RE;IM; | |
REAL_MUL_LZERO;REAL_ADD_RID;REAL_SUB_RZERO] COMPLEX_CMUL)] | |
THEN SIMP_TAC [NORM_MUL] THEN POP_ASSUM MP_TAC | |
THEN ASM_SIMP_TAC [GSYM REAL_ABS_REFL] THEN DISCH_TAC | |
THEN SIMP_TAC [REAL_ABS_MUL] | |
THEN ASM_SIMP_TAC [GSYM REAL_ABS_REFL] | |
THEN SIMP_TAC [GSYM REAL_ADD_LDISTRIB; GSYM REAL_SUB_LDISTRIB] | |
THEN SUBGOAL_THEN `(x*Im y) / (x*abs(Im y)) = Im y / abs(Im y)` ASSUME_TAC | |
THENL [ | |
SIMP_TAC [real_div] THEN SIMP_TAC [REAL_INV_MUL] | |
THEN SIMP_TAC [GSYM REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_AC] | |
THEN SUBGOAL_THEN `Im y * x * inv x * inv (abs(Im y)) = | |
Im y * (x * inv x) * inv (abs (Im y)) ` ASSUME_TAC | |
THENL [SIMP_TAC [REAL_MUL_AC]; ALL_TAC] | |
THEN ASM_SIMP_TAC[REAL_MUL_RINV;REAL_LT_IMP_NZ] | |
THEN SIMP_TAC [REAL_MUL_LID] THEN SIMP_TAC [REAL_MUL_AC]; | |
ALL_TAC] | |
THEN ASM_SIMP_TAC[] | |
THEN SUBGOAL_THEN `sqrt x * Im y / abs(Im y) * sqrt ((norm y-Re y) / &2) = | |
Im y / abs (Im y) * sqrt x * sqrt ((norm y - Re y) / &2)` ASSUME_TAC | |
THENL [SIMP_TAC [REAL_MUL_AC]; ALL_TAC] THEN ASM_SIMP_TAC[] | |
THEN SUBGOAL_THEN `sqrt ((x * (norm y - Re y)) / &2) = | |
sqrt (x * (norm y - Re y)) / sqrt (&2)` ASSUME_TAC | |
THENL [ | |
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC THENL [ | |
ASM_SIMP_TAC[REAL_LE_MUL_EQ;REAL_LT_IMP_LE] THEN SIMP_TAC[NORM_RE_SUB]; | |
REAL_ARITH_TAC]; | |
ALL_TAC] | |
THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `sqrt ((norm y - Re y) / &2) = | |
sqrt (norm y - Re y) / sqrt (&2)` ASSUME_TAC | |
THENL [ | |
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC | |
THENL [SIMP_TAC [NORM_RE_SUB]; REAL_ARITH_TAC]; | |
ALL_TAC ] | |
THEN ASM_SIMP_TAC[] | |
THEN SUBGOAL_THEN `sqrt ((x * (norm y + Re y)) / &2) = | |
sqrt (x * (norm y + Re y)) / sqrt (&2)` ASSUME_TAC | |
THENL [ | |
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC | |
THENL [ | |
ASM_SIMP_TAC [REAL_LE_MUL_EQ;REAL_LT_IMP_LE] | |
THEN SIMP_TAC[NORM_RE_ADD]; | |
REAL_ARITH_TAC]; | |
ALL_TAC] | |
THEN SUBGOAL_THEN `sqrt ((norm y + Re y) / &2) = | |
sqrt (norm y + Re y) / sqrt (&2)` ASSUME_TAC | |
THENL [ | |
SIMP_TAC[SQRT_DIV] THEN CONJ_TAC | |
THENL [SIMP_TAC[NORM_RE_ADD]; REAL_ARITH_TAC]; | |
ALL_TAC] | |
THEN ASM_SIMP_TAC[] THEN SUBGOAL_THEN `&0 <= x` ASSUME_TAC | |
THENL [ ASM_SIMP_TAC [REAL_LT_IMP_LE]; ALL_TAC ] | |
THEN SIMP_TAC[COMPLEX_EQ] THEN SIMP_TAC[RE;IM] THEN CONJ_TAC | |
THENL [ | |
SUBGOAL_THEN `sqrt x * sqrt (norm y + Re y) / sqrt (&2) = | |
(sqrt x * sqrt (norm y + Re y)) / sqrt (&2)` ASSUME_TAC | |
THENL [REAL_ARITH_TAC; ALL_TAC] | |
THEN ASM_MESON_TAC [SQRT_MUL;NORM_RE_ADD]; | |
SUBGOAL_THEN `Im y/abs(Im y) * sqrt x * sqrt (norm y-Re y) / sqrt(&2) = | |
Im y/abs (Im y) * (sqrt x * sqrt (norm y - Re y))/sqrt(&2)` ASSUME_TAC | |
THENL [REAL_ARITH_TAC; ALL_TAC] | |
THEN ASM_MESON_TAC[SQRT_MUL;NORM_RE_SUB]]);; | |
let CSQRT_MUL_LCX = prove | |
(`!x y. &0 <= x ==> csqrt(Cx x * y) = Cx(sqrt x) * csqrt y`, | |
REWRITE_TAC[REAL_LE_LT] THEN REPEAT STRIP_TAC | |
THEN ASM_SIMP_TAC[CSQRT_MUL_LCX_LT] THEN EXPAND_TAC "x" | |
THEN REWRITE_TAC[COMPLEX_MUL_LZERO;SQRT_0;CSQRT_0]);; | |
let REAL_ADD_POW_2 = prove | |
(`!x y:real. (x+y) pow 2 = x pow 2 + y pow 2 + &2 * x * y`, | |
REAL_ARITH_TAC);; | |
let COMPLEX_ADD_POW_2 = prove | |
(`!x y:complex. (x+y) pow 2 = x pow 2 + y pow 2 + Cx(&2) * x * y`, | |
REWRITE_TAC[COMPLEX_POW_2] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ----------------------------------------------------------------------- *) | |
(* Additions to the topology library *) | |
(* ----------------------------------------------------------------------- *) | |
prioritize_vector ();; | |
(* Lemmas *) | |
let FINITE_INTER_ENUM = prove | |
(`!s n. FINITE(s INTER (0..n))`, | |
MESON_TAC[FINITE_INTER;FINITE_NUMSEG]);; | |
let NORM_PASTECART_GE1 = prove | |
(`!x y. norm x <= norm (pastecart x y)`, | |
MESON_TAC[FSTCART_PASTECART;NORM_FSTCART]);; | |
let NORM_PASTECART_GE2 = prove | |
(`!x y. norm y <= norm (pastecart x y)`, | |
MESON_TAC[SNDCART_PASTECART;NORM_SNDCART]);; | |
let SUMS_PASTECART = prove | |
(`!s f1:num->real^N f2:num->real^M l1 l2. (f1 sums l1) s /\ (f2 sums l2) s | |
<=> ((\x. pastecart (f1 x) (f2 x)) sums (pastecart l1 l2)) s`, | |
SIMP_TAC[sums;FINITE_INTER_ENUM;GSYM PASTECART_VSUM; | |
GSYM LIM_PASTECART_EQ]);; | |
let LINEAR_SUMS = prove( | |
`!s f l g. linear g ==> ((f sums l) s ==> ((g o f) sums (g l)) s)`, | |
SIMP_TAC[sums;FINITE_INTER_ENUM;GSYM LINEAR_VSUM; | |
REWRITE_RULE[o_DEF;CONTINUOUS_AT_SEQUENTIALLY] LINEAR_CONTINUOUS_AT]);; | |
(* ----------------------------------------------------------------------- *) | |
(* Embedding of reals in complex numbers *) | |
(* ----------------------------------------------------------------------- *) | |
let real_of_complex = new_definition `real_of_complex c = @r. c = Cx r`;; | |
let REAL_OF_COMPLEX = prove | |
(`!c. real c ==> Cx(real_of_complex c) = c`, | |
MESON_TAC[REAL;real_of_complex]);; | |
let REAL_OF_COMPLEX_RE = prove | |
(`!c. real c ==> real_of_complex c = Re c`, | |
MESON_TAC[RE_CX;REAL_OF_COMPLEX]);; | |
let REAL_OF_COMPLEX_CX = prove | |
(`!r. real_of_complex (Cx r) = r`, | |
SIMP_TAC[REAL_CX;REAL_OF_COMPLEX_RE;RE_CX]);; | |
let REAL_OF_COMPLEX_NORM = prove | |
(`!c. real c ==> norm c = abs (real_of_complex c)`, | |
MESON_TAC[REAL_NORM;REAL_OF_COMPLEX_RE]);; | |
let REAL_OF_COMPLEX_ADD = prove | |
(`!x y. real x /\ real y | |
==> real_of_complex (x+y) = real_of_complex x + real_of_complex y`, | |
MESON_TAC[REAL_ADD;REAL_OF_COMPLEX_RE;RE_ADD]);; | |
let REAL_MUL = prove | |
(`!x y. real x /\ real y ==> real (x*y)`, | |
REWRITE_TAC[real] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let REAL_OF_COMPLEX_MUL = prove( | |
`!x y. real x /\ real y | |
==> real_of_complex (x*y) = real_of_complex x * real_of_complex y`, | |
MESON_TAC[REAL_MUL;REAL_OF_COMPLEX;CX_MUL;REAL_OF_COMPLEX_CX]);; | |
let REAL_OF_COMPLEX_0 = prove( | |
`!x. real x ==> (real_of_complex x = &0 <=> x = Cx(&0))`, | |
REWRITE_TAC[REAL_EXISTS] THEN REPEAT STRIP_TAC | |
THEN ASM_SIMP_TAC[REAL_OF_COMPLEX_CX;CX_INJ]);; | |
let REAL_COMPLEX_ADD_CNJ = prove( | |
`!x. real(cnj x + x) /\ real(x + cnj x)`, | |
REWRITE_TAC[COMPLEX_ADD_CNJ;REAL_CX]);; | |
(* TODO | |
*let RE_EQ_NORM = prove(`!x. Re x = norm x <=> real x /\ &0 <= real_of_complex x`, | |
*) | |
(* ----------------------------------------------------------------------- *) | |
(* Additions to the vectors library *) | |
(* ----------------------------------------------------------------------- *) | |
let vector_const = new_definition | |
`vector_const (k:A) :A^N = lambda i. k`;; | |
let vector_map = new_definition | |
`vector_map (f:A->B) (v:A^N) :B^N = lambda i. f(v$i)`;; | |
let vector_map2 = new_definition | |
`vector_map2 (f:A->B->C) (v1:A^N) (v2:B^N) :C^N = | |
lambda i. f (v1$i) (v2$i)`;; | |
let vector_map3 = new_definition | |
`vector_map3 (f:A->B->C->D) (v1:A^N) (v2:B^N) (v3:C^N) :D^N = | |
lambda i. f (v1$i) (v2$i) (v3$i)`;; | |
let FINITE_INDEX_INRANGE_2 = prove | |
(`!i. ?k. 1 <= k /\ k <= dimindex(:N) /\ (!x:A^N. x$i = x$k) | |
/\ (!x:B^N. x$i = x$k) /\ (!x:C^N. x$i = x$k) /\ (!x:D^N. x$i = x$k)`, | |
REWRITE_TAC[finite_index] THEN MESON_TAC[FINITE_INDEX_WORKS]);; | |
let COMPONENT_TAC x = | |
REPEAT GEN_TAC THEN CHOOSE_TAC (SPEC_ALL FINITE_INDEX_INRANGE_2) | |
THEN ASM_SIMP_TAC[x;LAMBDA_BETA];; | |
let VECTOR_CONST_COMPONENT = prove | |
(`!i k. ((vector_const k):A^N)$i = k`, | |
COMPONENT_TAC vector_const);; | |
let VECTOR_MAP_COMPONENT = prove | |
(`!i f:A->B v:A^N. (vector_map f v)$i = f (v$i)`, | |
COMPONENT_TAC vector_map);; | |
let VECTOR_MAP2_COMPONENT = prove | |
(`!i f:A->B->C v1:A^N v2. (vector_map2 f v1 v2)$i = f (v1$i) (v2$i)`, | |
COMPONENT_TAC vector_map2);; | |
let VECTOR_MAP3_COMPONENT = prove( | |
`!i f:A->B->C->D v1:A^N v2 v3. (vector_map3 f v1 v2 v3)$i = | |
f (v1$i) (v2$i) (v3$i)`, | |
COMPONENT_TAC vector_map3);; | |
let COMMON_TAC = | |
REWRITE_TAC[vector_const;vector_map;vector_map2;vector_map3] | |
THEN ONCE_REWRITE_TAC[CART_EQ] THEN SIMP_TAC[LAMBDA_BETA;o_DEF];; | |
let VECTOR_MAP_VECTOR_CONST = prove | |
(`!f:A->B k. vector_map f ((vector_const k):A^N) = vector_const (f k)`, | |
COMMON_TAC);; | |
let VECTOR_MAP_VECTOR_MAP = prove | |
(`!f:A->B g:C->A v:C^N. | |
vector_map f (vector_map g v) = vector_map (f o g) v`, | |
COMMON_TAC);; | |
let VECTOR_MAP_VECTOR_MAP2 = prove | |
(`!f:A->B g:C->D->A u v:D^N. | |
vector_map f (vector_map2 g u v) = vector_map2 (\x y. f (g x y)) u v`, | |
COMMON_TAC);; | |
let VECTOR_MAP2_LVECTOR_CONST = prove | |
(`!f:A->B->C k v:B^N. | |
vector_map2 f (vector_const k) v = vector_map (f k) v`, | |
COMMON_TAC);; | |
let VECTOR_MAP2_RVECTOR_CONST = prove | |
(`!f:A->B->C k v:A^N. | |
vector_map2 f v (vector_const k) = vector_map (\x. f x k) v`, | |
COMMON_TAC);; | |
let VECTOR_MAP2_LVECTOR_MAP = prove | |
(`!f:A->B->C g:D->A v1 v2:B^N. | |
vector_map2 f (vector_map g v1) v2 = vector_map2 (f o g) v1 v2`, | |
COMMON_TAC);; | |
let VECTOR_MAP2_RVECTOR_MAP = prove | |
(`!f:A->B->C g:D->B v1 v2:D^N. | |
vector_map2 f v1 (vector_map g v2) = vector_map2 (\x y. f x (g y)) v1 v2`, | |
COMMON_TAC);; | |
let VECTOR_MAP2_LVECTOR_MAP2 = prove | |
(`!f:A->B->C g:D->E->A v1 v2 v3:B^N. | |
vector_map2 f (vector_map2 g v1 v2) v3 = | |
vector_map3 (\x y. f (g x y)) v1 v2 v3`, | |
COMMON_TAC);; | |
let VECTOR_MAP2_RVECTOR_MAP2 = prove( | |
`!f:A->B->C g:D->E->B v1 v2 v3:E^N. | |
vector_map2 f v1 (vector_map2 g v2 v3) = | |
vector_map3 (\x y z. f x (g y z)) v1 v2 v3`, | |
COMMON_TAC);; | |
let VECTOR_MAP_SIMP_TAC = REWRITE_TAC[ | |
VECTOR_MAP_VECTOR_CONST;VECTOR_MAP2_LVECTOR_CONST; | |
VECTOR_MAP2_RVECTOR_CONST;VECTOR_MAP_VECTOR_MAP;VECTOR_MAP2_RVECTOR_MAP; | |
VECTOR_MAP2_LVECTOR_MAP;VECTOR_MAP2_RVECTOR_MAP2;VECTOR_MAP2_LVECTOR_MAP2; | |
VECTOR_MAP_VECTOR_MAP2];; | |
let VECTOR_MAP_PROPERTY_TAC fs prop = | |
