Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* HOL basics *) | |
(* ========================================================================= *) | |
ARITH_RULE | |
`(a * x + b * y + a * y) EXP 3 + (b * x) EXP 3 + | |
(a * x + b * y + b * x) EXP 3 + (a * y) EXP 3 = | |
(a * x + a * y + b * x) EXP 3 + (b * y) EXP 3 + | |
(a * y + b * y + b * x) EXP 3 + (a * x) EXP 3`;; | |
(* ========================================================================= *) | |
(* Propositional logic *) | |
(* ========================================================================= *) | |
TAUT | |
`(~input_a ==> (internal <=> T)) /\ | |
(~input_b ==> (output <=> internal)) /\ | |
(input_a ==> (output <=> F)) /\ | |
(input_b ==> (output <=> F)) | |
==> (output <=> ~(input_a \/ input_b))`;; | |
TAUT | |
`(i1 /\ i2 <=> a) /\ | |
(i1 /\ i3 <=> b) /\ | |
(i2 /\ i3 <=> c) /\ | |
(i1 /\ c <=> d) /\ | |
(m /\ r <=> e) /\ | |
(m /\ w <=> f) /\ | |
(n /\ w <=> g) /\ | |
(p /\ w <=> h) /\ | |
(q /\ w <=> i) /\ | |
(s /\ x <=> j) /\ | |
(t /\ x <=> k) /\ | |
(v /\ x <=> l) /\ | |
(i1 \/ i2 <=> m) /\ | |
(i1 \/ i3 <=> n) /\ | |
(i1 \/ q <=> p) /\ | |
(i2 \/ i3 <=> q) /\ | |
(i3 \/ a <=> r) /\ | |
(a \/ w <=> s) /\ | |
(b \/ w <=> t) /\ | |
(d \/ h <=> u) /\ | |
(c \/ w <=> v) /\ | |
(~e <=> w) /\ | |
(~u <=> x) /\ | |
(i \/ l <=> o1) /\ | |
(g \/ k <=> o2) /\ | |
(f \/ j <=> o3) | |
==> (o1 <=> ~i1) /\ (o2 <=> ~i2) /\ (o3 <=> ~i3)`;; | |
(* ========================================================================= *) | |
(* Abstractions and quantifiers *) | |
(* ========================================================================= *) | |
MESON[] | |
`((?x. !y. P(x) <=> P(y)) <=> ((?x. Q(x)) <=> (!y. Q(y)))) <=> | |
((?x. !y. Q(x) <=> Q(y)) <=> ((?x. P(x)) <=> (!y. P(y))))`;; | |
MESON[] | |
`(!x y z. P x y /\ P y z ==> P x z) /\ | |
(!x y z. Q x y /\ Q y z ==> Q x z) /\ | |
(!x y. P x y ==> P y x) /\ | |
(!x y. P x y \/ Q x y) | |
==> (!x y. P x y) \/ (!x y. Q x y)`;; | |
let ewd1062 = MESON[] | |
`(!x. x <= x) /\ | |
(!x y z. x <= y /\ y <= z ==> x <= z) /\ | |
(!x y. f(x) <= y <=> x <= g(y)) | |
==> (!x y. x <= y ==> f(x) <= f(y)) /\ | |
(!x y. x <= y ==> g(x) <= g(y))`;; | |
let ewd1062 = MESON[] | |
`(!x. R x x) /\ | |
(!x y z. R x y /\ R y z ==> R x z) /\ | |
(!x y. R (f x) y <=> R x (g y)) | |
==> (!x y. R x y ==> R (f x) (f y)) /\ | |
(!x y. R x y ==> R (g x) (g y))`;; | |
MESON[] `(?!x. g(f x) = x) <=> (?!y. f(g y) = y)`;; | |
MESON [ADD_ASSOC; ADD_SYM] `m + (n + p) = n + (m + p)`;; | |
(* ========================================================================= *) | |
(* Tactics and tacticals *) | |
(* ========================================================================= *) | |
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; | |
e DISCH_TAC;; | |
b();; | |
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));; | |
e(SIMP_TAC[]);; | |
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);; | |
e DISCH_TAC;; | |
e(ASM_REWRITE_TAC[]);; | |
e(CONV_TAC ARITH_RULE);; | |
let trivial = top_thm();; | |
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; | |
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));; | |
e(SIMP_TAC[]);; | |
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);; | |
e DISCH_TAC;; | |
e(ASM_REWRITE_TAC[]);; | |
e(CONV_TAC ARITH_RULE);; | |
let trivial = top_thm();; | |
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; | |
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN | |
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);; | |
let trivial = top_thm();; | |
let trivial = prove | |
(`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`, | |
CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN | |
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);; | |
let trivial = prove | |
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`, | |
REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN | |
MP_TAC(SPECL [`x:real`; `--y`] REAL_LE_MUL) THEN REAL_ARITH_TAC);; | |
let trivial = prove | |
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`, | |
MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THEN | |
MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN REAL_ARITH_TAC);; | |
let SUM_OF_NUMBERS = prove | |
(`!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; | |
let SUM_OF_SQUARES = prove | |
(`!n. nsum(1..n) (\i. i * i) = (n * (n + 1) * (2 * n + 1)) DIV 6`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; | |
let SUM_OF_CUBES = prove | |
(`!n. nsum(1..n) (\i. i*i*i) = (n * n * (n + 1) * (n + 1)) DIV 4`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; | |
(* ========================================================================= *) | |
(* HOL's number systems *) | |
(* ========================================================================= *) | |
REAL_ARITH `!x y:real. (abs(x) - abs(y)) <= abs(x - y)`;; | |
INT_ARITH | |
`!a b a' b' D:int. | |
(a pow 2 - D * b pow 2) * (a' pow 2 - D * b' pow 2) = | |
(a * a' + D * b * b') pow 2 - D * (a * b' + a' * b) pow 2`;; | |
REAL_ARITH | |
`!x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11:real. | |
x3 = abs(x2) - x1 /\ | |
x4 = abs(x3) - x2 /\ | |
x5 = abs(x4) - x3 /\ | |
x6 = abs(x5) - x4 /\ | |
x7 = abs(x6) - x5 /\ | |
x8 = abs(x7) - x6 /\ | |
x9 = abs(x8) - x7 /\ | |
x10 = abs(x9) - x8 /\ | |
x11 = abs(x10) - x9 | |
==> x1 = x10 /\ x2 = x11`;; | |
REAL_ARITH `!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y`;; | |
REAL_ARITH | |
`((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2) = | |
((&1 / &6) * ((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 + | |
(x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) + | |
(&1 / &6) * ((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 + | |
(x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4))`;; | |
ARITH_RULE `x < 2 ==> 2 * x + 1 < 4`;; | |
(**** Fails | |
ARITH_RULE `~(2 * m + 1 = 2 * n)`;; | |
****) | |
ARITH_RULE `x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;; | |
(**** Fails | |
ARITH_RULE `x <= 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;; | |
****) | |
(**** Fails | |
ARITH_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;; | |
****) | |
(**** Fails | |
REAL_ARITH `!x y:real. x = y ==> x * y = y pow 2`;; | |
****) | |
prioritize_real();; | |
REAL_RING | |
`s = (a + b + c) / &2 | |
==> s * (s - b) * (s - c) + s * (s - c) * (s - a) + | |
s * (s - a) * (s - b) - (s - a) * (s - b) * (s - c) = | |
a * b * c`;; | |
REAL_RING `a pow 2 = &2 /\ x pow 2 + a * x + &1 = &0 ==> x pow 4 + &1 = &0`;; | |
REAL_RING | |
`(a * x pow 2 + b * x + c = &0) /\ | |
(a * y pow 2 + b * y + c = &0) /\ | |
~(x = y) | |
==> (a * x * y = c) /\ (a * (x + y) + b = &0)`;; | |
REAL_RING | |
`p = (&3 * a1 - a2 pow 2) / &3 /\ | |
q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\ | |
x = z + a2 / &3 /\ | |
x * w = w pow 2 - p / &3 | |
==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=> | |
if p = &0 then x pow 3 = q | |
else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)`;; | |
REAL_FIELD `&0 < x ==> &1 / x - &1 / (&1 + x) = &1 / (x * (&1 + x))`;; | |
REAL_FIELD | |
`s pow 2 = b pow 2 - &4 * a * c | |
==> (a * x pow 2 + b * x + c = &0 <=> | |