REWRITE_TAC fs THEN VECTOR_MAP_SIMP_TAC THEN ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[VECTOR_MAP_COMPONENT;VECTOR_MAP2_COMPONENT; | |
VECTOR_MAP3_COMPONENT;VECTOR_CONST_COMPONENT;o_DEF;prop];; | |
let VECTOR_MAP_PROPERTY thm f prop = | |
prove(thm,VECTOR_MAP_PROPERTY_TAC f prop);; | |
let COMPLEX_VECTOR_MAP = prove | |
(`!f:complex->complex g. f = vector_map g | |
<=> !z. f z = complex (g (Re z), g (Im z))`, | |
REWRITE_TAC[vector_map;FUN_EQ_THM;complex] THEN REPEAT (GEN_TAC ORELSE EQ_TAC) | |
THEN ASM_SIMP_TAC[CART_EQ;DIMINDEX_2;FORALL_2;LAMBDA_BETA;VECTOR_2;RE_DEF;IM_DEF]);; | |
let COMPLEX_NEG_IS_A_MAP = prove | |
(`(--):complex->complex = vector_map ((--):real->real)`, | |
REWRITE_TAC[COMPLEX_VECTOR_MAP;complex_neg]);; | |
let VECTOR_NEG_IS_A_MAP = prove | |
(`(--):real^N->real^N = vector_map ((--):real->real)`, | |
REWRITE_TAC[FUN_EQ_THM;CART_EQ;VECTOR_NEG_COMPONENT;VECTOR_MAP_COMPONENT]);; | |
let VECTOR_MAP_VECTOR_MAP_ALT = prove | |
(`!f:A^N->B^N g:C^N->A^N f' g'. f = vector_map f' /\ g = vector_map g' ==> | |
f o g = vector_map (f' o g')`, | |
SIMP_TAC[o_DEF;FUN_EQ_THM;VECTOR_MAP_VECTOR_MAP]);; | |
let COMPLEX_VECTOR_MAP2 = prove | |
(`!f:complex->complex->complex g. f = vector_map2 g <=> | |
!z1 z2. f z1 z2 = complex (g (Re z1) (Re z2), g (Im z1) (Im z2))`, | |
REWRITE_TAC[vector_map2;FUN_EQ_THM;complex] | |
THEN REPEAT (GEN_TAC ORELSE EQ_TAC) | |
THEN ASM_SIMP_TAC[CART_EQ;DIMINDEX_2;FORALL_2;LAMBDA_BETA;VECTOR_2;RE_DEF; | |
IM_DEF]);; | |
let VECTOR_MAP2_RVECTOR_MAP_ALT = prove( | |
`!f:complex->complex->complex g:complex->complex f' g'. | |
f = vector_map2 f' /\ g = vector_map g' | |
==> (\x y. f x (g y)) = vector_map2 (\x y. f' x (g' y))`, | |
SIMP_TAC[FUN_EQ_THM;VECTOR_MAP2_RVECTOR_MAP]);; | |
let COMPLEX_ADD_IS_A_MAP = prove | |
(`(+):complex->complex->complex = vector_map2 ((+):real->real->real)`, | |
REWRITE_TAC[COMPLEX_VECTOR_MAP2;complex_add]);; | |
let VECTOR_ADD_IS_A_MAP = prove | |
(`(+):real^N->real^N->real^N = vector_map2 ((+):real->real->real)`, | |
REWRITE_TAC[FUN_EQ_THM;CART_EQ;VECTOR_ADD_COMPONENT;VECTOR_MAP2_COMPONENT]);; | |
let COMPLEX_SUB_IS_A_MAP = prove | |
(`(-):complex->complex->complex = vector_map2 ((-):real->real->real)`, | |
ONCE_REWRITE_TAC[prove(`(-) = \x y:complex. x-y`,REWRITE_TAC[FUN_EQ_THM])] | |
THEN ONCE_REWRITE_TAC[prove(`(-) = \x y:real. x-y`,REWRITE_TAC[FUN_EQ_THM])] | |
THEN REWRITE_TAC[complex_sub;real_sub] | |
THEN MATCH_MP_TAC VECTOR_MAP2_RVECTOR_MAP_ALT | |
THEN REWRITE_TAC[COMPLEX_NEG_IS_A_MAP;COMPLEX_ADD_IS_A_MAP]);; | |
let VECTOR_SUB_IS_A_MAP = prove | |
(`(-):real^N->real^N->real^N = vector_map2 ((-):real->real->real)`, | |
REWRITE_TAC[FUN_EQ_THM;CART_EQ;VECTOR_SUB_COMPONENT;VECTOR_MAP2_COMPONENT]);; | |
let COMMON_TAC x = | |
SIMP_TAC[CART_EQ;pastecart;x;LAMBDA_BETA] THEN REPEAT STRIP_TAC | |
THEN REPEAT COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[] | |
THEN SUBGOAL_THEN `1<= i-dimindex(:N) /\ i-dimindex(:N) <= dimindex(:M)` | |
ASSUME_TAC | |
THEN ASM_SIMP_TAC[LAMBDA_BETA] | |
THEN REPEAT (POP_ASSUM (MP_TAC o REWRITE_RULE[DIMINDEX_FINITE_SUM])) | |
THEN ARITH_TAC;; | |
let PASTECART_VECTOR_MAP = prove | |
(`!f:A->B x:A^N y:A^M. | |
pastecart (vector_map f x) (vector_map f y) = | |
vector_map f (pastecart x y)`, | |
COMMON_TAC vector_map);; | |
let PASTECART_VECTOR_MAP2 = prove | |
(`!f:A->B->C x1:A^N x2 y1:A^M y2. | |
pastecart (vector_map2 f x1 x2) (vector_map2 f y1 y2) | |
= vector_map2 f (pastecart x1 y1) (pastecart x2 y2)`, | |
COMMON_TAC vector_map2);; | |
let vector_zip = new_definition | |
`vector_zip (v1:A^N) (v2:B^N) : (A#B)^N = lambda i. (v1$i,v2$i)`;; | |
let VECTOR_ZIP_COMPONENT = prove | |
(`!i v1:A^N v2:B^N. (vector_zip v1 v2)$i = (v1$i,v2$i)`, | |
REPEAT GEN_TAC THEN CHOOSE_TAC (INST_TYPE [`:A#B`,`:C`] (SPEC_ALL | |
FINITE_INDEX_INRANGE_2)) THEN ASM_SIMP_TAC[vector_zip;LAMBDA_BETA]);; | |
let vector_unzip = new_definition | |
`vector_unzip (v:(A#B)^N):(A^N)#(B^N) = vector_map FST v,vector_map SND v`;; | |
let VECTOR_UNZIP_COMPONENT = prove | |
(`!i v:(A#B)^N. (FST (vector_unzip v))$i = FST (v$i) | |
/\ (SND (vector_unzip v))$i = SND (v$i)`, | |
REWRITE_TAC[vector_unzip;VECTOR_MAP_COMPONENT]);; | |
let VECTOR_MAP2_AS_VECTOR_MAP = prove | |
(`!f:A->B->C v1:A^N v2:B^N. | |
vector_map2 f v1 v2 = vector_map (UNCURRY f) (vector_zip v1 v2)`, | |
REWRITE_TAC[CART_EQ;VECTOR_MAP2_COMPONENT;VECTOR_MAP_COMPONENT; | |
VECTOR_ZIP_COMPONENT;UNCURRY_DEF]);; | |
(* ========================================================================= *) | |
(* BASIC ARITHMETIC *) | |
(* ========================================================================= *) | |
make_overloadable "%" `:A-> B-> B`;; | |
let prioritize_cvector () = | |
overload_interface("--",`(cvector_neg):complex^N->complex^N`); | |
overload_interface("+",`(cvector_add):complex^N->complex^N->complex^N`); | |
overload_interface("-",`(cvector_sub):complex^N->complex^N->complex^N`); | |
overload_interface("%",`(cvector_mul):complex->complex^N->complex^N`);; | |
let cvector_zero = new_definition | |
`cvector_zero:complex^N = vector_const (Cx(&0))`;; | |
let cvector_neg = new_definition | |
`cvector_neg :complex^N->complex^N = vector_map (--)`;; | |
let cvector_add = new_definition | |
`cvector_add :complex^N->complex^N->complex^N = vector_map2 (+)`;; | |
let cvector_sub = new_definition | |
`cvector_sub :complex^N->complex^N->complex^N = vector_map2 (-)`;; | |
let cvector_mul = new_definition | |
`(cvector_mul:complex->complex^N->complex^N) a = vector_map (( * ) a)`;; | |
overload_interface("%",`(%):real->real^N->real^N`);; | |
prioritize_cvector ();; | |
let CVECTOR_ZERO_COMPONENT = prove | |
(`!i. (cvector_zero:complex^N)$i = Cx(&0)`, | |
REWRITE_TAC[cvector_zero;VECTOR_CONST_COMPONENT]);; | |
let CVECTOR_NON_ZERO = prove | |
(`!x:complex^N. ~(x=cvector_zero) | |
<=> ?i. 1 <= i /\ i <= dimindex(:N) /\ ~(x$i = Cx(&0))`, | |
GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT] THEN MESON_TAC[]);; | |
let CVECTOR_ADD_COMPONENT = prove | |
(`!X Y:complex^N i. ((X + Y)$i = X$i + Y$i)`, | |
REWRITE_TAC[cvector_add;VECTOR_MAP2_COMPONENT]);; | |
let CVECTOR_SUB_COMPONENT = prove | |
(`!X:complex^N Y i. ((X - Y)$i = X$i - Y$i)`, | |
REWRITE_TAC[cvector_sub;VECTOR_MAP2_COMPONENT]);; | |
let CVECTOR_NEG_COMPONENT = prove | |
(`!X:complex^N i. ((--X)$i = --(X$i))`, | |
REWRITE_TAC[cvector_neg;VECTOR_MAP_COMPONENT]);; | |
let CVECTOR_MUL_COMPONENT = prove | |
(`!c:complex X:complex^N i. ((c % X)$i = c * X$i)`, | |
REWRITE_TAC[cvector_mul;VECTOR_MAP_COMPONENT]);; | |
(* Simple generic tactic adapted from VECTOR_ARITH_TAC *) | |
let CVECTOR_ARITH_TAC = | |
let RENAMED_LAMBDA_BETA th = | |
if fst(dest_fun_ty(type_of(funpow 3 rand (concl th)))) = aty | |
then INST_TYPE [aty,bty; bty,aty] LAMBDA_BETA else LAMBDA_BETA | |
in | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
REPEAT(GEN_TAC ORELSE CONJ_TAC ORELSE DISCH_TAC ORELSE EQ_TAC) THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN | |
GEN_REWRITE_TAC ONCE_DEPTH_CONV [CART_EQ] THEN | |
REWRITE_TAC[AND_FORALL_THM] THEN TRY EQ_TAC THEN | |
TRY(MATCH_MP_TAC MONO_FORALL) THEN GEN_TAC THEN | |
REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`; | |
TAUT `(a ==> b) \/ (a ==> c) <=> a ==> b \/ c`] THEN | |
TRY(MATCH_MP_TAC(TAUT `(a ==> b ==> c) ==> (a ==> b) ==> (a ==> c)`)) THEN | |
REWRITE_TAC[cvector_zero;cvector_add; cvector_sub; cvector_neg; cvector_mul; vector_map;vector_map2;vector_const] THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP(RENAMED_LAMBDA_BETA th) th]) THEN | |
SIMPLE_COMPLEX_ARITH_TAC;; | |
let CVECTOR_ARITH tm = prove(tm,CVECTOR_ARITH_TAC);; | |
(* ========================================================================= *) | |
(* VECTOR SPACE AXIOMS AND ADDITIONAL BASIC RESULTS *) | |
(* ========================================================================= *) | |
let CVECTOR_MAP_PROPERTY thm = | |
VECTOR_MAP_PROPERTY thm [cvector_zero;cvector_add;cvector_sub;cvector_neg; | |
cvector_mul];; | |
let CVECTOR_ADD_SYM = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. x + y = y + x` | |
COMPLEX_ADD_SYM;; | |
let CVECTOR_ADD_ASSOC = CVECTOR_MAP_PROPERTY | |
`!x y z:complex^N. x + (y + z) = (x + y) + z` | |
COMPLEX_ADD_ASSOC;; | |
let CVECTOR_ADD_ID = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. x + cvector_zero = x /\ cvector_zero + x = x` | |
(CONJ COMPLEX_ADD_RID COMPLEX_ADD_LID);; | |
let [CVECTOR_ADD_RID;CVECTOR_ADD_LID] = GCONJUNCTS CVECTOR_ADD_ID;; | |
let CVECTOR_ADD_INV = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. x + -- x = cvector_zero /\ --x + x = cvector_zero` | |
(CONJ COMPLEX_ADD_RINV COMPLEX_ADD_LINV);; | |
let CVECTOR_MUL_ASSOC = CVECTOR_MAP_PROPERTY | |
`!a b x:complex^N. a % (b % x) = (a * b) % x` | |
COMPLEX_MUL_ASSOC;; | |
let CVECTOR_SUB_LDISTRIB = CVECTOR_MAP_PROPERTY | |
`!c x y:complex^N. c % (x - y) = c % x - c % y` | |
COMPLEX_SUB_LDISTRIB;; | |
let CVECTOR_SCALAR_RDIST = CVECTOR_MAP_PROPERTY | |
`!a b x:complex^N. (a + b) % x = a % x + b % x` | |
COMPLEX_ADD_RDISTRIB;; | |
let CVECTOR_MUL_ID = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. Cx(&1) % x = x` | |
COMPLEX_MUL_LID;; | |
let CVECTOR_SUB_REFL = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. x - x = cvector_zero` | |
COMPLEX_SUB_REFL;; | |
let CVECTOR_SUB_RADD = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. x - (x + y) = --y` | |
COMPLEX_ADD_SUB2;; | |
let CVECTOR_NEG_SUB = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. --(x - y) = y - x` | |
COMPLEX_NEG_SUB;; | |
let CVECTOR_SUB_EQ = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. (x - y = cvector_zero) <=> (x = y)` | |
COMPLEX_SUB_0;; | |
let CVECTOR_MUL_LZERO = CVECTOR_MAP_PROPERTY | |
`!x. Cx(&0) % x = cvector_zero` | |
COMPLEX_MUL_LZERO;; | |
let CVECTOR_SUB_ADD = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. (x - y) + y = x` | |
COMPLEX_SUB_ADD;; | |
let CVECTOR_SUB_ADD2 = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. y + (x - y) = x` | |
COMPLEX_SUB_ADD2;; | |
let CVECTOR_ADD_LDISTRIB = CVECTOR_MAP_PROPERTY | |
`!c x y:complex^N. c % (x + y) = c % x + c % y` | |
COMPLEX_ADD_LDISTRIB;; | |
let CVECTOR_ADD_RDISTRIB = CVECTOR_MAP_PROPERTY | |
`!a b x:complex^N. (a + b) % x = a % x + b % x` | |
COMPLEX_ADD_RDISTRIB;; | |
let CVECTOR_SUB_RDISTRIB = CVECTOR_MAP_PROPERTY | |
`!a b x:complex^N. (a - b) % x = a % x - b % x` | |
COMPLEX_SUB_RDISTRIB;; | |
let CVECTOR_ADD_SUB = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. (x + y:complex^N) - x = y` | |
COMPLEX_ADD_SUB;; | |
let CVECTOR_EQ_ADDR = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. (x + y = x) <=> (y = cvector_zero)` | |
COMPLEX_EQ_ADD_LCANCEL_0;; | |
let CVECTOR_SUB = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. x - y = x + --(y:complex^N)` | |
complex_sub;; | |
let CVECTOR_SUB_RZERO = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. x - cvector_zero = x` | |
COMPLEX_SUB_RZERO;; | |
let CVECTOR_MUL_RZERO = CVECTOR_MAP_PROPERTY | |
`!c:complex. c % cvector_zero = cvector_zero` | |
COMPLEX_MUL_RZERO;; | |
let CVECTOR_MUL_LZERO = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. Cx(&0) % x = cvector_zero` | |
COMPLEX_MUL_LZERO;; | |
let CVECTOR_MUL_EQ_0 = prove | |
(`!a:complex x:complex^N. | |
(a % x = cvector_zero <=> a = Cx(&0) \/ x = cvector_zero)`, | |
REPEAT STRIP_TAC THEN EQ_TAC THENL [ | |
ASM_CASES_TAC `a=Cx(&0)` THENL [ | |
ASM_REWRITE_TAC[]; | |
GEN_REWRITE_TAC (RATOR_CONV o DEPTH_CONV) [CART_EQ] | |
THEN ASM_REWRITE_TAC[CVECTOR_MUL_COMPONENT;CVECTOR_ZERO_COMPONENT; | |
COMPLEX_ENTIRE] | |
THEN GEN_REWRITE_TAC (RAND_CONV o DEPTH_CONV) [CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT]; | |
]; | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[CVECTOR_MUL_RZERO;CVECTOR_MUL_LZERO]; | |
]);; | |
let CVECTOR_NEG_MINUS1 = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. --x = (--(Cx(&1))) % x` | |
(GSYM COMPLEX_NEG_MINUS1);; | |
let CVECTOR_SUB_LZERO = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. cvector_zero - x = --x` | |
COMPLEX_SUB_LZERO;; | |
let CVECTOR_NEG_NEG = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. --(--(x:complex^N)) = x` | |
COMPLEX_NEG_NEG;; | |
let CVECTOR_MUL_LNEG = CVECTOR_MAP_PROPERTY | |
`!c x:complex^N. --c % x = --(c % x)` | |
COMPLEX_MUL_LNEG;; | |
let CVECTOR_MUL_RNEG = CVECTOR_MAP_PROPERTY | |
`!c x:complex^N. c % --x = --(c % x)` | |
COMPLEX_MUL_RNEG;; | |
let CVECTOR_NEG_0 = CVECTOR_MAP_PROPERTY | |
`--cvector_zero = cvector_zero` | |
COMPLEX_NEG_0;; | |
let CVECTOR_NEG_EQ_0 = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. --x = cvector_zero <=> x = cvector_zero` | |
COMPLEX_NEG_EQ_0;; | |
let CVECTOR_ADD_AC = prove | |
(`!x y z:complex^N. | |
(x + y = y + x) /\ ((x + y) + z = x + y + z) /\ (x + y + z = y + x + z)`, | |
MESON_TAC[CVECTOR_ADD_SYM;CVECTOR_ADD_ASSOC]);; | |
let CVECTOR_MUL_LCANCEL = prove | |
(`!a x y:complex^N. a % x = a % y <=> a = Cx(&0) \/ x = y`, | |
MESON_TAC[CVECTOR_MUL_EQ_0;CVECTOR_SUB_LDISTRIB;CVECTOR_SUB_EQ]);; | |
let CVECTOR_MUL_RCANCEL = prove | |
(`!a b x:complex^N. a % x = b % x <=> a = b \/ x = cvector_zero`, | |
MESON_TAC[CVECTOR_MUL_EQ_0;CVECTOR_SUB_RDISTRIB;COMPLEX_SUB_0;CVECTOR_SUB_EQ]);; | |
(* ========================================================================= *) | |
(* LINEARITY *) | |
(* ========================================================================= *) | |
let clinear = new_definition | |
`clinear (f:complex^M->complex^N) | |
<=> (!x y. f(x + y) = f(x) + f(y)) /\ (!c x. f(c % x) = c % f(x))`;; | |
let COMMON_TAC additional_thms = | |
SIMP_TAC[clinear] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CART_EQ] | |
THEN SIMP_TAC(CVECTOR_ADD_COMPONENT::CVECTOR_MUL_COMPONENT::additional_thms) | |
THEN SIMPLE_COMPLEX_ARITH_TAC;; | |
let CLINEAR_COMPOSE_CMUL = prove | |
(`!f:complex^M->complex^N c. clinear f ==> clinear (\x. c % f x)`, | |
COMMON_TAC[]);; | |
let CLINEAR_COMPOSE_NEG = prove | |
(`!f:complex^M->complex^N. clinear f ==> clinear (\x. --(f x))`, | |
COMMON_TAC[CVECTOR_NEG_COMPONENT]);; | |
let CLINEAR_COMPOSE_ADD = prove | |
(`!f:complex^M->complex^N g. clinear f /\ clinear g ==> clinear (\x. f x + g x)`, | |
COMMON_TAC[]);; | |
let CLINEAR_COMPOSE_SUB = prove | |
(`!f:complex^M->complex^N g. clinear f /\ clinear g ==> clinear (\x. f x - g x)`, | |
COMMON_TAC[CVECTOR_SUB_COMPONENT]);; | |
let CLINEAR_COMPOSE = prove | |
(`!f:complex^M->complex^N g. clinear f /\ clinear g ==> clinear (g o f)`, | |
SIMP_TAC[clinear;o_THM]);; | |
let CLINEAR_ID = prove | |
(`clinear (\x:complex^N. x)`, | |
REWRITE_TAC[clinear]);; | |
let CLINEAR_I = prove | |
(`clinear (I:complex^N->complex^N)`, | |
REWRITE_TAC[I_DEF;CLINEAR_ID]);; | |
let CLINEAR_ZERO = prove | |
(`clinear ((\x. cvector_zero):complex^M->complex^N)`, | |
COMMON_TAC[CVECTOR_ZERO_COMPONENT]);; | |
let CLINEAR_NEGATION = prove | |
(`clinear ((--):complex^N->complex^N)`, | |
COMMON_TAC[CVECTOR_NEG_COMPONENT]);; | |
let CLINEAR_VMUL_COMPONENT = prove | |
(`!f:complex^M->complex^N v:complex^P k. | |
clinear f /\ 1 <= k /\ k <= dimindex(:N) ==> clinear (\x. (f x)$k % v)`, | |
COMMON_TAC[]);; | |
let CLINEAR_0 = prove | |
(`!f:complex^M->complex^N. clinear f ==> (f cvector_zero = cvector_zero)`, | |
MESON_TAC[CVECTOR_MUL_LZERO;clinear]);; | |
let CLINEAR_CMUL = prove | |
(`!f:complex^M->complex^N c x. clinear f ==> (f (c % x) = c % f x)`, | |
SIMP_TAC[clinear]);; | |
let CLINEAR_NEG = prove | |
(`!f:complex^M->complex^N x. clinear f ==> (f (--x) = --(f x))`, | |
ONCE_REWRITE_TAC[CVECTOR_NEG_MINUS1] THEN SIMP_TAC[CLINEAR_CMUL]);; | |
let CLINEAR_ADD = prove | |
(`!f:complex^M->complex^N x y. clinear f ==> (f (x + y) = f x + f y)`, | |
SIMP_TAC[clinear]);; | |
let CLINEAR_SUB = prove | |
(`!f:complex^M->complex^N x y. clinear f ==> (f(x - y) = f x - f y)`, | |
SIMP_TAC[CVECTOR_SUB;CLINEAR_ADD;CLINEAR_NEG]);; | |
let CLINEAR_INJECTIVE_0 = prove | |
(`!f:complex^M->complex^N. | |
clinear f | |
==> ((!x y. f x = f y ==> x = y) | |
<=> (!x. f x = cvector_zero ==> x = cvector_zero))`, | |
ONCE_REWRITE_TAC[GSYM CVECTOR_SUB_EQ] | |
THEN SIMP_TAC[CVECTOR_SUB_RZERO;GSYM CLINEAR_SUB] | |
THEN MESON_TAC[CVECTOR_SUB_RZERO]);; | |
(* ========================================================================= *) | |
(* PASTING COMPLEX VECTORS *) | |
(* ========================================================================= *) | |
let CLINEAR_FSTCART_SNDCART = prove | |
(`clinear fstcart /\ clinear sndcart`, | |
SIMP_TAC[clinear;fstcart;sndcart;CART_EQ;LAMBDA_BETA;CVECTOR_ADD_COMPONENT; | |
CVECTOR_MUL_COMPONENT; DIMINDEX_FINITE_SUM; | |
ARITH_RULE `x <= a ==> x <= a + b:num`; | |
ARITH_RULE `x <= b ==> x + a <= a + b:num`]);; | |
let FSTCART_CLINEAR = CONJUNCT1 CLINEAR_FSTCART_SNDCART;; | |
let SNDCART_CLINEAR = CONJUNCT2 CLINEAR_FSTCART_SNDCART;; | |
let FSTCART_SNDCART_CVECTOR_ZERO = prove | |
(`fstcart cvector_zero = cvector_zero /\ sndcart cvector_zero = cvector_zero`, | |
SIMP_TAC[CVECTOR_ZERO_COMPONENT;fstcart;sndcart;LAMBDA_BETA;CART_EQ; | |
DIMINDEX_FINITE_SUM;ARITH_RULE `x <= a ==> x <= a + b:num`; | |
ARITH_RULE `x <= b ==> x + a <= a + b:num`]);; | |
let FSTCART_CVECTOR_ZERO = CONJUNCT1 FSTCART_SNDCART_CVECTOR_ZERO;; | |
let SNDCART_CVECTOR_ZERO = CONJUNCT2 FSTCART_SNDCART_CVECTOR_ZERO;; | |
let FSTCART_SNDCART_CVECTOR_ADD = prove | |
(`!x:complex^(M,N)finite_sum y. | |
fstcart(x + y) = fstcart(x) + fstcart(y) | |
/\ sndcart(x + y) = sndcart(x) + sndcart(y)`, | |
REWRITE_TAC[REWRITE_RULE[clinear] CLINEAR_FSTCART_SNDCART]);; | |
let FSTCART_SNDCART_CVECTOR_MUL = prove | |
(`!x:complex^(M,N)finite_sum c. | |
fstcart(c % x) = c % fstcart(x) /\ sndcart(c % x) = c % sndcart(x)`, | |
REWRITE_TAC[REWRITE_RULE[clinear] CLINEAR_FSTCART_SNDCART]);; | |
let PASTECART_TAC xs = | |
REWRITE_TAC(PASTECART_EQ::FSTCART_PASTECART::SNDCART_PASTECART::xs);; | |
let PASTECART_CVECTOR_ZERO = prove | |
(`pastecart (cvector_zero:complex^N) (cvector_zero:complex^M) = cvector_zero`, | |
PASTECART_TAC[FSTCART_SNDCART_CVECTOR_ZERO]);; | |
let PASTECART_EQ_CVECTOR_ZERO = prove | |
(`!x:complex^N y:complex^M. | |
pastecart x y = cvector_zero <=> x = cvector_zero /\ y = cvector_zero`, | |
PASTECART_TAC [FSTCART_SNDCART_CVECTOR_ZERO]);; | |
let PASTECART_CVECTOR_ADD = prove | |
(`!x1 y2 x2:complex^N y2:complex^M. | |
pastecart x1 y1 + pastecart x2 y2 = pastecart (x1 + x2) (y1 + y2)`, | |
PASTECART_TAC [FSTCART_SNDCART_CVECTOR_ADD]);; | |
let PASTECART_CVECTOR_MUL = prove | |
(`!x1 x2 c:complex. | |
pastecart (c % x1) (c % y1) = c % pastecart x1 y1`, PASTECART_TAC [FSTCART_SNDCART_CVECTOR_MUL]);; | |
(* ========================================================================= *) | |
(* REAL AND IMAGINARY VECTORS *) | |
(* ========================================================================= *) | |
let cvector_re = new_definition | |
`cvector_re :complex^N -> real^N = vector_map Re`;; | |
let cvector_im = new_definition | |
`cvector_im :complex^N -> real^N = vector_map Im`;; | |
let vector_to_cvector = new_definition | |
`vector_to_cvector :real^N -> complex^N = vector_map Cx`;; | |
let CVECTOR_RE_COMPONENT = prove | |
(`!x:complex^N i. (cvector_re x)$i = Re (x$i)`, | |
REWRITE_TAC[cvector_re;VECTOR_MAP_COMPONENT]);; | |
let CVECTOR_IM_COMPONENT = prove | |
(`!x:complex^N i. (cvector_im x)$i = Im (x$i)`, | |
REWRITE_TAC[cvector_im;VECTOR_MAP_COMPONENT]);; | |
let VECTOR_TO_CVECTOR_COMPONENT = prove | |
(`!x:real^N i. (vector_to_cvector x)$i = Cx(x$i)`, | |
REWRITE_TAC[vector_to_cvector;VECTOR_MAP_COMPONENT]);; | |
let VECTOR_TO_CVECTOR_ZERO = prove | |
(`vector_to_cvector (vec 0) = cvector_zero:complex^N`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_ZERO_COMPONENT; | |
VEC_COMPONENT]);; | |
let VECTOR_TO_CVECTOR_ZERO_EQ = prove | |