if a = &0 then | |
if b = &0 then | |
if c = &0 then T else F | |
else x = --c / b | |
else x = (--b + s) / (&2 * a) \/ x = (--b + --s) / (&2 * a))`;; | |
(**** This needs an external SDP solver to assist with proof | |
needs "Examples/sos.ml";; | |
SOS_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;; | |
REAL_SOS | |
`!a1 a2 a3 a4:real. | |
&0 <= a1 /\ &0 <= a2 /\ &0 <= a3 /\ &0 <= a4 | |
==> a1 pow 2 + | |
((a1 + a2) / &2) pow 2 + | |
((a1 + a2 + a3) / &3) pow 2 + | |
((a1 + a2 + a3 + a4) / &4) pow 2 | |
<= &4 * (a1 pow 2 + a2 pow 2 + a3 pow 2 + a4 pow 2)`;; | |
REAL_SOS | |
`!a b c:real. | |
a >= &0 /\ b >= &0 /\ c >= &0 | |
==> &3 / &2 * (b + c) * (a + c) * (a + b) <= | |
a * (a + c) * (a + b) + | |
b * (b + c) * (a + b) + | |
c * (b + c) * (a + c)`;; | |
SOS_CONV `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;; | |
PURE_SOS | |
`x pow 4 + &2 * x pow 2 * z + x pow 2 - &2 * x * y * z + | |
&2 * y pow 2 * z pow 2 + &2 * y * z pow 2 + &2 * z pow 2 - &2 * x + | |
&2 * y * z + &1 >= &0`;; | |
*****) | |
needs "Examples/cooper.ml";; | |
COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;; | |
COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;; | |
needs "Rqe/make.ml";; | |
REAL_QELIM_CONV `!x. &0 <= x ==> ?y. y pow 2 = x`;; | |
(* ========================================================================= *) | |
(* Inductive definitions *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Bug puzzle. *) | |
(* ------------------------------------------------------------------------- *) | |
prioritize_real();; | |
let move = new_definition | |
`move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=> | |
(?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\ | |
bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/ | |
(?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\ | |
ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/ | |
(?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\ | |
cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;; | |
let reachable_RULES,reachable_INDUCT,reachable_CASES = | |
new_inductive_definition | |
`(!p. reachable p p) /\ | |
(!p q r. move p q /\ reachable q r ==> reachable p r)`;; | |
let oriented_area = new_definition | |
`oriented_area ((ax,ay),(bx,by),(cx,cy)) = | |
((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;; | |
let MOVE_INVARIANT = prove | |
(`!p p'. move p p' ==> oriented_area p = oriented_area p'`, | |
REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);; | |
let REACHABLE_INVARIANT = prove | |
(`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`, | |
MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);; | |
let IMPOSSIBILITY_B = prove | |
(`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/ | |
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/ | |
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/ | |
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/ | |
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/ | |
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`, | |
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN | |
REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Verification of a simple concurrent program. *) | |
(* ------------------------------------------------------------------------- *) | |
let init = new_definition | |
`init (x,y,pc1,pc2,sem) <=> | |
pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;; | |
let trans = new_definition | |
`trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=> | |
pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\ | |
(x',y',pc2') = (x,y,pc2) \/ | |
pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\ | |
(x',y',pc1') = (x,y,pc1) \/ | |
pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\ | |
(y',pc2',sem') = (y,pc2,sem) \/ | |
pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\ | |
pc1' = pc1 /\ sem' = sem \/ | |
pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\ | |
(x',y',pc2') = (x,y,pc2) \/ | |
pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\ | |
(x',y',pc1') = (x,y,pc1)`;; | |
let mutex = new_definition | |
`mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;; | |
let indinv = new_definition | |
`indinv (x:num,y:num,pc1,pc2,sem) <=> | |
sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;; | |
needs "Library/rstc.ml";; | |
let INDUCTIVE_INVARIANT = prove | |
(`!init invariant transition P. | |
(!s. init s ==> invariant s) /\ | |
(!s s'. invariant s /\ transition s s' ==> invariant s') /\ | |
(!s. invariant s ==> P s) | |
==> !s s':A. init s /\ RTC transition s s' ==> P s'`, | |
REPEAT GEN_TAC THEN MP_TAC(ISPECL | |
[`transition:A->A->bool`; | |
`\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN | |
MESON_TAC[]);; | |
let MUTEX = prove | |
(`!s s'. init s /\ RTC trans s s' ==> mutex s'`, | |
MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN | |
REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN | |
ARITH_TAC);; | |
(* ========================================================================= *) | |
(* Wellfounded induction *) | |
(* ========================================================================= *) | |
let NSQRT_2 = prove | |
(`!p q. p * p = 2 * q * q ==> q = 0`, | |
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM `EVEN`) THEN | |
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `m:num`]) THEN | |
ASM_REWRITE_TAC[ARITH_RULE | |
`q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=> | |
(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q`] THEN | |
ASM_MESON_TAC[LE_MULT2; MULT_EQ_0; ARITH_RULE `2 * x <= x <=> x = 0`]);; | |
(* ========================================================================= *) | |
(* Changing proof style *) | |
(* ========================================================================= *) | |
let fix ts = MAP_EVERY X_GEN_TAC ts;; | |
let assume lab t = | |
DISCH_THEN(fun th -> if concl th = t then LABEL_TAC lab th | |
else failwith "assume");; | |
let we're finished tac = tac;; | |
let suffices_to_prove q tac = SUBGOAL_THEN q (fun th -> MP_TAC th THEN tac);; | |
let note(lab,t) tac = | |
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN | |
DISCH_THEN(fun th -> LABEL_TAC lab th);; | |
let have t = note("",t);; | |
let cases (lab,t) tac = | |
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN | |
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (LABEL_TAC lab));; | |
let consider (x,lab,t) tac = | |
let tm = mk_exists(x,t) in | |
SUBGOAL_THEN tm (X_CHOOSE_THEN x (LABEL_TAC lab)) THENL [tac; ALL_TAC];; | |
let trivial = MESON_TAC[];; | |
let algebra = CONV_TAC NUM_RING;; | |
let arithmetic = ARITH_TAC;; | |
let by labs tac = MAP_EVERY (fun l -> USE_THEN l MP_TAC) labs THEN tac;; | |
let using ths tac = MAP_EVERY MP_TAC ths THEN tac;; | |
let so constr arg tac = constr arg (FIRST_ASSUM MP_TAC THEN tac);; | |
let NSQRT_2 = prove | |
(`!p q. p * p = 2 * q * q ==> q = 0`, | |
suffices_to_prove | |
`!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0)) | |
==> (!q. p * p = 2 * q * q ==> q = 0)` | |
(MATCH_ACCEPT_TAC num_WF) THEN | |
fix [`p:num`] THEN | |
assume("A") `!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0` THEN | |