(`!x:real^N. vector_to_cvector x = cvector_zero <=> x = vec 0`, | |
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[VECTOR_TO_CVECTOR_ZERO] | |
THEN ONCE_REWRITE_TAC[CART_EQ] | |
THEN SIMP_TAC[VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_ZERO_COMPONENT; | |
VEC_COMPONENT;CX_INJ]);; | |
let CVECTOR_ZERO_VEC0 = prove | |
(`!x:complex^N. x = cvector_zero <=> cvector_re x = vec 0 /\ cvector_im x = vec 0`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT;CVECTOR_RE_COMPONENT; | |
CVECTOR_IM_COMPONENT;VEC_COMPONENT;COMPLEX_EQ;RE_CX;IM_CX] | |
THEN MESON_TAC[]);; | |
let VECTOR_TO_CVECTOR_MUL = prove | |
(`!a x:real^N. vector_to_cvector (a % x) = Cx a % vector_to_cvector x`, | |
ONCE_REWRITE_TAC[CART_EQ] THEN REWRITE_TAC[VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_MUL_COMPONENT;VECTOR_MUL_COMPONENT;CX_MUL]);; | |
let CVECTOR_EQ = prove | |
(`!x:complex^N y z. | |
x = vector_to_cvector y + ii % vector_to_cvector z | |
<=> cvector_re x = y /\ cvector_im x = z`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT; | |
CVECTOR_RE_COMPONENT;CVECTOR_IM_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT] | |
THEN REWRITE_TAC[COMPLEX_EQ;RE_CX;IM_CX;RE_ADD;IM_ADD;RE_MUL_II;REAL_NEG_0; | |
REAL_ADD_RID;REAL_ADD_LID;IM_MUL_II] THEN MESON_TAC[]);; | |
let CVECTOR_RE_VECTOR_TO_CVECTOR = prove | |
(`!x:real^N. cvector_re (vector_to_cvector x) = x`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;RE_CX]);; | |
let CVECTOR_IM_VECTOR_TO_CVECTOR = prove | |
(`!x:real^N. cvector_im (vector_to_cvector x) = vec 0`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;IM_CX; | |
VEC_COMPONENT]);; | |
let CVECTOR_IM_VECTOR_TO_CVECTOR_IM = prove | |
(`!x:real^N. cvector_im (ii % vector_to_cvector x) = x`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;IM_CX; | |
VEC_COMPONENT;CVECTOR_MUL_COMPONENT;IM_MUL_II;RE_CX]);; | |
let VECTOR_TO_CVECTOR_CVECTOR_RE_IM = prove | |
(`!x:complex^N. | |
vector_to_cvector (cvector_re x) + ii % vector_to_cvector (cvector_im x) | |
= x`, | |
GEN_TAC THEN MATCH_MP_TAC EQ_SYM THEN REWRITE_TAC[CVECTOR_EQ]);; | |
let CVECTOR_IM_VECTOR_TO_CVECTOR_RE_IM = prove | |
(`!x y:real^N. cvector_im (vector_to_cvector x + ii % vector_to_cvector y) = y`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;CVECTOR_ADD_COMPONENT; | |
CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;IM_ADD;IM_CX;IM_MUL_II; | |
RE_CX;REAL_ADD_LID]);; | |
let CVECTOR_RE_VECTOR_TO_CVECTOR_RE_IM = prove | |
(`!x y:real^N. cvector_re (vector_to_cvector x + ii % vector_to_cvector y)= x`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;CVECTOR_ADD_COMPONENT; | |
CVECTOR_MUL_COMPONENT;RE_ADD;VECTOR_TO_CVECTOR_COMPONENT;RE_CX;RE_MUL_CX; | |
RE_II;REAL_MUL_LZERO;REAL_ADD_RID]);; | |
let CVECTOR_RE_ADD = prove | |
(`!x y:complex^N. cvector_re (x+y) = cvector_re x + cvector_re y`, | |
ONCE_REWRITE_TAC[CART_EQ] THEN REWRITE_TAC[CVECTOR_RE_COMPONENT; | |
VECTOR_ADD_COMPONENT;CVECTOR_ADD_COMPONENT;RE_ADD]);; | |
let CVECTOR_IM_ADD = prove | |
(`!x y:complex^N. cvector_im (x+y) = cvector_im x + cvector_im y`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_ADD_COMPONENT; | |
CVECTOR_ADD_COMPONENT;IM_ADD]);; | |
let CVECTOR_RE_MUL = prove | |
(`!a x:complex^N. cvector_re (Cx a % x) = a % cvector_re x`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_RE_COMPONENT;VECTOR_MUL_COMPONENT; | |
CVECTOR_MUL_COMPONENT;RE_MUL_CX]);; | |
let CVECTOR_IM_MUL = prove | |
(`!a x:complex^N. cvector_im (Cx a % x) = a % cvector_im x`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_IM_COMPONENT;VECTOR_MUL_COMPONENT; | |
CVECTOR_MUL_COMPONENT;IM_MUL_CX]);; | |
let CVECTOR_RE_VECTOR_MAP = prove | |
(`!f v:A^N. cvector_re (vector_map f v) = vector_map (Re o f) v`, | |
REWRITE_TAC[cvector_re;VECTOR_MAP_VECTOR_MAP]);; | |
let CVECTOR_IM_VECTOR_MAP = prove | |
(`!f v:A^N. cvector_im (vector_map f v) = vector_map (Im o f) v`, | |
REWRITE_TAC[cvector_im;VECTOR_MAP_VECTOR_MAP]);; | |
let VECTOR_MAP_CVECTOR_RE = prove | |
(`!f:real->A v:complex^N. | |
vector_map f (cvector_re v) = vector_map (f o Re) v`, | |
REWRITE_TAC[cvector_re;VECTOR_MAP_VECTOR_MAP]);; | |
let VECTOR_MAP_CVECTOR_IM = prove | |
(`!f:real->A v:complex^N. | |
vector_map f (cvector_im v) = vector_map (f o Im) v`, | |
REWRITE_TAC[cvector_im;VECTOR_MAP_VECTOR_MAP]);; | |
let CVECTOR_RE_VECTOR_MAP2 = prove | |
(`!f v1:A^N v2:B^N. | |
cvector_re (vector_map2 f v1 v2) = vector_map2 (\x y. Re (f x y)) v1 v2`, | |
REWRITE_TAC[cvector_re;VECTOR_MAP_VECTOR_MAP2]);; | |
let CVECTOR_IM_VECTOR_MAP2 = prove | |
(`!f v1:A^N v2:B^N. | |
cvector_im (vector_map2 f v1 v2) = vector_map2 (\x y. Im (f x y)) v1 v2`, | |
REWRITE_TAC[cvector_im;VECTOR_MAP_VECTOR_MAP2]);; | |
(* ========================================================================= *) | |
(* FLATTENING COMPLEX VECTORS INTO REAL VECTORS *) | |
(* *) | |
(* Note: *) | |
(* Theoretically, the following could be defined more generally for matrices *) | |
(* instead of complex vectors, but this would require a "finite_prod" type *) | |
(* constructor, which is not available right now, and which, at first sight, *) | |
(* would probably require dependent types. *) | |
(* ========================================================================= *) | |
let cvector_flatten = new_definition | |
`cvector_flatten (v:complex^N) :real^(N,N) finite_sum = | |
pastecart (cvector_re v) (cvector_im v)`;; | |
let FLATTEN_RE_IM_COMPONENT = prove | |
(`!v:complex^N i. | |
1 <= i /\ i <= 2 * dimindex(:N) | |
==> (cvector_flatten v)$i = | |
if i <= dimindex(:N) | |
then (cvector_re v)$i | |
else (cvector_im v)$(i-dimindex(:N))`, | |
SIMP_TAC[MULT_2;GSYM DIMINDEX_FINITE_SUM;cvector_flatten;pastecart; | |
LAMBDA_BETA]);; | |
let complex_vector = new_definition | |
`complex_vector (v1,v2) :complex^N | |
= vector_map2 (\x y. Cx x + ii * Cx y) v1 v2`;; | |
let COMPLEX_VECTOR_TRANSPOSE = prove( | |
`!v1 v2:real^N. | |
complex_vector (v1,v2) = vector_to_cvector v1 + ii % vector_to_cvector v2`, | |
ONCE_REWRITE_TAC[CART_EQ] | |
THEN SIMP_TAC[complex_vector;CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT; | |
VECTOR_TO_CVECTOR_COMPONENT;VECTOR_MAP2_COMPONENT]);; | |
let cvector_unflatten = new_definition | |
`cvector_unflatten (v:real^(N,N) finite_sum) :complex^N | |
= complex_vector (fstcart v, sndcart v)`;; | |
let UNFLATTEN_FLATTEN = prove | |
(`cvector_unflatten o cvector_flatten = I :complex^N -> complex^N`, | |
REWRITE_TAC[FUN_EQ_THM;o_DEF;I_DEF;cvector_flatten;cvector_unflatten; | |
FSTCART_PASTECART;SNDCART_PASTECART;COMPLEX_VECTOR_TRANSPOSE; | |
VECTOR_TO_CVECTOR_CVECTOR_RE_IM]);; | |
let FLATTEN_UNFLATTEN = prove | |
(`cvector_flatten o cvector_unflatten = | |
I :real^(N,N) finite_sum -> real^(N,N) finite_sum`, | |
REWRITE_TAC[FUN_EQ_THM;o_DEF;I_DEF;cvector_flatten;cvector_unflatten; | |
PASTECART_FST_SND;COMPLEX_VECTOR_TRANSPOSE; | |
CVECTOR_RE_VECTOR_TO_CVECTOR_RE_IM;CVECTOR_IM_VECTOR_TO_CVECTOR_RE_IM]);; | |
let FLATTEN_CLINEAR = prove | |
(`!f:complex^N->complex^M. | |
clinear f ==> linear (cvector_flatten o f o cvector_unflatten)`, | |
REWRITE_TAC[clinear;linear;cvector_flatten;cvector_unflatten;o_DEF; | |
FSTCART_ADD;SNDCART_ADD;PASTECART_ADD;complex_vector;GSYM PASTECART_CMUL] | |
THEN REPEAT STRIP_TAC THEN REPEAT (AP_TERM_TAC ORELSE MK_COMB_TAC) | |
THEN REWRITE_TAC(map GSYM [CVECTOR_RE_ADD;CVECTOR_IM_ADD;CVECTOR_RE_MUL; | |
CVECTOR_IM_MUL]) | |
THEN AP_TERM_TAC THEN ASSUM_LIST (REWRITE_TAC o map GSYM) | |
THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[CART_EQ] | |
THEN SIMP_TAC[VECTOR_MAP2_COMPONENT;VECTOR_ADD_COMPONENT; | |
CVECTOR_ADD_COMPONENT;CX_ADD;VECTOR_MUL_COMPONENT;CVECTOR_MUL_COMPONENT; | |
FSTCART_CMUL;SNDCART_CMUL;CX_MUL] | |
THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let FLATTEN_MAP = prove | |
(`!f g. | |
f = vector_map g | |
==> !x:complex^N. | |
cvector_flatten (vector_map f x) = vector_map g (cvector_flatten x)`, | |
SIMP_TAC[cvector_flatten;CVECTOR_RE_VECTOR_MAP;CVECTOR_IM_VECTOR_MAP; | |
GSYM PASTECART_VECTOR_MAP;VECTOR_MAP_CVECTOR_RE;VECTOR_MAP_CVECTOR_IM; | |
o_DEF;IM_DEF;RE_DEF;VECTOR_MAP_COMPONENT]);; | |
let FLATTEN_NEG = prove | |
(`!x:complex^N. cvector_flatten (--x) = --(cvector_flatten x)`, | |
REWRITE_TAC[cvector_neg;MATCH_MP FLATTEN_MAP COMPLEX_NEG_IS_A_MAP] | |
THEN REWRITE_TAC[VECTOR_NEG_IS_A_MAP]);; | |
let CVECTOR_NEG_ALT = prove | |
(`!x:complex^N. --x = cvector_unflatten (--(cvector_flatten x))`, | |
REWRITE_TAC[GSYM FLATTEN_NEG; | |
REWRITE_RULE[o_DEF;FUN_EQ_THM;I_DEF] UNFLATTEN_FLATTEN]);; | |
let FLATTEN_MAP2 = prove( | |
`!f g. | |
f = vector_map2 g ==> | |
!x y:complex^N. | |
cvector_flatten (vector_map2 f x y) = | |
vector_map2 g (cvector_flatten x) (cvector_flatten y)`, | |
SIMP_TAC[cvector_flatten;CVECTOR_RE_VECTOR_MAP2;CVECTOR_IM_VECTOR_MAP2; | |
CVECTOR_RE_VECTOR_MAP2;GSYM PASTECART_VECTOR_MAP2] | |
THEN REWRITE_TAC[cvector_re;cvector_im;VECTOR_MAP2_LVECTOR_MAP; | |
VECTOR_MAP2_RVECTOR_MAP] | |
THEN REPEAT MK_COMB_TAC | |
THEN REWRITE_TAC[FUN_EQ_THM;IM_DEF;RE_DEF;VECTOR_MAP2_COMPONENT;o_DEF]);; | |
let FLATTEN_ADD = prove | |
(`!x y:complex^N. | |
cvector_flatten (x+y) = cvector_flatten x + cvector_flatten y`, | |
REWRITE_TAC[cvector_add;MATCH_MP FLATTEN_MAP2 COMPLEX_ADD_IS_A_MAP] | |
THEN REWRITE_TAC[VECTOR_ADD_IS_A_MAP]);; | |
let CVECTOR_ADD_ALT = prove | |
(`!x y:complex^N. | |
x+y = cvector_unflatten (cvector_flatten x + cvector_flatten y)`, | |
REWRITE_TAC[GSYM FLATTEN_ADD; | |
REWRITE_RULE[o_DEF;FUN_EQ_THM;I_DEF] UNFLATTEN_FLATTEN]);; | |
let FLATTEN_SUB = prove | |
(`!x y:complex^N. cvector_flatten (x-y) = cvector_flatten x - cvector_flatten y`, | |
REWRITE_TAC[cvector_sub;MATCH_MP FLATTEN_MAP2 COMPLEX_SUB_IS_A_MAP] | |
THEN REWRITE_TAC[VECTOR_SUB_IS_A_MAP]);; | |
let CVECTOR_SUB_ALT = prove | |
(`!x y:complex^N. x-y = cvector_unflatten (cvector_flatten x - cvector_flatten y)`, | |