fix [`q:num`] THEN | |
assume("B") `p * p = 2 * q * q` THEN | |
so have `EVEN(p * p) <=> EVEN(2 * q * q)` (trivial) THEN | |
so have `EVEN(p)` (using [ARITH; EVEN_MULT] trivial) THEN | |
so consider (`m:num`,"C",`p = 2 * m`) (using [EVEN_EXISTS] trivial) THEN | |
cases ("D",`q < p \/ p <= q`) (arithmetic) THENL | |
[so have `q * q = 2 * m * m ==> m = 0` (by ["A"] trivial) THEN | |
so we're finished (by ["B"; "C"] algebra); | |
so have `p * p <= q * q` (using [LE_MULT2] trivial) THEN | |
so have `q * q = 0` (by ["B"] arithmetic) THEN | |
so we're finished (algebra)]);; | |
(* ========================================================================= *) | |
(* Recursive definitions *) | |
(* ========================================================================= *) | |
let fib = define | |
`fib n = if n = 0 \/ n = 1 then 1 else fib(n - 1) + fib(n - 2)`;; | |
let fib2 = define | |
`(fib2 0 = 1) /\ | |
(fib2 1 = 1) /\ | |
(fib2 (n + 2) = fib2(n) + fib2(n + 1))`;; | |
let halve = define `halve (2 * n) = n`;; | |
let unknown = define `unknown n = unknown(n + 1)`;; | |
define | |
`!n. collatz(n) = if n <= 1 then n | |
else if EVEN(n) then collatz(n DIV 2) | |
else collatz(3 * n + 1)`;; | |
let fusc_def = define | |
`(fusc (2 * n) = if n = 0 then 0 else fusc(n)) /\ | |
(fusc (2 * n + 1) = if n = 0 then 1 else fusc(n) + fusc(n + 1))`;; | |
let fusc = prove | |
(`fusc 0 = 0 /\ | |
fusc 1 = 1 /\ | |
fusc (2 * n) = fusc(n) /\ | |
fusc (2 * n + 1) = fusc(n) + fusc(n + 1)`, | |
REWRITE_TAC[fusc_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
MP_TAC(INST [`0`,`n:num`] fusc_def) THEN ARITH_TAC);; | |
let binom = define | |
`(!n. binom(n,0) = 1) /\ | |
(!k. binom(0,SUC(k)) = 0) /\ | |
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;; | |
let BINOM_LT = prove | |
(`!n k. n < k ==> (binom(n,k) = 0)`, | |
INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN | |
ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);; | |
let BINOM_REFL = prove | |
(`!n. binom(n,n) = 1`, | |
INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);; | |
let BINOM_FACT = prove | |
(`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`, | |
INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN | |
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN | |
REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);; | |
let BINOMIAL_THEOREM = prove | |
(`!n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN | |
REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN | |
SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN | |
ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN | |
REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN | |
MATCH_MP_TAC(ARITH_RULE `a = e /\ b = c + d ==> a + b = c + d + e`) THEN | |
CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN | |
SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN | |
REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN | |
SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN | |
SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN | |
SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN | |
REWRITE_TAC[MULT_AC]);; | |
(* ========================================================================= *) | |
(* Sets and functions *) | |
(* ========================================================================= *) | |
let SURJECTIVE_IFF_RIGHT_INVERSE = prove | |
(`(!y. ?x. g x = y) <=> (?f. g o f = I)`, | |
REWRITE_TAC[FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);; | |
let INJECTIVE_IFF_LEFT_INVERSE = prove | |
(`(!x y. f x = f y ==> x = y) <=> (?g. g o f = I)`, | |
let lemma = MESON[] | |
`(!x x'. f x = f x' ==> x = x') <=> (!y:B. ?u:A. !x. f x = y ==> u = x)` in | |
REWRITE_TAC[lemma; FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);; | |
let cantor = new_definition | |
`cantor(x,y) = ((x + y) EXP 2 + 3 * x + y) DIV 2`;; | |
(**** Needs external SDP solver | |
needs "Examples/sos.ml";; | |
let CANTOR_LEMMA = prove | |
(`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`, | |
REWRITE_TAC[cantor] THEN CONV_TAC SOS_RULE);; | |
****) | |
let CANTOR_LEMMA_LEMMA = prove | |
(`x + y < x' + y' ==> cantor(x,y) < cantor(x',y')`, | |
REWRITE_TAC[ARITH_RULE `x + y < z <=> x + y + 1 <= z`] THEN DISCH_TAC THEN | |
REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN | |
MATCH_MP_TAC(ARITH_RULE `x + 2 <= y ==> x DIV 2 < y DIV 2`) THEN | |
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(x + y + 1) EXP 2 + (x + y + 1)` THEN | |
CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN | |
MATCH_MP_TAC(ARITH_RULE `a:num <= b /\ c <= d ==> a + c <= b + d + e`) THEN | |
ASM_SIMP_TAC[EXP_2; LE_MULT2]);; | |
let CANTOR_LEMMA = prove | |
(`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`, | |
MESON_TAC[LT_CASES; LT_REFL; CANTOR_LEMMA_LEMMA]);; | |
let CANTOR_INJ = prove | |
(`!w z. cantor w = cantor z ==> w = z`, | |
REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ] THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP CANTOR_LEMMA th)) THEN | |
ASM_REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN | |
REWRITE_TAC[ARITH_RULE `(a + b + 2 * x) DIV 2 = (a + b) DIV 2 + x`] THEN | |
POP_ASSUM MP_TAC THEN ARITH_TAC);; | |
let CANTOR_THM = prove | |
(`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`, | |
REWRITE_TAC[INJECTIVE_IFF_LEFT_INVERSE; FUN_EQ_THM; I_DEF; o_DEF] THEN | |
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN | |
MESON_TAC[]);; | |
(* ========================================================================= *) | |
(* Inductive datatypes *) | |
(* ========================================================================= *) | |
let line_INDUCT,line_RECURSION = define_type | |
"line = Line_1 | Line_2 | Line_3 | Line_4 | | |
Line_5 | Line_6 | Line_7";; | |
let point_INDUCT,point_RECURSION = define_type | |
"point = Point_1 | Point_2 | Point_3 | Point_4 | | |
Point_5 | Point_6 | Point_7";; | |
let fano_incidence = | |
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4; | |
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];; | |
let fano_point i = mk_const("Point_"^string_of_int i,[]);; | |
let fano_line i = mk_const("Line_"^string_of_int i,[]);; | |
let p = `p:point` and l = `l:line` ;; | |
let fano_clause (i,j) = mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));; | |
parse_as_infix("ON",(11,"right"));; | |
let ON = new_definition | |
(mk_eq(`((ON):point->line->bool) p l`, | |
list_mk_disj(map fano_clause fano_incidence)));; | |
let ON_CLAUSES = prove | |
(list_mk_conj(allpairs | |
(fun i j -> mk_eq(mk_comb(mk_comb(`(ON)`,fano_point i),fano_line j), | |
if mem (i,j) fano_incidence then `T` else `F`)) | |
(1--7) (1--7)), | |
REWRITE_TAC[ON; distinctness "line"; distinctness "point"]);; | |
let FORALL_POINT = prove | |
(`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\ | |
P Point_5 /\ P Point_6 /\ P Point_7`, | |
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[point_INDUCT]]);; | |
let FORALL_LINE = prove | |
(`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\ | |
P Line_5 /\ P Line_6 /\ P Line_7`, | |
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[line_INDUCT]]);; | |
let EXISTS_POINT = prove | |
(`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/ | |
P Point_5 \/ P Point_6 \/ P Point_7`, | |
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN | |
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);; | |
let EXISTS_LINE = prove | |
(`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/ | |
P Line_5 \/ P Line_6 \/ P Line_7`, | |
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN | |
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);; | |
let FANO_TAC = | |
GEN_REWRITE_TAC DEPTH_CONV | |
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN | |
GEN_REWRITE_TAC DEPTH_CONV | |
(basic_rewrites() @ | |
[ON_CLAUSES; distinctness "point"; distinctness "line"]);; | |
let FANO_RULE tm = prove(tm,FANO_TAC);; | |
let AXIOM_1 = FANO_RULE | |
`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\ | |
!l'. p ON l' /\ p' ON l' ==> l' = l`;; | |
let AXIOM_2 = FANO_RULE | |
`!l l'. ?p. p ON l /\ p ON l'`;; | |
let AXIOM_3 = FANO_RULE | |
`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
~(?l. p ON l /\ p' ON l /\ p'' ON l)`;; | |
let AXIOM_4 = FANO_RULE | |
`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
p ON l /\ p' ON l /\ p'' ON l`;; | |
(* ========================================================================= *) | |
(* Semantics of programming languages *) | |
(* ========================================================================= *) | |
let string_INDUCT,string_RECURSION = | |
define_type "string = String (int list)";; | |
let expression_INDUCT,expression_RECURSION = define_type | |
"expression = Literal num | |
| Variable string | |
| Plus expression expression | |
| Times expression expression";; | |
let command_INDUCT,command_RECURSION = define_type | |
"command = Assign string expression | |
| Sequence command command | |
| If expression command command | |
| While expression command";; | |
parse_as_infix(";;",(18,"right"));; | |
parse_as_infix(":=",(20,"right"));; | |
override_interface(";;",`Sequence`);; | |
override_interface(":=",`Assign`);; | |
overload_interface("+",`Plus`);; | |
overload_interface("*",`Times`);; | |
let value = define | |
`(value (Literal n) s = n) /\ | |
(value (Variable x) s = s(x)) /\ | |
(value (e1 + e2) s = value e1 s + value e2 s) /\ | |
(value (e1 * e2) s = value e1 s * value e2 s)`;; | |
let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition | |
`(!x e s s'. s'(x) = value e s /\ (!y. ~(y = x) ==> s'(y) = s(y)) | |
==> sem (x := e) s s') /\ | |
(!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s'' ==> sem(c1 ;; c2) s s'') /\ | |
(!e c1 c2 s s'. ~(value e s = 0) /\ sem(c1) s s' ==> sem(If e c1 c2) s s') /\ | |
(!e c1 c2 s s'. value e s = 0 /\ sem(c2) s s' ==> sem(If e c1 c2) s s') /\ | |
(!e c s. value e s = 0 ==> sem(While e c) s s) /\ | |
(!e c s s' s''. ~(value e s = 0) /\ sem(c) s s' /\ sem(While e c) s' s'' | |
==> sem(While e c) s s'')`;; | |
(**** Fails | |
define | |
`sem(While e c) s s' <=> if value e s = 0 then (s' = s) | |
else ?s''. sem c s s'' /\ sem(While e c) s'' s'`;; | |
****) | |
let DETERMINISM = prove | |
(`!c s s' s''. sem c s s' /\ sem c s s'' ==> (s' = s'')`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC sem_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN | |
REWRITE_TAC[distinctness "command"; injectivity "command"] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);; | |
let wlp = new_definition | |
`wlp c q s <=> !s'. sem c s s' ==> q s'`;; | |
let terminates = new_definition | |
`terminates c s <=> ?s'. sem c s s'`;; | |
let wp = new_definition | |
`wp c q s <=> terminates c s /\ wlp c q s`;; | |
let WP_TOTAL = prove | |
(`!c. (wp c EMPTY = EMPTY)`, | |
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; EMPTY] THEN MESON_TAC[]);; | |
let WP_MONOTONIC = prove | |
(`q SUBSET r ==> wp c q SUBSET wp c r`, | |
REWRITE_TAC[SUBSET; IN; wp; wlp; terminates] THEN MESON_TAC[]);; | |
let WP_DISJUNCTIVE = prove | |
(`(wp c p) UNION (wp c q) = wp c (p UNION q)`, | |
REWRITE_TAC[FUN_EQ_THM; IN; wp; wlp; IN_ELIM_THM; UNION; terminates] THEN | |
MESON_TAC[DETERMINISM]);; | |
let WP_SEQ = prove | |
(`!c1 c2 q. wp (c1 ;; c2) = wp c1 o wp c2`, | |
REWRITE_TAC[wp; wlp; terminates; FUN_EQ_THM; o_THM] THEN REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sem_CASES] THEN | |
REWRITE_TAC[injectivity "command"; distinctness "command"] THEN | |
MESON_TAC[DETERMINISM]);; | |
let correct = new_definition | |
`correct p c q <=> p SUBSET (wp c q)`;; | |
let CORRECT_PRESTRENGTH = prove | |
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`, | |
REWRITE_TAC[correct; SUBSET_TRANS]);; | |
let CORRECT_POSTWEAK = prove | |
(`!p c q q'. correct p c q' /\ q' SUBSET q ==> correct p c q`, | |
REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);; | |
let CORRECT_SEQ = prove | |
(`!p q r c1 c2. | |
correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; c2) q`, | |
REWRITE_TAC[correct; WP_SEQ; o_THM] THEN | |
MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Need a fresh HOL session here; now doing shallow embedding. *) | |
(* ------------------------------------------------------------------------- *) | |
let assign = new_definition | |
`Assign (f:S->S) (q:S->bool) = q o f`;; | |
parse_as_infix(";;",(18,"right"));; | |
let sequence = new_definition | |
`(c1:(S->bool)->(S->bool)) ;; (c2:(S->bool)->(S->bool)) = c1 o c2`;; | |
let if_def = new_definition | |
`If e (c:(S->bool)->(S->bool)) q = {s | if e s then c q s else q s}`;; | |
let ite_def = new_definition | |
`Ite e (c1:(S->bool)->(S->bool)) c2 q = | |
{s | if e s then c1 q s else c2 q s}`;; | |
let while_RULES,while_INDUCT,while_CASES = new_inductive_definition | |
`!q s. If e (c ;; while e c) q s ==> while e c q s`;; | |
let while_def = new_definition | |
`While e c q = | |
{s | !w. (!s:S. (if e(s) then c w s else q s) ==> w s) ==> w s}`;; | |
let monotonic = new_definition | |
`monotonic c <=> !q q'. q SUBSET q' ==> (c q) SUBSET (c q')`;; | |
let MONOTONIC_ASSIGN = prove | |
(`monotonic (Assign f)`, | |
SIMP_TAC[monotonic; assign; SUBSET; o_THM; IN]);; | |
let MONOTONIC_IF = prove | |
(`monotonic c ==> monotonic (If e c)`, | |
REWRITE_TAC[monotonic; if_def] THEN SET_TAC[]);; | |
let MONOTONIC_ITE = prove | |
(`monotonic c1 /\ monotonic c2 ==> monotonic (Ite e c1 c2)`, | |
REWRITE_TAC[monotonic; ite_def] THEN SET_TAC[]);; | |
let MONOTONIC_SEQ = prove | |
(`monotonic c1 /\ monotonic c2 ==> monotonic (c1 ;; c2)`, | |
REWRITE_TAC[monotonic; sequence; o_THM] THEN SET_TAC[]);; | |
let MONOTONIC_WHILE = prove | |
(`monotonic c ==> monotonic(While e c)`, | |
REWRITE_TAC[monotonic; while_def] THEN SET_TAC[]);; | |
let WHILE_THM = prove | |
(`!e c q:S->bool. | |
monotonic c | |
==> (!s. If e (c ;; While e c) q s ==> While e c q s) /\ | |
(!w'. (!s. If e (c ;; (\q. w')) q s ==> w' s) | |
==> (!a. While e c q a ==> w' a)) /\ | |
(!s. While e c q s <=> If e (c ;; While e c) q s)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
(MP_TAC o GEN_ALL o DISCH_ALL o derive_nonschematic_inductive_relations) | |
`!s:S. (if e s then c w s else q s) ==> w s` THEN | |
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM; IMP_IMP] THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