REWRITE_TAC[GSYM FLATTEN_SUB; | |
REWRITE_RULE[o_DEF;FUN_EQ_THM;I_DEF] UNFLATTEN_FLATTEN]);; | |
(* ========================================================================= *) | |
(* CONJUGATE VECTOR. *) | |
(* ========================================================================= *) | |
let cvector_cnj = new_definition | |
`cvector_cnj : complex^N->complex^N = vector_map cnj`;; | |
let CVECTOR_MAP_PROPERTY thm = | |
VECTOR_MAP_PROPERTY thm [cvector_zero;cvector_add;cvector_sub;cvector_neg; | |
cvector_mul;cvector_cnj;cvector_re;cvector_im];; | |
let CVECTOR_CNJ_ADD = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. cvector_cnj (x+y) = cvector_cnj x + cvector_cnj y` | |
CNJ_ADD;; | |
let CVECTOR_CNJ_SUB = CVECTOR_MAP_PROPERTY | |
`!x y:complex^N. cvector_cnj (x-y) = cvector_cnj x - cvector_cnj y` | |
CNJ_SUB;; | |
let CVECTOR_CNJ_NEG = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. cvector_cnj (--x) = --(cvector_cnj x)` | |
CNJ_NEG;; | |
let CVECTOR_RE_CNJ = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. cvector_re (cvector_cnj x) = cvector_re x` | |
RE_CNJ;; | |
let CVECTOR_IM_CNJ = prove | |
(`!x:complex^N. cvector_im (cvector_cnj x) = --(cvector_im x)`, | |
VECTOR_MAP_PROPERTY_TAC[cvector_im;cvector_cnj;VECTOR_NEG_IS_A_MAP] IM_CNJ);; | |
let CVECTOR_CNJ_CNJ = CVECTOR_MAP_PROPERTY | |
`!x:complex^N. cvector_cnj (cvector_cnj x) = x` | |
CNJ_CNJ;; | |
(* ========================================================================= *) | |
(* CROSS PRODUCTS IN COMPLEX^3. *) | |
(* ========================================================================= *) | |
prioritize_vector();; | |
parse_as_infix("ccross",(20,"right"));; | |
let ccross = new_definition | |
`((ccross):complex^3 -> complex^3 -> complex^3) x y = vector [ | |
x$2 * y$3 - x$3 * y$2; | |
x$3 * y$1 - x$1 * y$3; | |
x$1 * y$2 - x$2 * y$1 | |
]`;; | |
let CCROSS_COMPONENT = prove | |
(`!x y:complex^3. | |
(x ccross y)$1 = x$2 * y$3 - x$3 * y$2 | |
/\ (x ccross y)$2 = x$3 * y$1 - x$1 * y$3 | |
/\ (x ccross y)$3 = x$1 * y$2 - x$2 * y$1`, | |
REWRITE_TAC[ccross;VECTOR_3]);; | |
(* simple handy instantiation of CART_EQ for dimension 3*) | |
let CART_EQ3 = prove | |
(`!x y:complex^3. x = y <=> x$1 = y$1 /\ x$2 = y$2 /\ x$3 = y$3`, | |
GEN_REWRITE_TAC (PATH_CONV "rbrblr") [CART_EQ] | |
THEN REWRITE_TAC[DIMINDEX_3;FORALL_3]);; | |
let CCROSS_TAC lemmas = | |
REWRITE_TAC(CART_EQ3::CCROSS_COMPONENT::lemmas) | |
THEN SIMPLE_COMPLEX_ARITH_TAC;; | |
let CCROSS_LZERO = prove | |
(`!x:complex^3. cvector_zero ccross x = cvector_zero`, | |
CCROSS_TAC[CVECTOR_ZERO_COMPONENT]);; | |
let CCROSS_RZERO = prove | |
(`!x:complex^3. x ccross cvector_zero = cvector_zero`, | |
CCROSS_TAC[CVECTOR_ZERO_COMPONENT]);; | |
let CCROSS_SKEW = prove | |
(`!x y:complex^3. (x ccross y) = --(y ccross x)`, | |
CCROSS_TAC[CVECTOR_NEG_COMPONENT]);; | |
let CCROSS_REFL = prove | |
(`!x:complex^3. x ccross x = cvector_zero`, | |
CCROSS_TAC[CVECTOR_ZERO_COMPONENT]);; | |
let CCROSS_LADD = prove | |
(`!x y z:complex^3. (x + y) ccross z = (x ccross z) + (y ccross z)`, | |
CCROSS_TAC[CVECTOR_ADD_COMPONENT]);; | |
let CCROSS_RADD = prove | |
(`!x y z:complex^3. x ccross(y + z) = (x ccross y) + (x ccross z)`, | |
CCROSS_TAC[CVECTOR_ADD_COMPONENT]);; | |
let CCROSS_LMUL = prove | |
(`!c x y:complex^3. (c % x) ccross y = c % (x ccross y)`, | |
CCROSS_TAC[CVECTOR_MUL_COMPONENT]);; | |
let CCROSS_RMUL = prove | |
(`!c x y:complex^3. x ccross (c % y) = c % (x ccross y)`, | |
CCROSS_TAC[CVECTOR_MUL_COMPONENT]);; | |
let CCROSS_LNEG = prove | |
(`!x y:complex^3. (--x) ccross y = --(x ccross y)`, | |
CCROSS_TAC[CVECTOR_NEG_COMPONENT]);; | |
let CCROSS_RNEG = prove | |
(`!x y:complex^3. x ccross (--y) = --(x ccross y)`, | |
CCROSS_TAC[CVECTOR_NEG_COMPONENT]);; | |
let CCROSS_JACOBI = prove | |
(`!(x:complex^3) y z. | |
x ccross (y ccross z) + y ccross (z ccross x) + z ccross (x ccross y) = | |
cvector_zero`, | |
REWRITE_TAC[CART_EQ3] | |
THEN REWRITE_TAC[CVECTOR_ADD_COMPONENT;CCROSS_COMPONENT; | |
CVECTOR_ZERO_COMPONENT] THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
(* ========================================================================= *) | |
(* DOT PRODUCTS IN COMPLEX^N *) | |
(* *) | |
(* Only difference with the real case: *) | |
(* we take the conjugate of the 2nd argument *) | |
(* ========================================================================= *) | |
prioritize_complex();; | |
parse_as_infix("cdot",(20,"right"));; | |
let cdot = new_definition | |
`(cdot) (x:complex^N) (y:complex^N) = | |
vsum (1..dimindex(:N)) (\i. x$i * cnj(y$i))`;; | |
(* The dot product is symmetric MODULO the conjugate *) | |
let CDOT_SYM = prove | |
(`!x:complex^N y. x cdot y = cnj (y cdot x)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (SPEC_ALL CNJ_VSUM) (SPEC `dimindex (:N)` (GEN_ALL | |
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[CNJ_MUL;CNJ_CNJ;COMPLEX_MUL_SYM]);; | |
let REAL_CDOT_SELF = prove | |
(`!x:complex^N. real(x cdot x)`, | |
REWRITE_TAC[REAL_CNJ;GSYM CDOT_SYM]);; | |
(* The following theorems are usual axioms of the hermitian dot product, they are proved later on. | |
* let CDOT_SELF_POS = prove(`!x:complex^N. &0 <= real_of_complex (x cdot x)`, ... | |
* let CDOT_EQ_0 = prove(`!x:complex^N. x cdot x = Cx(&0) <=> x = cvector_zero` | |
*) | |
let CDOT_LADD = prove | |
(`!x:complex^N y z. (x + y) cdot z = (x cdot z) + (y cdot z)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_ADD) (SPEC `dimindex (:N)` (GEN_ALL | |
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC | |
THEN REWRITE_TAC[FUN_EQ_THM] | |
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`;`(y:real^2^N)$(x':num)`; | |
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_ADD_RDISTRIB)] | |
THEN REWRITE_TAC[CVECTOR_ADD_COMPONENT]);; | |
let CDOT_RADD = prove | |
(`!x:complex^N y z. x cdot (y + z) = (x cdot y) + (x cdot z)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_ADD) (SPEC `dimindex (:N)` (GEN_ALL | |
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC | |
THEN REWRITE_TAC[FUN_EQ_THM] | |
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`; `cnj((y:real^2^N)$(x':num))`; | |
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_ADD_LDISTRIB)] | |
THEN REWRITE_TAC[CNJ_ADD; CVECTOR_ADD_COMPONENT]);; | |
let CDOT_LSUB = prove | |
(`!x:complex^N y z. (x - y) cdot z = (x cdot z) - (y cdot z)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_SUB) (SPEC `dimindex (:N)` (GEN_ALL | |
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC | |
THEN REWRITE_TAC[FUN_EQ_THM] | |
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`; `(y:real^2^N)$(x':num)`; | |
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_SUB_RDISTRIB)] | |
THEN REWRITE_TAC[CVECTOR_SUB_COMPONENT]);; | |
let CDOT_RSUB = prove | |
(`!x:complex^N y z. x cdot (y - z) = (x cdot y) - (x cdot z)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_SUB) (SPEC `dimindex (:N)` (GEN_ALL | |
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REPEAT GEN_TAC THEN MATCH_MP_TAC VSUM_EQ THEN GEN_TAC THEN DISCH_TAC | |
THEN REWRITE_TAC[FUN_EQ_THM] | |
THEN REWRITE_TAC[SPECL [`(x:real^2^N)$(x':num)`; `cnj((y:real^2^N)$(x':num))`; | |
`cnj ((z:real^2^N)$(x':num))`] (GSYM COMPLEX_SUB_LDISTRIB)] | |
THEN REWRITE_TAC[CNJ_SUB; CVECTOR_SUB_COMPONENT]);; | |
let CDOT_LMUL = prove | |
(`!c:complex x:complex^N y. (c % x) cdot y = c * (x cdot y)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)` | |
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] | |
HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT; GSYM COMPLEX_MUL_ASSOC]);; | |
let CDOT_RMUL = prove | |
(`!c:complex x:complex^N x y. x cdot (c % y) = cnj c * (x cdot y)`, | |
REWRITE_TAC[cdot] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)` | |
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] | |
HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT; CNJ_MUL; COMPLEX_MUL_AC]);; | |
let CDOT_LNEG = prove | |
(`!x:complex^N y. (--x) cdot y = --(x cdot y)`, | |
REWRITE_TAC[cdot] THEN ONCE_REWRITE_TAC[COMPLEX_NEG_MINUS1] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)` | |
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] | |
HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[CVECTOR_NEG_COMPONENT] THEN ONCE_REWRITE_TAC[GSYM | |
COMPLEX_NEG_MINUS1] THEN REWRITE_TAC[COMPLEX_NEG_LMUL]);; | |
let CDOT_RNEG = prove | |
(`!x:complex^N y. x cdot (--y) = --(x cdot y)`, | |
REWRITE_TAC[cdot] THEN ONCE_REWRITE_TAC[COMPLEX_NEG_MINUS1] | |
THEN REWRITE_TAC[MATCH_MP (GSYM VSUM_COMPLEX_LMUL) (SPEC `dimindex (:N)` | |
(GEN_ALL (CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] | |
HAS_SIZE_NUMSEG_1)))))] | |
THEN ONCE_REWRITE_TAC[GSYM COMPLEX_NEG_MINUS1] | |
THEN REWRITE_TAC[CVECTOR_NEG_COMPONENT; CNJ_NEG; COMPLEX_NEG_RMUL]);; | |
let CDOT_LZERO = prove | |
(`!x:complex^N. cvector_zero cdot x = Cx (&0)`, | |
REWRITE_TAC[cdot] THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT] | |
THEN REWRITE_TAC[COMPLEX_MUL_LZERO; GSYM COMPLEX_VEC_0; VSUM_0]);; | |
let CNJ_ZERO = prove( | |
`cnj (Cx(&0)) = Cx(&0)`, | |
REWRITE_TAC[cnj;RE_CX;IM_CX;CX_DEF;REAL_NEG_0]);; | |
let CDOT_RZERO = prove( | |
`!x:complex^N. x cdot cvector_zero = Cx (&0)`, | |
REWRITE_TAC[cdot] THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT] | |
THEN REWRITE_TAC[CNJ_ZERO] | |
THEN REWRITE_TAC[COMPLEX_MUL_RZERO;GSYM COMPLEX_VEC_0;VSUM_0]);; | |
(* Cauchy Schwarz inequality: proved later on | |
* let CDOT_CAUCHY_SCHWARZ = prove (`!x y:complex^N. norm (x cdot y) pow 2 <= cnorm2 x * cnorm2 y`, | |
* let CDOT_CAUCHY_SCHWARZ_EQUAL = prove(`!x y:complex^N. norm (x cdot y) pow 2 = cnorm2 x * cnorm2 y <=> collinear_cvectors x y`, | |
*) | |
let CDOT3 = prove | |
(`!x y:complex^3. | |
x cdot y = (x$1 * cnj (y$1) + x$2 * cnj (y$2) + x$3 * cnj (y$3))`, | |
REWRITE_TAC[cdot] THEN SIMP_TAC [DIMINDEX_3] THEN REWRITE_TAC[VSUM_3]);; | |