REWRITE_TAC[FUN_EQ_THM; while_def; IN_ELIM_THM] THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[monotonic] THEN SET_TAC[]);; | |
let WHILE_FIX = prove | |
(`!e c. monotonic c ==> (While e c = If e (c ;; While e c))`, | |
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[WHILE_THM]);; | |
let correct = new_definition | |
`correct p c q <=> p SUBSET (c q)`;; | |
let CORRECT_PRESTRENGTH = prove | |
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`, | |
REWRITE_TAC[correct; SUBSET_TRANS]);; | |
let CORRECT_POSTWEAK = prove | |
(`!p c q q'. monotonic c /\ correct p c q' /\ q' SUBSET q ==> correct p c q`, | |
REWRITE_TAC[correct; monotonic] THEN SET_TAC[]);; | |
let CORRECT_ASSIGN = prove | |
(`!p f q. (p SUBSET (q o f)) ==> correct p (Assign f) q`, | |
REWRITE_TAC[correct; assign]);; | |
let CORRECT_SEQ = prove | |
(`!p q r c1 c2. | |
monotonic c1 /\ correct p c1 r /\ correct r c2 q | |
==> correct p (c1 ;; c2) q`, | |
REWRITE_TAC[correct; sequence; monotonic; o_THM] THEN SET_TAC[]);; | |
let CORRECT_ITE = prove | |
(`!p e c1 c2 q. | |
correct (p INTER e) c1 q /\ correct (p INTER (UNIV DIFF e)) c2 q | |
==> correct p (Ite e c1 c2) q`, | |
REWRITE_TAC[correct; ite_def] THEN SET_TAC[]);; | |
let CORRECT_IF = prove | |
(`!p e c q. | |
correct (p INTER e) c q /\ p INTER (UNIV DIFF e) SUBSET q | |
==> correct p (If e c) q`, | |
REWRITE_TAC[correct; if_def] THEN SET_TAC[]);; | |
let CORRECT_WHILE = prove | |
(`!(<<) p c q e invariant. | |
monotonic c /\ | |
WF(<<) /\ | |
p SUBSET invariant /\ | |
(UNIV DIFF e) INTER invariant SUBSET q /\ | |
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c | |
(invariant INTER (\s. s << X))) | |
==> correct p (While e c) q`, | |
REWRITE_TAC[correct; SUBSET; IN_INTER; IN_UNIV; IN_DIFF; IN] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!s:S. invariant s ==> While e c q s` MP_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN | |
X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN | |
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP WHILE_FIX th]) THEN | |
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM] THEN | |
COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`s:S`; `s:S`]) THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monotonic]) THEN | |
REWRITE_TAC[SUBSET; IN; RIGHT_IMP_FORALL_THM] THEN | |
DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[INTER; IN_ELIM_THM; IN]);; | |
let assert_def = new_definition | |
`assert (p:S->bool) (q:S->bool) = q`;; | |
let variant_def = new_definition | |
`variant ((<<):S->S->bool) (q:S->bool) = q`;; | |
let CORRECT_SEQ_VC = prove | |
(`!p q r c1 c2. | |
monotonic c1 /\ correct p c1 r /\ correct r c2 q | |
==> correct p (c1 ;; assert r ;; c2) q`, | |
REWRITE_TAC[correct; sequence; monotonic; assert_def; o_THM] THEN SET_TAC[]);; | |
let CORRECT_WHILE_VC = prove | |
(`!(<<) p c q e invariant. | |
monotonic c /\ | |
WF(<<) /\ | |
p SUBSET invariant /\ | |
(UNIV DIFF e) INTER invariant SUBSET q /\ | |
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c | |
(invariant INTER (\s. s << X))) | |
==> correct p (While e (assert invariant ;; variant(<<) ;; c)) q`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[sequence; variant_def; assert_def; o_DEF; ETA_AX] THEN | |
ASM_MESON_TAC[CORRECT_WHILE]);; | |
let MONOTONIC_ASSERT = prove | |
(`monotonic (assert p)`, | |
REWRITE_TAC[assert_def; monotonic]);; | |
let MONOTONIC_VARIANT = prove | |
(`monotonic (variant p)`, | |
REWRITE_TAC[variant_def; monotonic]);; | |
let MONO_TAC = | |
REPEAT(MATCH_MP_TAC MONOTONIC_WHILE ORELSE | |
(MAP_FIRST MATCH_MP_TAC | |
[MONOTONIC_SEQ; MONOTONIC_IF; MONOTONIC_ITE] THEN CONJ_TAC)) THEN | |
MAP_FIRST MATCH_ACCEPT_TAC | |
[MONOTONIC_ASSIGN; MONOTONIC_ASSERT; MONOTONIC_VARIANT];; | |
let VC_TAC = | |
FIRST | |
[MATCH_MP_TAC CORRECT_SEQ_VC THEN CONJ_TAC THENL [MONO_TAC; CONJ_TAC]; | |
MATCH_MP_TAC CORRECT_ITE THEN CONJ_TAC; | |
MATCH_MP_TAC CORRECT_IF THEN CONJ_TAC; | |
MATCH_MP_TAC CORRECT_WHILE_VC THEN REPEAT CONJ_TAC THENL | |
[MONO_TAC; TRY(MATCH_ACCEPT_TAC WF_MEASURE); ALL_TAC; ALL_TAC; | |
REWRITE_TAC[FORALL_PAIR_THM; MEASURE] THEN REPEAT GEN_TAC]; | |
MATCH_MP_TAC CORRECT_ASSIGN];; | |
needs "Library/prime.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* x = m, y = n; *) | |
(* while (!(x == 0 || y == 0)) *) | |
(* { if (x < y) y = y - x; *) | |
(* else x = x - y; *) | |
(* } *) | |
(* if (x == 0) x = y; *) | |
(* ------------------------------------------------------------------------- *) | |
g `correct | |
(\(m,n,x,y). T) | |
(Assign (\(m,n,x,y). m,n,m,n) ;; // x,y := m,n | |
assert (\(m,n,x,y). x = m /\ y = n) ;; | |
While (\(m,n,x,y). ~(x = 0 \/ y = 0)) | |
(assert (\(m,n,x,y). gcd(x,y) = gcd(m,n)) ;; | |
variant(MEASURE(\(m,n,x,y). x + y)) ;; | |
Ite (\(m,n,x,y). x < y) | |
(Assign (\(m,n,x,y). m,n,x,y - x)) | |
(Assign (\(m,n,x,y). m,n,x - y,y))) ;; | |
assert (\(m,n,x,y). (x = 0 \/ y = 0) /\ gcd(x,y) = gcd(m,n)) ;; | |
If (\(m,n,x,y). x = 0) (Assign (\(m,n,x,y). (m,n,y,y)))) | |
(\(m,n,x,y). gcd(m,n) = x)`;; | |
e(REPEAT VC_TAC);; | |
b();; | |
e(REPEAT VC_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:num`; `y:num`] THEN | |
REWRITE_TAC[IN; INTER; UNIV; DIFF; o_DEF; IN_ELIM_THM; PAIR_EQ] THEN | |
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[]);; | |
e(SIMP_TAC[GCD_SUB; LT_IMP_LE]);; | |
e ARITH_TAC;; | |
e(SIMP_TAC[GCD_SUB; NOT_LT] THEN ARITH_TAC);; | |
e(MESON_TAC[GCD_0]);; | |
e(MESON_TAC[GCD_0; GCD_SYM]);; | |
parse_as_infix("refines",(12,"right"));; | |
let refines = new_definition | |
`c2 refines c1 <=> !q. c1(q) SUBSET c2(q)`;; | |
let REFINES_REFL = prove | |
(`!c. c refines c`, | |
REWRITE_TAC[refines; SUBSET_REFL]);; | |
let REFINES_TRANS = prove | |
(`!c1 c2 c3. c3 refines c2 /\ c2 refines c1 ==> c3 refines c1`, | |
REWRITE_TAC[refines] THEN MESON_TAC[SUBSET_TRANS]);; | |
let REFINES_CORRECT = prove | |
(`correct p c1 q /\ c2 refines c1 ==> correct p c2 q`, | |
REWRITE_TAC[correct; refines] THEN MESON_TAC[SUBSET_TRANS]);; | |
let REFINES_WHILE = prove | |
(`c' refines c ==> While e c' refines While e c`, | |
REWRITE_TAC[refines; while_def; SUBSET; IN_ELIM_THM; IN] THEN MESON_TAC[]);; | |
let specification = new_definition | |
`specification(p,q) r = if q SUBSET r then p else {}`;; | |
let REFINES_SPECIFICATION = prove | |
(`c refines specification(p,q) ==> correct p c q`, | |
REWRITE_TAC[specification; correct; refines] THEN | |
MESON_TAC[SUBSET_REFL; SUBSET_EMPTY]);; | |
(* ========================================================================= *) | |
(* Number theory *) | |
(* ========================================================================= *) | |
needs "Library/prime.ml";; | |
needs "Library/pocklington.ml";; | |
needs "Library/binomial.ml";; | |
prioritize_num();; | |
let FERMAT_PRIME_CONV n = | |
let tm = subst [mk_small_numeral n,`x:num`] `prime(2 EXP (2 EXP x) + 1)` in | |
(RAND_CONV NUM_REDUCE_CONV THENC PRIME_CONV) tm;; | |
FERMAT_PRIME_CONV 0;; | |
FERMAT_PRIME_CONV 1;; | |
FERMAT_PRIME_CONV 2;; | |
FERMAT_PRIME_CONV 3;; | |
FERMAT_PRIME_CONV 4;; | |
FERMAT_PRIME_CONV 5;; | |
FERMAT_PRIME_CONV 6;; | |
FERMAT_PRIME_CONV 7;; | |
FERMAT_PRIME_CONV 8;; | |