let ADD_CDOT_SYM = prove( | |
`!x y:complex^N. x cdot y + y cdot x = Cx(&2 * Re(x cdot y))`, | |
MESON_TAC[CDOT_SYM;COMPLEX_ADD_CNJ]);; | |
(* ========================================================================= *) | |
(* RELATION WITH REAL DOT AND CROSS PRODUCTS *) | |
(* ========================================================================= *) | |
let CCROSS_LREAL = prove | |
(`!r c. | |
(vector_to_cvector r) ccross c = | |
vector_to_cvector (r cross (cvector_re c)) | |
+ ii % (vector_to_cvector (r cross (cvector_im c)))`, | |
REWRITE_TAC[CART_EQ3;CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT; | |
VECTOR_TO_CVECTOR_COMPONENT;CCROSS_COMPONENT;CROSS_COMPONENTS; | |
CVECTOR_RE_COMPONENT;CVECTOR_IM_COMPONENT;complex_mul;RE_CX;IM_CX;CX_DEF; | |
complex_sub;complex_neg;complex_add;RE;IM;RE_II;IM_II] | |
THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ] | |
THEN ARITH_TAC);; | |
let CCROSS_RREAL = prove | |
(`!r c. | |
c ccross (vector_to_cvector r) = | |
vector_to_cvector ((cvector_re c) cross r) | |
+ ii % (vector_to_cvector ((cvector_im c) cross r))`, | |
REWRITE_TAC[CART_EQ3;CVECTOR_ADD_COMPONENT;CVECTOR_MUL_COMPONENT; | |
VECTOR_TO_CVECTOR_COMPONENT;CCROSS_COMPONENT;CROSS_COMPONENTS; | |
CVECTOR_RE_COMPONENT;CVECTOR_IM_COMPONENT;complex_mul;RE_CX;IM_CX;CX_DEF; | |
complex_sub;complex_neg;complex_add;RE;IM;RE_II;IM_II] | |
THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ] | |
THEN ARITH_TAC);; | |
let CDOT_LREAL = prove | |
(`!r c. | |
(vector_to_cvector r) cdot c = | |
Cx (r dot (cvector_re c)) - ii * Cx (r dot (cvector_im c))`, | |
REWRITE_TAC[cdot; dot; VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_RE_COMPONENT; | |
CVECTOR_IM_COMPONENT] THEN REPEAT GEN_TAC | |
THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [COMPLEX_EXPAND] | |
THEN REWRITE_TAC[MATCH_MP RE_VSUM (SPEC `dimindex (:N)` (GEN_ALL (CONJUNCT1 | |
(SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[MATCH_MP (IM_VSUM) (SPEC `dimindex (:N)` (GEN_ALL | |
(CONJUNCT1 (SPEC_ALL (REWRITE_RULE[HAS_SIZE] | |
HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[RE_MUL_CX;RE_CNJ;IM_MUL_CX;IM_CNJ] | |
THEN REWRITE_TAC[COMPLEX_POLY_NEG_CLAUSES] THEN REWRITE_TAC[COMPLEX_MUL_AC] | |
THEN REWRITE_TAC[COMPLEX_MUL_ASSOC] THEN REWRITE_TAC[GSYM CX_MUL] | |
THEN REWRITE_TAC[GSYM SUM_LMUL] | |
THEN REWRITE_TAC[GSYM REAL_NEG_MINUS1;GSYM REAL_MUL_RNEG]);; | |
let CDOT_RREAL = prove | |
(`!r c. | |
c cdot (vector_to_cvector r) = | |
Cx ((cvector_re c) dot r) + ii * Cx ((cvector_im c) dot r)`, | |
REWRITE_TAC[cdot; dot; VECTOR_TO_CVECTOR_COMPONENT;CVECTOR_RE_COMPONENT; | |
CVECTOR_IM_COMPONENT] | |
THEN REPEAT GEN_TAC | |
THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [COMPLEX_EXPAND] | |
THEN REWRITE_TAC[MATCH_MP RE_VSUM (SPEC `dimindex (:N)` (GEN_ALL (CONJUNCT1 | |
(SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[MATCH_MP IM_VSUM (SPEC `dimindex (:N)` (GEN_ALL (CONJUNCT1 | |
(SPEC_ALL (REWRITE_RULE[HAS_SIZE] HAS_SIZE_NUMSEG_1)))))] | |
THEN REWRITE_TAC[CNJ_CX] | |
THEN REWRITE_TAC[RE_MUL_CX;RE_CNJ;IM_MUL_CX;IM_CNJ]);; | |
(* ========================================================================= *) | |
(* NORM, UNIT VECTORS. *) | |
(* ========================================================================= *) | |
let cnorm2 = new_definition | |
`cnorm2 (v:complex^N) = real_of_complex (v cdot v)`;; | |
let CX_CNORM2 = prove | |
(`!v:complex^N. Cx(cnorm2 v) = v cdot v`, | |
SIMP_TAC[cnorm2;REAL_CDOT_SELF;REAL_OF_COMPLEX]);; | |
let CNORM2_CVECTOR_ZERO = prove | |
(`cnorm2 (cvector_zero:complex^N) = &0`, | |
REWRITE_TAC[cnorm2;CDOT_RZERO;REAL_OF_COMPLEX_CX]);; | |
let CNORM2_MODULUS = prove | |
(`!x:complex^N. cnorm2 x = (vector_map norm x) dot (vector_map norm x)`, | |
REWRITE_TAC[cnorm2;cdot;COMPLEX_MUL_CNJ;COMPLEX_POW_2;GSYM CX_MUL; | |
VSUM_CX_NUMSEG;dot;VECTOR_MAP_COMPONENT;REAL_OF_COMPLEX_CX]);; | |
let CNORM2_EQ_0 = prove | |
(`!x:complex^N. cnorm2 x = &0 <=> x = cvector_zero`, | |
REWRITE_TAC[CNORM2_MODULUS;CX_INJ;DOT_EQ_0] THEN GEN_TAC | |
THEN GEN_REWRITE_TAC (RATOR_CONV o DEPTH_CONV) [CART_EQ] | |
THEN REWRITE_TAC[VEC_COMPONENT;VECTOR_MAP_COMPONENT;COMPLEX_NORM_ZERO] | |
THEN GEN_REWRITE_TAC (RAND_CONV o DEPTH_CONV) [CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_ZERO_COMPONENT]);; | |
let CDOT_EQ_0 = prove | |
(`!x:complex^N. x cdot x = Cx(&0) <=> x = cvector_zero`, | |
SIMP_TAC[TAUT `(p<=>q) <=> ((p==>q) /\ (q==>p))`;CDOT_LZERO] | |
THEN GEN_TAC THEN DISCH_THEN (MP_TAC o MATCH_MP (MESON[REAL_OF_COMPLEX_CX] | |
`x = Cx y ==> real_of_complex x = y`)) | |
THEN REWRITE_TAC[GSYM cnorm2;CNORM2_EQ_0]);; | |
let CNORM2_POS = prove | |
(`!x:complex^N. &0 <= cnorm2 x`, REWRITE_TAC[CNORM2_MODULUS;DOT_POS_LE]);; | |
let CDOT_SELF_POS = prove | |
(`!x:complex^N. &0 <= real_of_complex (x cdot x)`, | |
REWRITE_TAC[GSYM cnorm2;CNORM2_POS]);; | |
let CNORM2_MUL = prove | |
(`!a x:complex^N. cnorm2 (a % x) = (norm a) pow 2 * cnorm2 x`, | |
SIMP_TAC[cnorm2;CDOT_LMUL;CDOT_RMUL; | |
SIMPLE_COMPLEX_ARITH `x * cnj x * y = (x * cnj x) * y`;COMPLEX_MUL_CNJ; | |
REAL_OF_COMPLEX_CX;REAL_OF_COMPLEX_MUL;REAL_CX;REAL_CDOT_SELF; | |
GSYM CX_POW]);; | |
let CNORM2_NORM2_2 = prove | |
(`!x y:real^N. | |
cnorm2 (vector_to_cvector x + ii % vector_to_cvector y) = | |
norm x pow 2 + norm y pow 2`, | |
REWRITE_TAC[cnorm2;vector_norm;cdot;CVECTOR_ADD_COMPONENT; | |
CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT;CNJ_ADD;CNJ_CX;CNJ_MUL; | |
CNJ_II;COMPLEX_ADD_RDISTRIB;COMPLEX_ADD_LDISTRIB; | |
SIMPLE_COMPLEX_ARITH | |
`(x*x+x*(--ii)*y)+(ii*y)*x+(ii*y)*(--ii)*y = x*x-(ii*ii)*y*y`] | |
THEN REWRITE_TAC[GSYM COMPLEX_POW_2;COMPLEX_POW_II_2; | |
SIMPLE_COMPLEX_ARITH `x-(--Cx(&1))*y = x+y`] | |
THEN SIMP_TAC[MESON[CARD_NUMSEG_1;HAS_SIZE_NUMSEG_1;FINITE_HAS_SIZE] | |
`FINITE (1..dimindex(:N))`;VSUM_ADD;GSYM CX_POW;VSUM_CX;GSYM dot; | |
REAL_POW_2;GSYM dot] | |
THEN SIMP_TAC[GSYM CX_ADD;REAL_OF_COMPLEX_CX;GSYM REAL_POW_2;DOT_POS_LE; | |
SQRT_POW_2]);; | |
let CNORM2_NORM2 = prove | |
(`!v:complex^N. | |
cnorm2 v = norm (cvector_re v) pow 2 + norm (cvector_im v) pow 2`, | |
GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [GSYM | |
VECTOR_TO_CVECTOR_CVECTOR_RE_IM] THEN REWRITE_TAC[CNORM2_NORM2_2]);; | |
let CNORM2_ALT = prove | |
(`!x:complex^N. cnorm2 x = norm (x cdot x)`, | |
SIMP_TAC[cnorm2;REAL_OF_COMPLEX_NORM;REAL_CDOT_SELF;EQ_SYM_EQ;REAL_ABS_REFL; | |
REWRITE_RULE[cnorm2] CNORM2_POS]);; | |
let CNORM2_SUB = prove | |
(`!x y:complex^N. cnorm2 (x-y) = cnorm2 (y-x)`, | |
REWRITE_TAC[cnorm2;CDOT_LSUB;CDOT_RSUB] THEN REPEAT GEN_TAC THEN AP_TERM_TAC | |
THEN SIMPLE_COMPLEX_ARITH_TAC);; | |
let CNORM2_VECTOR_TO_CVECTOR = prove | |
(`!x:real^N. cnorm2 (vector_to_cvector x) = norm x pow 2`, | |
REWRITE_TAC[CNORM2_ALT;CDOT_RREAL;CVECTOR_RE_VECTOR_TO_CVECTOR; | |
CVECTOR_IM_VECTOR_TO_CVECTOR;DOT_LZERO;COMPLEX_MUL_RZERO;COMPLEX_ADD_RID; | |
DOT_SQUARE_NORM;CX_POW;COMPLEX_NORM_POW;COMPLEX_NORM_CX;REAL_POW2_ABS]);; | |
let cnorm = new_definition | |
`cnorm :complex^N->real = sqrt o cnorm2`;; | |
overload_interface ("norm",`cnorm:complex^N->real`);; | |
let CNORM_CVECTOR_ZERO = prove | |
(`norm (cvector_zero:complex^N) = &0`, | |
REWRITE_TAC[cnorm;CNORM2_CVECTOR_ZERO;o_DEF;SQRT_0]);; | |
let CNORM_POW_2 = prove | |
(`!x:complex^N. norm x pow 2 = cnorm2 x`, | |
SIMP_TAC[cnorm;o_DEF;SQRT_POW_2;CNORM2_POS]);; | |
let CNORM_NORM_2 = prove | |
(`!x y:real^N. | |
norm (vector_to_cvector x + ii % vector_to_cvector y) = | |
sqrt(norm x pow 2 + norm y pow 2)`, | |
REWRITE_TAC[cnorm;o_DEF;CNORM2_NORM2_2]);; | |
let CNORM_NORM = prove( | |
`!v:complex^N. | |
norm v = sqrt(norm (cvector_re v) pow 2 + norm (cvector_im v) pow 2)`, | |
GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) [GSYM | |
VECTOR_TO_CVECTOR_CVECTOR_RE_IM] THEN REWRITE_TAC[CNORM_NORM_2]);; | |
let CNORM_MUL = prove | |
(`!a x:complex^N. norm (a % x) = norm a * norm x`, | |
SIMP_TAC[cnorm;o_DEF;CNORM2_MUL;REAL_LE_POW_2;SQRT_MUL;CNORM2_POS; | |
NORM_POS_LE;POW_2_SQRT]);; | |
let CNORM_EQ_0 = prove | |
(`!x:complex^N. norm x = &0 <=> x = cvector_zero`, | |
SIMP_TAC[cnorm;o_DEF;SQRT_EQ_0;CNORM2_POS;CNORM2_EQ_0]);; | |
let CNORM_POS = prove | |
(`!x:complex^N. &0 <= norm x`, | |
SIMP_TAC[cnorm;o_DEF;SQRT_POS_LE;CNORM2_POS]);; | |
let CNORM_SUB = prove | |
(`!x y:complex^N. norm (x-y) = norm (y-x)`, | |
REWRITE_TAC[cnorm;o_DEF;CNORM2_SUB]);; | |
let CNORM_VECTOR_TO_CVECTOR = prove | |
(`!x:real^N. norm (vector_to_cvector x) = norm x`, | |
SIMP_TAC[cnorm;o_DEF;CNORM2_VECTOR_TO_CVECTOR;POW_2_SQRT;NORM_POS_LE]);; | |
let CNORM_BASIS = prove | |
(`!k. 1 <= k /\ k <= dimindex(:N) | |
==> norm (vector_to_cvector (basis k :real^N)) = &1`, | |
SIMP_TAC[NORM_BASIS;CNORM_VECTOR_TO_CVECTOR]);; | |
let CNORM_BASIS_1 = prove | |
(`norm(basis 1:real^N) = &1`, | |
SIMP_TAC[NORM_BASIS_1;CNORM_VECTOR_TO_CVECTOR]);; | |
let CVECTOR_CHOOSE_SIZE = prove | |
(`!c. &0 <= c ==> ?x:complex^N. norm(x) = c`, | |
MESON_TAC[VECTOR_CHOOSE_SIZE;CNORM_VECTOR_TO_CVECTOR]);; | |
(* Triangle inequality. Proved later on using Cauchy Schwarz inequality. | |
* let CNORM_TRIANGLE = prove(`!x y:complex^N. norm (x+y) <= norm x + norm y`, ... | |
*) | |
let cunit = new_definition | |
`cunit (X:complex^N) = inv(Cx(norm X))% X`;; | |
let CUNIT_CVECTOR_ZERO = prove | |
(`cunit cvector_zero = cvector_zero:complex^N`, | |
REWRITE_TAC[cunit;CNORM_CVECTOR_ZERO;COMPLEX_INV_0;CVECTOR_MUL_LZERO]);; | |
let CDOT_CUNIT_MUL_CUNIT = prove | |
(`!x:complex^N. (cunit x cdot x) % cunit x = x`, | |
GEN_TAC THEN ASM_CASES_TAC `x = cvector_zero:complex^N` | |
THEN ASM_REWRITE_TAC[CUNIT_CVECTOR_ZERO;CDOT_LZERO;CVECTOR_MUL_LZERO] | |
THEN SIMP_TAC[cunit;CVECTOR_MUL_ASSOC;CDOT_LMUL; | |
SIMPLE_COMPLEX_ARITH `(x*y)*x=(x*x)*y`;GSYM COMPLEX_INV_MUL;GSYM CX_MUL; | |
GSYM REAL_POW_2;cnorm;o_DEF;CNORM2_POS;SQRT_POW_2] | |