let CONG_TRIVIAL = prove | |
(`!x y. n divides x /\ n divides y ==> (x == y) (mod n)`, | |
MESON_TAC[CONG_0; CONG_SYM; CONG_TRANS]);; | |
let LITTLE_CHECK_CONV tm = | |
EQT_ELIM((RATOR_CONV(LAND_CONV NUM_EXP_CONV) THENC CONG_CONV) tm);; | |
LITTLE_CHECK_CONV `(9 EXP 8 == 9) (mod 3)`;; | |
LITTLE_CHECK_CONV `(9 EXP 3 == 9) (mod 3)`;; | |
LITTLE_CHECK_CONV `(10 EXP 7 == 10) (mod 7)`;; | |
LITTLE_CHECK_CONV `(2 EXP 7 == 2) (mod 7)`;; | |
LITTLE_CHECK_CONV `(777 EXP 13 == 777) (mod 13)`;; | |
let DIVIDES_FACT_PRIME = prove | |
(`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`, | |
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL | |
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1]; | |
ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL; | |
ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);; | |
let DIVIDES_BINOM_PRIME = prove | |
(`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n`; `n:num`] BINOM_FACT)) THEN | |
ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN | |
ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN | |
ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);; | |
let DIVIDES_NSUM = prove | |
(`!m n. (!i. m <= i /\ i <= n ==> p divides f(i)) ==> p divides nsum(m..n) f`, | |
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN | |
ASM_MESON_TAC[LE; LE_TRANS; DIVIDES_0; DIVIDES_ADD; LE_REFL]);; | |
let FLT_LEMMA = prove | |
(`!p a b. prime p ==> ((a + b) EXP p == a EXP p + b EXP p) (mod p)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[BINOMIAL_THEOREM] THEN | |
SUBGOAL_THEN `1 <= p /\ 0 < p` STRIP_ASSUME_TAC THENL | |
[FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC; ALL_TAC] THEN | |
ASM_SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; ARITH; NSUM_CLAUSES_RIGHT] THEN | |
REWRITE_TAC[SUB_0; SUB_REFL; EXP; binom; BINOM_REFL; MULT_CLAUSES] THEN | |
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a + b = (b + 0) + a`] THEN | |
REPEAT(MATCH_MP_TAC CONG_ADD THEN REWRITE_TAC[CONG_REFL]) THEN | |
REWRITE_TAC[CONG_0] THEN MATCH_MP_TAC DIVIDES_NSUM THEN | |
ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_BINOM_PRIME; ARITH_RULE | |
`0 < p /\ 1 <= i /\ i <= p - 1 ==> 0 < i /\ i < p`]);; | |
let FERMAT_LITTLE = prove | |
(`!p a. prime p ==> (a EXP p == a) (mod p)`, | |
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN | |
INDUCT_TAC THENL | |
[ASM_MESON_TAC[EXP_EQ_0; CONG_REFL; PRIME_0]; | |
ASM_MESON_TAC[ADD1; FLT_LEMMA; EXP_ONE; CONG_ADD; CONG_TRANS; CONG_REFL]]);; | |
let FERMAT_LITTLE_COPRIME = prove | |
(`!p a. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN | |
EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN | |
ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `~(p = 0) ==> SUC(p - 1) = p`] THEN | |
ASM_SIMP_TAC[FERMAT_LITTLE; MULT_CLAUSES]);; | |
let FERMAT_LITTLE_VARIANT = prove | |
(`!p a. prime p ==> (a EXP (1 + m * (p - 1)) == a) (mod p)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME_STRONG) | |
THENL [ASM_MESON_TAC[CONG_TRIVIAL; ADD_AC; ADD1; DIVIDES_REXP_SUC]; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a = a * 1`] THEN | |
REWRITE_TAC[EXP_ADD; EXP_1] THEN MATCH_MP_TAC CONG_MULT THEN | |
REWRITE_TAC[GSYM EXP_EXP; CONG_REFL] THEN | |
ASM_MESON_TAC[COPRIME_SYM; COPRIME_EXP; PHI_PRIME; FERMAT_LITTLE_COPRIME]);; | |
let RSA = prove | |
(`prime p /\ prime q /\ ~(p = q) /\ | |
(d * e == 1) (mod ((p - 1) * (q - 1))) /\ | |
plaintext < p * q /\ (ciphertext = (plaintext EXP e) MOD (p * q)) | |
==> (plaintext = (ciphertext EXP d) MOD (p * q))`, | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[MOD_EXP_MOD; MULT_EQ_0; PRIME_IMP_NZ; EXP_EXP] THEN | |
SUBGOAL_THEN `(plaintext == plaintext EXP (e * d)) (mod (p * q))` MP_TAC THENL | |
[ALL_TAC; ASM_SIMP_TAC[CONG; MULT_EQ_0; PRIME_IMP_NZ; MOD_LT]] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN | |
FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [CONG_TO_1]) THENL | |
[ASM_MESON_TAC[MULT_EQ_1; ARITH_RULE `p - 1 = 1 <=> p = 2`]; ALL_TAC] THEN | |
MATCH_MP_TAC CONG_CHINESE THEN ASM_SIMP_TAC[DISTINCT_PRIME_COPRIME] THEN | |
ASM_MESON_TAC[FERMAT_LITTLE_VARIANT; MULT_AC; CONG_SYM]);; | |
(* ========================================================================= *) | |
(* Real analysis *) | |
(* ========================================================================= *) | |
needs "Library/analysis.ml";; | |
needs "Library/transc.ml";; | |
let cheb = define | |
`(!x. cheb 0 x = &1) /\ | |
(!x. cheb 1 x = x) /\ | |
(!n x. cheb (n + 2) x = &2 * x * cheb (n + 1) x - cheb n x)`;; | |
let CHEB_INDUCT = prove | |
(`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`, | |
GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN | |
INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN | |
ASM_SIMP_TAC[ARITH]);; | |
let CHEB_COS = prove | |
(`!n x. cheb n (cos x) = cos(&n * x)`, | |
MATCH_MP_TAC CHEB_INDUCT THEN | |
REWRITE_TAC[cheb; REAL_MUL_LZERO; REAL_MUL_LID; COS_0] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_MUL_LID; REAL_ADD_RDISTRIB] THEN | |
REWRITE_TAC[COS_ADD; COS_DOUBLE; SIN_DOUBLE] THEN | |
MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);; | |
let CHEB_RIPPLE = prove | |
(`!x. abs(x) <= &1 ==> abs(cheb n x) <= &1`, | |
REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN | |
MESON_TAC[CHEB_COS; ACS_COS; COS_BOUNDS]);; | |
let NUM_ADD2_CONV = | |
let add_tm = `(+):num->num->num` | |
and two_tm = `2` in | |
fun tm -> | |
let m = mk_numeral(dest_numeral tm -/ Int 2) in | |
let tm' = mk_comb(mk_comb(add_tm,m),two_tm) in | |
SYM(NUM_ADD_CONV tm');; | |
let CHEB_CONV = | |
let [pth0;pth1;pth2] = CONJUNCTS cheb in | |
let rec conv tm = | |
(GEN_REWRITE_CONV I [pth0; pth1] ORELSEC | |
(LAND_CONV NUM_ADD2_CONV THENC | |
GEN_REWRITE_CONV I [pth2] THENC | |
COMB2_CONV | |
(funpow 3 RAND_CONV ((LAND_CONV NUM_ADD_CONV) THENC conv)) | |
conv THENC | |
REAL_POLY_CONV)) tm in | |
conv;; | |
CHEB_CONV `cheb 8 x`;; | |
let CHEB_2N1 = prove | |
(`!n x. ((x - &1) * (cheb (2 * n + 1) x - &1) = | |
(cheb (n + 1) x - cheb n x) pow 2) /\ | |
(&2 * (x pow 2 - &1) * (cheb (2 * n + 2) x - &1) = | |
(cheb (n + 2) x - cheb n x) pow 2)`, | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN | |
MATCH_MP_TAC CHEB_INDUCT THEN REWRITE_TAC[ARITH; cheb; CHEB_2; CHEB_3] THEN | |
REPEAT(CHANGED_TAC | |
(REWRITE_TAC[GSYM ADD_ASSOC; LEFT_ADD_DISTRIB; ARITH] THEN | |
REWRITE_TAC[ARITH_RULE `n + 5 = (n + 3) + 2`; | |
ARITH_RULE `n + 4 = (n + 2) + 2`; | |
ARITH_RULE `n + 3 = (n + 1) + 2`; | |
cheb])) THEN | |
CONV_TAC REAL_RING);; | |
let IVT_LEMMA1 = prove | |
(`!f. (!x. f contl x) | |
==> !x y. f(x) <= &0 /\ &0 <= f(y) ==> ?x. f(x) = &0`, | |
ASM_MESON_TAC[IVT; IVT2; REAL_LE_TOTAL]);; | |
let IVT_LEMMA2 = prove | |
(`!f. (!x. f contl x) /\ (?x. f(x) <= x) /\ (?y. y <= f(y)) ==> ?x. f(x) = x`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. f x - x` IVT_LEMMA1) THEN | |
ASM_SIMP_TAC[CONT_SUB; CONT_X] THEN | |
SIMP_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD; REAL_SUB_0; REAL_ADD_LID] THEN | |
ASM_MESON_TAC[]);; | |
let SARKOVSKII_TRIVIAL = prove | |
(`!f:real->real. (!x. f contl x) /\ (?x. f(f(f(x))) = x) ==> ?x. f(x) = x`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THEN MATCH_MP_TAC | |
(MESON[] `P x \/ P (f x) \/ P (f(f x)) ==> ?x:real. P x`) THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN REAL_ARITH_TAC);; | |
(* ========================================================================= *) | |
(* Embedding of logics *) | |
(* ========================================================================= *) | |
let string_INDUCT,string_RECURSION = define_type | |
"string = String num";; | |
parse_as_infix("&&",(16,"right"));; | |
parse_as_infix("||",(15,"right"));; | |
parse_as_infix("-->",(14,"right"));; | |
parse_as_infix("<->",(13,"right"));; | |
parse_as_prefix "Not";; | |
parse_as_prefix "Box";; | |
parse_as_prefix "Diamond";; | |
let form_INDUCT,form_RECURSION = define_type | |
"form = False | |
| True | |
| Atom string | |
| Not form | |
| && form form | |
| || form form | |
| --> form form | |
| <-> form form | |
| Box form | |
| Diamond form";; | |
let holds = define | |
`(holds (W,R) V False w <=> F) /\ | |
(holds (W,R) V True w <=> T) /\ | |
(holds (W,R) V (Atom a) w <=> V a w) /\ | |
(holds (W,R) V (Not p) w <=> ~(holds (W,R) V p w)) /\ | |
(holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\ | |
(holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\ | |
(holds (W,R) V (p --> q) w <=> holds (W,R) V p w ==> holds (W,R) V q w) /\ | |
(holds (W,R) V (p <-> q) w <=> holds (W,R) V p w <=> holds (W,R) V q w) /\ | |
(holds (W,R) V (Box p) w <=> | |
!w'. w' IN W /\ R w w' ==> holds (W,R) V p w') /\ | |
(holds (W,R) V (Diamond p) w <=> | |
?w'. w' IN W /\ R w w' /\ holds (W,R) V p w')`;; | |
let holds_in = new_definition | |
`holds_in (W,R) p = !V w. w IN W ==> holds (W,R) V p w`;; | |
parse_as_infix("|=",(11,"right"));; | |
let valid = new_definition | |
`L |= p <=> !f. L f ==> holds_in f p`;; | |
let S4 = new_definition | |
`S4(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\ | |
(!x. x IN W ==> R x x) /\ | |
(!x y z. R x y /\ R y z ==> R x z)`;; | |
let LTL = new_definition | |
`LTL(W,R) <=> (W = UNIV) /\ !x y:num. R x y <=> x <= y`;; | |
let GL = new_definition | |
`GL(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\ | |
WF(\x y. R y x) /\ (!x y z:num. R x y /\ R y z ==> R x z)`;; | |
let MODAL_TAC = | |
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];; | |
let MODAL_RULE tm = prove(tm,MODAL_TAC);; | |
let TAUT_1 = MODAL_RULE `L |= Box True`;; | |
let TAUT_2 = MODAL_RULE `L |= Box(A --> B) --> Box A --> Box B`;; | |
let TAUT_3 = MODAL_RULE `L |= Diamond(A --> B) --> Box A --> Diamond B`;; | |
let TAUT_4 = MODAL_RULE `L |= Box(A --> B) --> Diamond A --> Diamond B`;; | |
let TAUT_5 = MODAL_RULE `L |= Box(A && B) --> Box A && Box B`;; | |
let TAUT_6 = MODAL_RULE `L |= Diamond(A || B) --> Diamond A || Diamond B`;; | |
let HOLDS_FORALL_LEMMA = prove | |
(`!W R P. (!A V. P(holds (W,R) V A)) <=> (!p:W->bool. P p)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC; SIMP_TAC[]] THEN | |
POP_ASSUM(MP_TAC o SPECL [`Atom a`; `\a:string. (p:W->bool)`]) THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN | |
REWRITE_TAC[holds] THEN REWRITE_TAC[ETA_AX]);; | |
let MODAL_SCHEMA_TAC = | |
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[th]);; | |
let MODAL_REFL = prove | |
(`!W R. (!w:W. w IN W ==> R w w) <=> !A. holds_in (W,R) (Box A --> A)`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let MODAL_TRANS = prove | |
(`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\ | |
R w w' /\ R w' w'' ==> R w w'') <=> | |
(!A. holds_in (W,R) (Box A --> Box(Box A)))`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let MODAL_SERIAL = prove | |
(`!W R. (!w:W. w IN W ==> ?w'. w' IN W /\ R w w') <=> | |
(!A. holds_in (W,R) (Box A --> Diamond A))`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let MODAL_SYM = prove | |
(`!W R. (!w w':W. w IN W /\ w' IN W /\ R w w' ==> R w' w) <=> | |
(!A. holds_in (W,R) (A --> Box(Diamond A)))`, | |
MODAL_SCHEMA_TAC THEN EQ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v = w`; `w:W`]) THEN ASM_MESON_TAC[]);; | |
let MODAL_WFTRANS = prove | |
(`!W R. (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ | |
WF(\x y. x IN W /\ y IN W /\ R y x) <=> | |
(!A. holds_in (W,R) (Box(Box A --> A) --> Box A))`, | |
MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN EQ_TAC THEN | |
STRIP_TAC THEN REPEAT CONJ_TAC THENL | |
[REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC; | |
X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL | |
[`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]); | |
X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN | |
MATCH_MP_TAC MONO_FORALL] THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Need a fresh HOL session here: doing shallow embedding. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_prefix "Not";; | |
parse_as_infix("&&",(16,"right"));; | |
parse_as_infix("||",(15,"right"));; | |
parse_as_infix("-->",(14,"right"));; | |
parse_as_infix("<->",(13,"right"));; | |
let false_def = define `False = \t:num. F`;; | |
let true_def = define `True = \t:num. T`;; | |
let not_def = define `Not p = \t:num. ~(p t)`;; | |
let and_def = define `p && q = \t:num. p t /\ q t`;; | |
let or_def = define `p || q = \t:num. p t \/ q t`;; | |
let imp_def = define `p --> q = \t:num. p t ==> q t`;; | |
let iff_def = define `p <-> q = \t:num. p t <=> q t`;; | |
let forever = define `forever p = \t:num. !t'. t <= t' ==> p t'`;; | |
let sometime = define `sometime p = \t:num. ?t'. t <= t' /\ p t'`;; | |
let next = define `next p = \t:num. p(t + 1)`;; | |
parse_as_infix("until",(17,"right"));; | |
let until = define | |
`p until q = | |
\t:num. ?t'. t <= t' /\ (!t''. t <= t'' /\ t'' < t' ==> p t'') /\ q t'`;; | |
(* ========================================================================= *) | |
(* HOL as a functional programming language *) | |
(* ========================================================================= *) | |
type ite = False | True | Atomic of int | Ite of ite*ite*ite;; | |
let rec norm e = | |
match e with | |
Ite(False,y,z) -> norm z | |
| Ite(True,y,z) -> norm y | |
| Ite(Atomic i,y,z) -> Ite(Atomic i,norm y,norm z) | |
| Ite(Ite(u,v,w),y,z) -> norm(Ite(u,Ite(v,y,z),Ite(w,y,z))) | |
| _ -> e;; | |
let ite_INDUCT,ite_RECURSION = define_type | |
"ite = False | True | Atomic num | Ite ite ite ite";; | |
let eth = prove_general_recursive_function_exists | |
`?norm. (norm False = False) /\ | |
(norm True = True) /\ | |
(!i. norm (Atomic i) = Atomic i) /\ | |
(!y z. norm (Ite False y z) = norm z) /\ | |
(!y z. norm (Ite True y z) = norm y) /\ | |
(!i y z. norm (Ite (Atomic i) y z) = | |
Ite (Atomic i) (norm y) (norm z)) /\ | |
(!u v w y z. norm (Ite (Ite u v w) y z) = | |
norm (Ite u (Ite v y z) (Ite w y z)))`;; | |
let sizeof = define | |
`(sizeof False = 1) /\ | |
(sizeof True = 1) /\ | |
(sizeof(Atomic i) = 1) /\ | |
(sizeof(Ite x y z) = sizeof x * (1 + sizeof y + sizeof z))`;; | |
let eth' = | |
let th = prove | |
(hd(hyp eth), | |
EXISTS_TAC `MEASURE sizeof` THEN | |
REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE; sizeof] THEN ARITH_TAC) in | |
PROVE_HYP th eth;; | |
let norm = new_specification ["norm"] eth';; | |