THEN ASM_SIMP_TAC[cnorm2;REAL_OF_COMPLEX;REAL_CDOT_SELF;CDOT_EQ_0; | |
CNORM2_CVECTOR_ZERO;CVECTOR_MUL_RZERO;CNORM2_EQ_0;COMPLEX_MUL_LINV; | |
CVECTOR_MUL_ID]);; | |
(* ========================================================================= *) | |
(* COLLINEARITY *) | |
(* ========================================================================= *) | |
(* Definition of collinearity between complex vectors. | |
* Note: This is different from collinearity between points (which is the one defined in HOL-Light library) | |
*) | |
let collinear_cvectors = new_definition | |
`collinear_cvectors x (y:complex^N) <=> ?a. y = a % x \/ x = a % y`;; | |
let COLLINEAR_CVECTORS_SYM = prove | |
(`!x y:complex^N. collinear_cvectors x y <=> collinear_cvectors y x`, | |
REWRITE_TAC[collinear_cvectors] THEN MESON_TAC[]);; | |
let COLLINEAR_CVECTORS_0 = prove | |
(`!x:complex^N. collinear_cvectors x cvector_zero`, | |
REWRITE_TAC[collinear_cvectors] THEN GEN_TAC THEN EXISTS_TAC `Cx(&0)` | |
THEN REWRITE_TAC[CVECTOR_MUL_LZERO]);; | |
let NON_NULL_COLLINEARS = prove | |
(`!x y:complex^N. | |
collinear_cvectors x y /\ ~(x=cvector_zero) /\ ~(y=cvector_zero) | |
==> ?a. ~(a=Cx(&0)) /\ y = a % x`, | |
REWRITE_TAC[collinear_cvectors] THEN REPEAT STRIP_TAC THENL [ | |
ASM_MESON_TAC[CVECTOR_MUL_LZERO]; | |
SUBGOAL_THEN `~(a=Cx(&0))` ASSUME_TAC THENL [ | |
ASM_MESON_TAC[CVECTOR_MUL_LZERO]; | |
EXISTS_TAC `inv a :complex` | |
THEN ASM_REWRITE_TAC[COMPLEX_INV_EQ_0;CVECTOR_MUL_ASSOC] | |
THEN ASM_SIMP_TAC[COMPLEX_MUL_LINV;CVECTOR_MUL_ID]]]);; | |
let COLLINEAR_LNONNULL = prove( | |
`!x y:complex^N. | |
collinear_cvectors x y /\ ~(x=cvector_zero) ==> ?a. y = a % x`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `y=cvector_zero:complex^N` THENL [ | |
ASM_REWRITE_TAC[] THEN EXISTS_TAC `Cx(&0)` | |
THEN ASM_MESON_TAC[CVECTOR_MUL_LZERO]; | |
ASM_MESON_TAC[NON_NULL_COLLINEARS] ]);; | |
let COLLINEAR_RNONNULL = prove( | |
`!x y:complex^N. | |
collinear_cvectors x y /\ ~(y=cvector_zero) ==> ?a. x = a % y`, | |
MESON_TAC[COLLINEAR_LNONNULL;COLLINEAR_CVECTORS_SYM]);; | |
let COLLINEAR_RUNITREAL = prove( | |
`!x y:real^N. | |
collinear_cvectors x (vector_to_cvector y) /\ norm y = &1 | |
==> x = (x cdot (vector_to_cvector y)) % vector_to_cvector y`, | |
REPEAT STRIP_TAC | |
THEN POP_ASSUM (DISTRIB [ASSUME_TAC; ASSUME_TAC o REWRITE_RULE[NORM_EQ_0; | |
GSYM VECTOR_TO_CVECTOR_ZERO_EQ] o MATCH_MP | |
(REAL_ARITH `!x. x= &1 ==> ~(x= &0)`)]) | |
THEN FIRST_X_ASSUM (fun x -> FIRST_X_ASSUM (fun y -> | |
CHOOSE_THEN (SINGLE ONCE_REWRITE_TAC) (MATCH_MP COLLINEAR_RNONNULL | |
(CONJ y x)))) | |
THEN REWRITE_TAC[CDOT_LMUL;CDOT_LREAL;CVECTOR_RE_VECTOR_TO_CVECTOR; | |
CVECTOR_IM_VECTOR_TO_CVECTOR;DOT_RZERO;COMPLEX_MUL_RZERO;COMPLEX_SUB_RZERO] | |
THEN POP_ASSUM ((fun x -> | |
REWRITE_TAC[x;COMPLEX_MUL_RID]) o REWRITE_RULE[NORM_EQ_1]));; | |
let CCROSS_COLLINEAR_CVECTORS = prove | |
(`!x y:complex^3. x ccross y = cvector_zero <=> collinear_cvectors x y`, | |
REWRITE_TAC[ccross;collinear_cvectors;CART_EQ3;VECTOR_3; | |
CVECTOR_ZERO_COMPONENT;COMPLEX_SUB_0;CVECTOR_MUL_COMPONENT] | |
THEN REPEAT GEN_TAC THEN EQ_TAC | |
THENL [ | |
REPEAT (POP_ASSUM MP_TAC) THEN ASM_CASES_TAC `(x:complex^3)$1 = Cx(&0)` | |
THENL [ | |
ASM_CASES_TAC `(x:complex^3)$2 = Cx(&0)` THENL [ | |
ASM_CASES_TAC `(x:complex^3)$3 = Cx(&0)` THENL [ | |
REPEAT DISCH_TAC THEN EXISTS_TAC `Cx(&0)` | |
THEN ASM_REWRITE_TAC[COMPLEX_POLY_CLAUSES]; | |
REPEAT STRIP_TAC THEN EXISTS_TAC `(y:complex^3)$3/(x:complex^3)$3` | |
THEN ASM_SIMP_TAC[COMPLEX_BALANCE_DIV_MUL] | |
THEN ASM_MESON_TAC[COMPLEX_MUL_AC];]; | |
REPEAT STRIP_TAC THEN EXISTS_TAC `(y:complex^3)$2/(x:complex^3)$2` | |
THEN ASM_SIMP_TAC[COMPLEX_BALANCE_DIV_MUL] | |
THEN ASM_MESON_TAC[COMPLEX_MUL_AC]; ]; | |
REPEAT STRIP_TAC THEN EXISTS_TAC `(y:complex^3)$1/(x:complex^3)$1` | |
THEN ASM_SIMP_TAC[COMPLEX_BALANCE_DIV_MUL] | |
THEN ASM_MESON_TAC[COMPLEX_MUL_AC];]; | |
SIMPLE_COMPLEX_ARITH_TAC ]);; | |
let CVECTOR_MUL_INV = prove | |
(`!a x y:complex^N. ~(a = Cx(&0)) /\ x = a % y ==> y = inv a % x`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CVECTOR_MUL_ASSOC; | |
MESON[] `(p\/q) <=> (~p ==> q)`;COMPLEX_MUL_LINV;CVECTOR_MUL_ID]);; | |
let CVECTOR_MUL_INV2 = prove | |
(`!a x y:complex^N. ~(x = cvector_zero) /\ x = a % y ==> y = inv a % x`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `a=Cx(&0)` | |
THEN ASM_MESON_TAC[CVECTOR_MUL_LZERO;CVECTOR_MUL_INV]);; | |
let COLLINEAR_CVECTORS_VECTOR_TO_CVECTOR = prove( | |
`!x y:real^N. | |
collinear_cvectors (vector_to_cvector x) (vector_to_cvector y) | |
<=> collinear {vec 0,x,y}`, | |
REWRITE_TAC[COLLINEAR_LEMMA_ALT;collinear_cvectors] | |
THEN REPEAT (STRIP_TAC ORELSE EQ_TAC) THENL [ | |
POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT; | |
VECTOR_MUL_COMPONENT;COMPLEX_EQ;RE_CX;RE_MUL_CX] | |
THEN REPEAT STRIP_TAC THEN DISJ2_TAC THEN EXISTS_TAC `Re a` | |
THEN ASM_SIMP_TAC[]; | |
REWRITE_TAC[MESON[]`(p\/q) <=> (~p ==> q)`] | |
THEN REWRITE_TAC[GSYM VECTOR_TO_CVECTOR_ZERO_EQ] | |
THEN DISCH_TAC | |
THEN SUBGOAL_TAC "" `vector_to_cvector (y:real^N) = | |
inv a % vector_to_cvector x` [ASM_MESON_TAC[CVECTOR_MUL_INV2]] | |
THEN POP_ASSUM MP_TAC THEN ONCE_REWRITE_TAC[CART_EQ] | |
THEN REWRITE_TAC[CVECTOR_MUL_COMPONENT;VECTOR_TO_CVECTOR_COMPONENT; | |
VECTOR_MUL_COMPONENT;COMPLEX_EQ;RE_CX;RE_MUL_CX] | |
THEN REPEAT STRIP_TAC THEN EXISTS_TAC `Re(inv a)` THEN ASM_SIMP_TAC[]; | |
EXISTS_TAC `Cx(&0)` THEN ASM_REWRITE_TAC[VECTOR_TO_CVECTOR_ZERO; | |
CVECTOR_MUL_LZERO]; | |
ASM_REWRITE_TAC[VECTOR_TO_CVECTOR_MUL] THEN EXISTS_TAC `Cx c` | |
THEN REWRITE_TAC[]; | |
]);; | |
(* ========================================================================= *) | |
(* ORTHOGONALITY *) | |
(* ========================================================================= *) | |
let corthogonal = new_definition | |
`corthogonal (x:complex^N) y <=> x cdot y = Cx(&0)`;; | |
let CORTHOGONAL_SYM = prove( | |
`!x y:complex^N. corthogonal x y <=> corthogonal y x`, | |
MESON_TAC[corthogonal;CDOT_SYM;CNJ_ZERO]);; | |
let CORTHOGONAL_0 = prove( | |
`!x:complex^N. corthogonal cvector_zero x /\ corthogonal x cvector_zero`, | |
REWRITE_TAC[corthogonal;CDOT_LZERO;CDOT_RZERO]);; | |
let [CORTHOGONAL_LZERO;CORTHOGONAL_RZERO] = GCONJUNCTS CORTHOGONAL_0;; | |
let CORTHOGONAL_COLLINEAR_CVECTORS = prove | |
(`!x y:complex^N. | |
collinear_cvectors x y /\ ~(x=cvector_zero) /\ ~(y=cvector_zero) | |
==> ~(corthogonal x y)`, | |
REWRITE_TAC[collinear_cvectors;corthogonal] THEN REPEAT STRIP_TAC | |
THEN POP_ASSUM MP_TAC | |
THEN ASM_REWRITE_TAC[CDOT_RMUL;CDOT_LMUL;COMPLEX_ENTIRE;GSYM cnorm2; | |
CDOT_EQ_0;CNJ_EQ_0] | |
THEN ASM_MESON_TAC[CVECTOR_MUL_LZERO]);; | |
let CORTHOGONAL_MUL_CLAUSES = prove | |
(`!x y a. | |
(corthogonal x y ==> corthogonal x (a%y)) | |
/\ (corthogonal x y \/ a = Cx(&0) <=> corthogonal x (a%y)) | |
/\ (corthogonal x y ==> corthogonal (a%x) y) | |
/\ (corthogonal x y \/ a = Cx(&0) <=> corthogonal (a%x) y)`, | |
SIMP_TAC[corthogonal;CDOT_RMUL;CDOT_LMUL;COMPLEX_ENTIRE;CNJ_EQ_0] | |
THEN MESON_TAC[]);; | |
let [CORTHOGONAL_RMUL;CORTHOGONAL_RMUL_EQ;CORTHOGONAL_LMUL; | |
CORTHOGONAL_LMUL_EQ] = GCONJUNCTS CORTHOGONAL_MUL_CLAUSES;; | |
let CORTHOGONAL_LRMUL_CLAUSES = prove | |
(`!x y a b. | |
(corthogonal x y ==> corthogonal (a%x) (b%y)) | |
/\ (corthogonal x y \/ a = Cx(&0) \/ b = Cx(&0) | |
<=> corthogonal (a%x) (b%y))`, | |
MESON_TAC[CORTHOGONAL_MUL_CLAUSES]);; | |
let [CORTHOGONAL_LRMUL;CORTHOGONAL_LRMUL_EQ] = | |
GCONJUNCTS CORTHOGONAL_LRMUL_CLAUSES;; | |
let CORTHOGONAL_REAL_CLAUSES = prove | |
(`!r c. | |
(corthogonal c (vector_to_cvector r) | |
<=> orthogonal (cvector_re c) r /\ orthogonal (cvector_im c) r) | |
/\ (corthogonal (vector_to_cvector r) c | |
<=> orthogonal r (cvector_re c) /\ orthogonal r (cvector_im c))`, | |
REWRITE_TAC[corthogonal;orthogonal;CDOT_LREAL;CDOT_RREAL;COMPLEX_SUB_0; | |
COMPLEX_EQ;RE_CX;IM_CX;RE_SUB;IM_SUB;RE_ADD;IM_ADD] | |
THEN REWRITE_TAC[RE_DEF;CX_DEF;IM_DEF;complex;complex_mul;VECTOR_2;ii] | |
THEN CONV_TAC REAL_FIELD);; | |
let [CORTHOGONAL_RREAL;CORTHOGONAL_LREAL] = | |
GCONJUNCTS CORTHOGONAL_REAL_CLAUSES;; | |
let CORTHOGONAL_UNIT = prove | |
(`!x y:complex^N. | |
(corthogonal x (cunit y) <=> corthogonal x y) | |
/\ (corthogonal (cunit x) y <=> corthogonal x y)`, | |
REWRITE_TAC[cunit;GSYM CORTHOGONAL_MUL_CLAUSES;COMPLEX_INV_EQ_0;CX_INJ; | |
CNORM_EQ_0] | |
THEN MESON_TAC[CORTHOGONAL_0]);; | |
let [CORTHOGONAL_RUNIT;CORTHOGONAL_LUNIT] = GCONJUNCTS CORTHOGONAL_UNIT;; | |
let CORTHOGONAL_PROJECTION = prove( | |
`!x y:complex^N. corthogonal (x - (x cdot cunit y) % cunit y) y`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `y=cvector_zero:complex^N` | |
THEN ASM_REWRITE_TAC[corthogonal;CDOT_RZERO] | |
THEN REWRITE_TAC[CDOT_LSUB;cunit;CVECTOR_MUL_ASSOC;GSYM cnorm2;CDOT_LMUL; | |
CDOT_RMUL;REWRITE_RULE[REAL_CNJ] (MATCH_MP REAL_INV (SPEC_ALL REAL_CX))] | |
THEN REWRITE_TAC[COMPLEX_MUL_AC;GSYM COMPLEX_INV_MUL;GSYM COMPLEX_POW_2; | |
cnorm;o_DEF;CSQRT] | |
THEN SIMP_TAC[CNORM2_POS;CX_SQRT;cnorm2;REAL_CDOT_SELF;REAL_OF_COMPLEX;CSQRT] | |
THEN ASM_SIMP_TAC[CDOT_EQ_0;COMPLEX_MUL_RINV;COMPLEX_MUL_RID; | |
COMPLEX_SUB_REFL]);; | |
let CDOT_PYTHAGOREAN = prove | |
(`!x y:complex^N. corthogonal x y ==> cnorm2 (x+y) = cnorm2 x + cnorm2 y`, | |
SIMP_TAC[corthogonal;cnorm2;CDOT_LADD;CDOT_RADD;COMPLEX_ADD_RID; | |
COMPLEX_ADD_LID;REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF; | |
MESON[CDOT_SYM;CNJ_ZERO] `x cdot y = Cx (&0) ==> y cdot x = Cx(&0)`]);; | |
let CDOT_CAUCHY_SCHWARZ_POW_2 = prove | |
(`!x y:complex^N. norm (x cdot y) pow 2 <= cnorm2 x * cnorm2 y`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `y = cvector_zero:complex^N` | |
THEN ASM_REWRITE_TAC[CNORM2_CVECTOR_ZERO;CDOT_RZERO;COMPLEX_NORM_0; | |
REAL_POW_2;REAL_MUL_RZERO;REAL_OF_COMPLEX_CX;REAL_LE_REFL] | |
THEN ONCE_REWRITE_TAC[MATCH_MP (MESON[CVECTOR_SUB_ADD] | |
`(!x:complex^N y. p (x - f x y) y) | |
==> cnorm2 x * z = cnorm2 (x - f x y + f x y) * z`) CORTHOGONAL_PROJECTION] | |
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (MESON[] `(!x y. P x y ==> f x y = (g x y:real)) | |
==> P x y /\ a <= g x y * b ==> a <= f x y * b`) CDOT_PYTHAGOREAN)) | |
THEN REWRITE_TAC[GSYM CORTHOGONAL_MUL_CLAUSES;CORTHOGONAL_RUNIT; | |
CORTHOGONAL_PROJECTION] | |
THEN SIMP_TAC[cnorm2;GSYM REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;REAL_ADD; | |
GSYM REAL_OF_COMPLEX_MUL] | |
THEN REWRITE_TACS[cunit;CDOT_RMUL;CVECTOR_MUL_ASSOC;REWRITE_RULE[REAL_CNJ] | |
(MATCH_MP REAL_INV (SPEC_ALL REAL_CX));COMPLEX_MUL_AC;GSYM COMPLEX_INV_MUL; | |
GSYM COMPLEX_POW_2;cnorm;o_DEF;CSQRT;COMPLEX_ADD_LDISTRIB;cnorm2;CDOT_RMUL; | |
CNJ_MUL;CDOT_LMUL;GSYM cnorm2; | |
REWRITE_RULE[REAL_CNJ] (MATCH_MP REAL_INV (SPEC_ALL REAL_CX))] | |
THEN SIMP_TAC[CX_SQRT;CNORM2_POS;CSQRT;CX_CNORM2] | |
THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH | |
`x * ((y * inv x) * x) * (z * inv x') * inv x' | |
= (y * z) * (x * inv x) * (x * inv x' * inv x'):complex`] | |
THEN ASM_SIMP_TAC[CDOT_EQ_0;COMPLEX_MUL_RINV;COMPLEX_MUL_LID;COMPLEX_MUL_CNJ; | |
GSYM COMPLEX_INV_MUL] | |
THEN ONCE_REWRITE_TAC[ | |
GSYM (MATCH_MP REAL_OF_COMPLEX (SPEC_ALL REAL_CDOT_SELF))] | |
THEN SIMP_TAC[GSYM cnorm2;GSYM CX_SQRT;CNORM2_POS;GSYM CX_MUL; | |
GSYM COMPLEX_POW_2;GSYM CX_POW;SQRT_POW_2;GSYM CX_INV] | |
THEN ASM_SIMP_TAC[REAL_MUL_RINV;CNORM2_EQ_0;REAL_MUL_RID;GSYM CX_ADD; | |
REAL_OF_COMPLEX_CX;GSYM REAL_POW_2;REAL_LE_ADDL;REAL_LE_MUL;CNORM2_POS]);; | |
let CDOT_CAUCHY_SCHWARZ = prove | |
(`!x y:complex^N. norm (x cdot y) <= norm x * norm y`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC (REWRITE_RULE[REAL_LE_SQUARE_ABS] | |
(REAL_ARITH `&0 <= x /\ &0 <= y /\ abs x <= abs y ==> x <= y`)) | |
THEN SIMP_TAC[NORM_POS_LE;CNORM_POS;REAL_LE_MUL;REAL_POW_MUL;CNORM_POW_2; | |
CDOT_CAUCHY_SCHWARZ_POW_2]);; | |
let CDOT_CAUCHY_SCHWARZ_POW_2_EQUAL = prove | |
(`!x y:complex^N. | |
norm (x cdot y) pow 2 = cnorm2 x * cnorm2 y <=> collinear_cvectors x y`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `y = cvector_zero:complex^N` | |
THEN ASM_REWRITE_TAC[CNORM2_CVECTOR_ZERO;CDOT_RZERO;COMPLEX_NORM_0; | |
REAL_POW_2;REAL_MUL_RZERO;REAL_OF_COMPLEX_CX;COLLINEAR_CVECTORS_0] | |
THEN EQ_TAC THENL [ | |
ONCE_REWRITE_TAC[MATCH_MP (MESON[CVECTOR_SUB_ADD] | |
`(!x:complex^N y. p (x - f x y) y) ==> | |
cnorm2 x * z = cnorm2 (x - f x y + f x y) * z`) CORTHOGONAL_PROJECTION] | |
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (MESON[] | |
`(!x y. P x y ==> g x y = (f x y:real)) ==> | |
P x y /\ (a = f x y * z ==> R) ==> (a = g x y * z ==> R)`) | |
CDOT_PYTHAGOREAN)) | |
THEN REWRITE_TAC[GSYM CORTHOGONAL_MUL_CLAUSES;CORTHOGONAL_RUNIT; | |
CORTHOGONAL_PROJECTION] | |
THEN SIMP_TAC[cnorm2;GSYM REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;REAL_ADD; | |
GSYM REAL_OF_COMPLEX_MUL] | |
THEN REWRITE_TACS[cunit;CDOT_RMUL;CVECTOR_MUL_ASSOC;REWRITE_RULE[REAL_CNJ] | |
(MATCH_MP REAL_INV (SPEC_ALL REAL_CX));COMPLEX_MUL_AC; | |
GSYM COMPLEX_INV_MUL;GSYM COMPLEX_POW_2;cnorm;o_DEF;CSQRT; | |
COMPLEX_ADD_LDISTRIB;cnorm2;CDOT_RMUL;CNJ_MUL;CDOT_LMUL;GSYM cnorm2; | |
REWRITE_RULE[REAL_CNJ] (MATCH_MP REAL_INV (SPEC_ALL REAL_CX))] | |
THEN SIMP_TAC[CX_SQRT;CNORM2_POS;CSQRT;CX_CNORM2] | |
THEN REWRITE_TAC[SIMPLE_COMPLEX_ARITH | |
`x * ((y * inv x) * x) * (z * inv x') * inv x' = | |
(y * z) * (x * inv x) * (x * inv x' * inv x'):complex`] | |
THEN ONCE_REWRITE_TAC[GSYM (MATCH_MP REAL_OF_COMPLEX | |
(SPEC_ALL REAL_CDOT_SELF))] | |
THEN SIMP_TAC[GSYM cnorm2;GSYM CX_SQRT;CNORM2_POS;GSYM CX_MUL; | |
GSYM COMPLEX_POW_2;GSYM CX_POW;SQRT_POW_2;GSYM CX_INV;REAL_POW_INV] | |
THEN ASM_SIMP_TAC[REAL_MUL_RINV;CNORM2_EQ_0;REAL_MUL_RID;GSYM CX_ADD; | |
REAL_OF_COMPLEX_CX;GSYM REAL_POW_2;REAL_LE_ADDL;REAL_LE_MUL;CNORM2_POS; | |
GSYM CX_POW;REAL_POW_ONE;COMPLEX_MUL_RID;COMPLEX_MUL_CNJ; | |
REAL_ARITH `x = y + x <=> y = &0`;REAL_ENTIRE;CNORM2_EQ_0; | |
CVECTOR_SUB_EQ;collinear_cvectors] | |
THEN MESON_TAC[]; | |
REWRITE_TAC[collinear_cvectors] THEN REPEAT STRIP_TAC | |
THEN ASM_REWRITE_TAC[cnorm2;CDOT_LMUL;CDOT_RMUL;COMPLEX_NORM_MUL; | |
COMPLEX_MUL_ASSOC] | |
THEN SIMP_TAC[COMPLEX_MUL_CNJ;GSYM cnorm2;COMPLEX_NORM_CNJ;GSYM CX_POW; | |
REAL_OF_COMPLEX_MUL;REAL_CX;REAL_CDOT_SELF;REAL_OF_COMPLEX_CX; | |
GSYM CNORM2_ALT] | |
THEN SIMPLE_COMPLEX_ARITH_TAC | |
]);; | |
let CDOT_CAUCHY_SCHWARZ_EQUAL = prove | |
(`!x y:complex^N. | |
norm (x cdot y) = norm x * norm y <=> collinear_cvectors x y`, | |
ONCE_REWRITE_TAC[REWRITE_RULE[REAL_EQ_SQUARE_ABS] (REAL_ARITH | |
`x=y <=> abs x = abs y /\ (&0 <= x /\ &0 <= y \/ x < &0 /\ y < &0)`)] | |
THEN SIMP_TAC[NORM_POS_LE;CNORM_POS;REAL_LE_MUL;REAL_POW_MUL;CNORM_POW_2; | |
CDOT_CAUCHY_SCHWARZ_POW_2_EQUAL]);; | |
let CNORM_TRIANGLE = prove | |
(`!x y:complex^N. norm (x+y) <= norm x + norm y`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC (REWRITE_RULE[REAL_LE_SQUARE_ABS] | |
(REAL_ARITH `abs x <= abs y /\ &0 <= x /\ &0 <= y ==> x <= y`)) | |
THEN SIMP_TAC[CNORM_POS;REAL_LE_ADD;REAL_ADD_POW_2;CNORM_POW_2;cnorm2; | |
CDOT_LADD;CDOT_RADD;SIMPLE_COMPLEX_ARITH `(x+y)+z+t = x+(y+z)+t:complex`; | |
ADD_CDOT_SYM;REAL_OF_COMPLEX_ADD;REAL_CDOT_SELF;REAL_CX;REAL_ADD; | |
REAL_OF_COMPLEX_CX;REAL_ARITH `x+ &2*y+z<=x+z+ &2*t <=> y<=t:real`] | |
THEN MESON_TAC[CDOT_CAUCHY_SCHWARZ;RE_NORM;REAL_LE_TRANS]);; | |
let REAL_ABS_SUB_CNORM = prove | |
(`!x y:complex^N. abs (norm x - norm y) <= norm (x-y)`, | |
let lemma = | |
REWRITE_RULE[CVECTOR_SUB_ADD2;REAL_ARITH `x<=y+z <=> x-y<=z:real`] | |
(SPECL [`x:complex^N`;`y-x:complex^N`] CNORM_TRIANGLE) | |
in | |
REPEAT GEN_TAC | |
THEN MATCH_MP_TAC (MATCH_MP (MESON[] | |
`(!x y. P x y <=> Q x y) ==> Q x y ==> P x y`) REAL_ABS_BOUNDS) | |
THEN ONCE_REWRITE_TAC[REAL_ARITH `--x <= y <=> --y <= x`] | |
THEN REWRITE_TAC[REAL_NEG_SUB] | |
THEN REWRITE_TAC[lemma;ONCE_REWRITE_RULE[CNORM_SUB] lemma]);; | |
(* ========================================================================= *) | |
(* VSUM *) | |
(* ========================================================================= *) | |
let cvsum = new_definition | |
`(cvsum:(A->bool)->(A->complex^N)->complex^N) s f = lambda i. vsum s (\x. (f x)$i)`;; | |
(* ========================================================================= *) | |
(* INFINITE SUM *) | |
(* ========================================================================= *) | |
let csummable = new_definition | |
`csummable (s:num->bool) (f:num->complex^N) | |
<=> summable s (cvector_re o f) /\ summable s (cvector_im o f)`;; | |
let cinfsum = new_definition | |
`cinfsum (s:num->bool) (f:num->complex^N) :complex^N | |
= vector_to_cvector (infsum s (\x. cvector_re (f x))) | |
+ ii % vector_to_cvector (infsum s (\x.cvector_im (f x)))`;; | |
let CSUMMABLE_FLATTEN_CVECTOR = prove | |
(`!s (f:num->complex^N). csummable s f <=> summable s (cvector_flatten o f)`, | |
REWRITE_TAC[csummable;summable;cvector_flatten;o_DEF] | |
THEN REPEAT (STRIP_TAC ORELSE EQ_TAC) | |
THENL [ | |
EXISTS_TAC `pastecart (l:real^N) (l':real^N)` | |
THEN ASM_SIMP_TAC[GSYM SUMS_PASTECART]; | |
EXISTS_TAC `fstcart (l:real^(N,N) finite_sum)` | |
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (TAUT `(p /\ q <=> r) ==> (r ==> p)`) | |
(INST_TYPE [`:N`,`:M`] (SPEC_ALL SUMS_PASTECART)))) | |
THEN EXISTS_TAC `(cvector_im o f) :num->real^N` | |
THEN EXISTS_TAC `sndcart (l:real^(N,N) finite_sum)` | |
THEN ASM_REWRITE_TAC[ETA_AX;o_DEF;PASTECART_FST_SND]; | |
EXISTS_TAC `sndcart (l:real^(N,N) finite_sum)` | |
THEN MATCH_MP_TAC (GEN_ALL (MATCH_MP (TAUT `(p /\ q <=> r) ==> (r ==> q)`) | |
(INST_TYPE [`:N`,`:M`] (SPEC_ALL SUMS_PASTECART)))) | |
THEN EXISTS_TAC `(cvector_re o f) :num->real^N` | |
THEN EXISTS_TAC `fstcart (l:real^(N,N) finite_sum)` | |
THEN ASM_REWRITE_TAC[ETA_AX;o_DEF;PASTECART_FST_SND]; | |
]);; | |
let FLATTEN_CINFSUM = prove | |
(`!s f. | |
csummable s f ==> | |
((cinfsum s f):complex^N) = | |
cvector_unflatten (infsum s (cvector_flatten o f))`, | |
SIMP_TAC[cinfsum;cvector_unflatten;COMPLEX_VECTOR_TRANSPOSE;LINEAR_FSTCART; | |
LINEAR_SNDCART;CSUMMABLE_FLATTEN_CVECTOR;GSYM INFSUM_LINEAR;o_DEF; | |
cvector_flatten;FSTCART_PASTECART;SNDCART_PASTECART]);; | |
let CSUMMABLE_LINEAR = prove | |
(`!f h:complex^N->complex^M s. | |
csummable s f /\ clinear h ==> csummable s (h o f)`, | |
REWRITE_TAC[CSUMMABLE_FLATTEN_CVECTOR] THEN REPEAT STRIP_TAC | |
THEN POP_ASSUM (ASSUME_TAC o MATCH_MP FLATTEN_CLINEAR) | |
THEN SUBGOAL_THEN | |
`cvector_flatten o (h:complex^N -> complex^M) o (f:num -> complex^N) = | |
\n. (cvector_flatten o h o cvector_unflatten) (cvector_flatten (f n))` | |
(SINGLE REWRITE_TAC) | |
THENL [ | |
REWRITE_TAC[o_DEF;FUN_EQ_THM] THEN GEN_TAC THEN REPEAT AP_TERM_TAC | |
THEN REWRITE_TAC[REWRITE_RULE[o_DEF;I_DEF;FUN_EQ_THM] UNFLATTEN_FLATTEN]; | |
MATCH_MP_TAC SUMMABLE_LINEAR THEN ASM_SIMP_TAC[GSYM o_DEF] | |
]);; | |
let CINFSUM_LINEAR = prove | |
(`!f (h:complex^M->complex^N) s. | |
csummable s f /\ clinear h ==> cinfsum s (h o f) = h (cinfsum s f)`, | |
REPEAT GEN_TAC | |
THEN DISCH_THEN (fun x -> MP_TAC (CONJ (MATCH_MP CSUMMABLE_LINEAR x) x)) | |
THEN SIMP_TAC[FLATTEN_CINFSUM;CSUMMABLE_FLATTEN_CVECTOR] | |
THEN REPEAT STRIP_TAC THEN POP_ASSUM (ASSUME_TAC o MATCH_MP FLATTEN_CLINEAR) | |
THEN SUBGOAL_THEN | |
`cvector_flatten o (h:complex^M->complex^N) o (f:num->complex^M) = | |
\n. (cvector_flatten o h o cvector_unflatten) ((cvector_flatten o f) n)` | |
(SINGLE REWRITE_TAC) | |
THENL [ | |
REWRITE_TAC[o_DEF;FUN_EQ_THM] THEN GEN_TAC THEN REPEAT AP_TERM_TAC | |
THEN REWRITE_TAC[REWRITE_RULE[o_DEF;I_DEF;FUN_EQ_THM] UNFLATTEN_FLATTEN]; | |
FIRST_ASSUM (fun x -> FIRST_ASSUM (fun y -> REWRITE_TAC[MATCH_MP | |
(MATCH_MP (REWRITE_RULE[IMP_CONJ] INFSUM_LINEAR) x) y])) | |
THEN REWRITE_TAC[o_DEF;REWRITE_RULE[o_DEF;I_DEF;FUN_EQ_THM] | |
UNFLATTEN_FLATTEN] | |
]);; | |