let SIZEOF_INDUCT = REWRITE_RULE[WF_IND; MEASURE] (ISPEC`sizeof` WF_MEASURE);; | |
let SIZEOF_NZ = prove | |
(`!e. ~(sizeof e = 0)`, | |
MATCH_MP_TAC ite_INDUCT THEN SIMP_TAC[sizeof; ADD_EQ_0; MULT_EQ_0; ARITH]);; | |
let ITE_INDUCT = prove | |
(`!P. P False /\ | |
P True /\ | |
(!i. P(Atomic i)) /\ | |
(!y z. P z ==> P(Ite False y z)) /\ | |
(!y z. P y ==> P(Ite True y z)) /\ | |
(!i y z. P y /\ P z ==> P (Ite (Atomic i) y z)) /\ | |
(!u v w x y z. P(Ite u (Ite v y z) (Ite w y z)) | |
==> P(Ite (Ite u v w) y z)) | |
==> !e. P e`, | |
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SIZEOF_INDUCT THEN | |
MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC ite_INDUCT THEN POP_ASSUM_LIST | |
(fun ths -> REPEAT STRIP_TAC THEN FIRST(mapfilter MATCH_MP_TAC ths)) THEN | |
REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
REWRITE_TAC[sizeof] THEN TRY ARITH_TAC THEN | |
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN | |
REWRITE_TAC[MULT_AC; ADD_AC; LT_ADD_LCANCEL] THEN | |
REWRITE_TAC[ADD_ASSOC; LT_ADD_RCANCEL] THEN | |
MATCH_MP_TAC(ARITH_RULE `~(b = 0) /\ ~(c = 0) ==> a < (b + a) + c`) THEN | |
REWRITE_TAC[MULT_EQ_0; SIZEOF_NZ]);; | |
let normalized = define | |
`(normalized False <=> T) /\ | |
(normalized True <=> T) /\ | |
(normalized(Atomic a) <=> T) /\ | |
(normalized(Ite False x y) <=> F) /\ | |
(normalized(Ite True x y) <=> F) /\ | |
(normalized(Ite (Atomic a) x y) <=> normalized x /\ normalized y) /\ | |
(normalized(Ite (Ite u v w) x y) <=> F)`;; | |
let NORMALIZED_NORM = prove | |
(`!e. normalized(norm e)`, | |
MATCH_MP_TAC ITE_INDUCT THEN REWRITE_TAC[norm; normalized]);; | |
let NORMALIZED_INDUCT = prove | |
(`P False /\ | |
P True /\ | |
(!i. P (Atomic i)) /\ | |
(!i x y. P x /\ P y ==> P (Ite (Atomic i) x y)) | |
==> !e. normalized e ==> P e`, | |
STRIP_TAC THEN MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[normalized] THEN | |
MATCH_MP_TAC ite_INDUCT THEN ASM_MESON_TAC[normalized]);; | |
let holds = define | |
`(holds v False <=> F) /\ | |
(holds v True <=> T) /\ | |
(holds v (Atomic i) <=> v(i)) /\ | |
(holds v (Ite b x y) <=> if holds v b then holds v x else holds v y)`;; | |
let HOLDS_NORM = prove | |
(`!e v. holds v (norm e) <=> holds v e`, | |
MATCH_MP_TAC ITE_INDUCT THEN SIMP_TAC[holds; norm] THEN | |
REPEAT STRIP_TAC THEN CONV_TAC TAUT);; | |
let taut = define | |
`(taut (t,f) False <=> F) /\ | |
(taut (t,f) True <=> T) /\ | |
(taut (t,f) (Atomic i) <=> MEM i t) /\ | |
(taut (t,f) (Ite (Atomic i) x y) <=> | |
if MEM i t then taut (t,f) x | |
else if MEM i f then taut (t,f) y | |
else taut (CONS i t,f) x /\ taut (t,CONS i f) y)`;; | |
let tautology = define `tautology e = taut([],[]) (norm e)`;; | |
let NORMALIZED_TAUT = prove | |
(`!e. normalized e | |
==> !f t. (!a. ~(MEM a t /\ MEM a f)) | |
==> (taut (t,f) e <=> | |
!v. (!a. MEM a t ==> v(a)) /\ (!a. MEM a f ==> ~v(a)) | |
==> holds v e)`, | |
MATCH_MP_TAC NORMALIZED_INDUCT THEN REWRITE_TAC[holds; taut] THEN | |
REWRITE_TAC[NOT_FORALL_THM] THEN REPEAT CONJ_TAC THENL | |
[REPEAT STRIP_TAC THEN EXISTS_TAC `\a:num. MEM a t` THEN ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC THEN EQ_TAC THENL | |
[ALL_TAC; DISCH_THEN MATCH_MP_TAC] THEN ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[])] THEN | |
ASM_SIMP_TAC[MEM; RIGHT_OR_DISTRIB; LEFT_OR_DISTRIB; | |
MESON[] `(!a. ~(MEM a t /\ a = i)) <=> ~(MEM i t)`; | |
MESON[] `(!a. ~(a = i /\ MEM a f)) <=> ~(MEM i f)`] THEN | |
ASM_REWRITE_TAC[AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN | |
MESON_TAC[]);; | |
let TAUTOLOGY = prove | |
(`!e. tautology e <=> !v. holds v e`, | |
MESON_TAC[tautology; HOLDS_NORM; NORMALIZED_TAUT; MEM; NORMALIZED_NORM]);; | |
let HOLDS_BACK = prove | |
(`!v. (F <=> holds v False) /\ | |
(T <=> holds v True) /\ | |
(!i. v i <=> holds v (Atomic i)) /\ | |
(!p. ~holds v p <=> holds v (Ite p False True)) /\ | |
(!p q. (holds v p /\ holds v q) <=> holds v (Ite p q False)) /\ | |
(!p q. (holds v p \/ holds v q) <=> holds v (Ite p True q)) /\ | |
(!p q. (holds v p <=> holds v q) <=> | |
holds v (Ite p q (Ite q False True))) /\ | |
(!p q. holds v p ==> holds v q <=> holds v (Ite p q True))`, | |
REWRITE_TAC[holds] THEN CONV_TAC TAUT);; | |
let COND_CONV = GEN_REWRITE_CONV I [COND_CLAUSES];; | |
let AND_CONV = GEN_REWRITE_CONV I [TAUT `(F /\ a <=> F) /\ (T /\ a <=> a)`];; | |
let OR_CONV = GEN_REWRITE_CONV I [TAUT `(F \/ a <=> a) /\ (T \/ a <=> T)`];; | |
let rec COMPUTE_DEPTH_CONV conv tm = | |
if is_cond tm then | |
(RATOR_CONV(LAND_CONV(COMPUTE_DEPTH_CONV conv)) THENC | |
COND_CONV THENC | |
COMPUTE_DEPTH_CONV conv) tm | |
else if is_conj tm then | |
(LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC | |
AND_CONV THENC | |
COMPUTE_DEPTH_CONV conv) tm | |
else if is_disj tm then | |
(LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC | |
OR_CONV THENC | |
COMPUTE_DEPTH_CONV conv) tm | |
else | |
(SUB_CONV (COMPUTE_DEPTH_CONV conv) THENC | |
TRY_CONV(conv THENC COMPUTE_DEPTH_CONV conv)) tm;; | |
g `!v. v 1 \/ v 2 \/ v 3 \/ v 4 \/ v 5 \/ v 6 \/ | |
~v 1 \/ ~v 2 \/ ~v 3 \/ ~v 4 \/ ~v 5 \/ ~v 6`;; | |
e(MP_TAC HOLDS_BACK THEN MATCH_MP_TAC MONO_FORALL THEN | |
GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN | |
SPEC_TAC(`v:num->bool`,`v:num->bool`) THEN | |
REWRITE_TAC[GSYM TAUTOLOGY; tautology]);; | |
time e (GEN_REWRITE_TAC COMPUTE_DEPTH_CONV [norm; taut; MEM; ARITH_EQ]);; | |
ignore(b()); time e (REWRITE_TAC[norm; taut; MEM; ARITH_EQ]);; | |
(* ========================================================================= *) | |
(* Vectors *) | |
(* ========================================================================= *) | |
needs "Multivariate/vectors.ml";; | |
needs "Examples/solovay.ml";; | |
g `orthogonal (A - B) (C - B) | |
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`;; | |
e SOLOVAY_VECTOR_TAC;; | |
e(CONV_TAC REAL_RING);; | |
g`!x y:real^N. x dot y <= norm x * norm y`;; | |
e SOLOVAY_VECTOR_TAC;; | |
(**** Needs external SDP solver | |
needs "Examples/sos.ml";; | |
e(CONV_TAC REAL_SOS);; | |
let EXAMPLE_0 = prove | |
(`!a x y:real^N. (y - x) dot (a - y) >= &0 ==> norm(y - a) <= norm(x - a)`, | |
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);; | |
****) | |
needs "Rqe/make.ml";; | |
let EXAMPLE_10 = prove | |
(`!x:real^N y. | |
x dot y > &0 | |
==> ?u. &0 < u /\ | |
!v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`, | |
SOLOVAY_VECTOR_TAC THEN | |
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN | |
CONV_TAC REAL_QELIM_CONV);; | |
let FORALL_3 = prove | |
(`(!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`, | |
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> (i = 1) \/ (i = 2) \/ (i = 3)`]);; | |
let SUM_3 = prove | |
(`!t. sum(1..3) t = t(1) + t(2) + t(3)`, | |
REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN | |
REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);; | |
let VECTOR_3 = prove | |
(`(vector [x;y;z] :real^3)$1 = x /\ | |
(vector [x;y;z] :real^3)$2 = y /\ | |
(vector [x;y;z] :real^3)$3 = z`, | |
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; LENGTH; ARITH] THEN | |
REWRITE_TAC[num_CONV `2`; num_CONV `1`; EL; HD; TL]);; | |
let DOT_VECTOR = prove | |
(`(vector [x1;y1;z1] :real^3) dot (vector [x2;y2;z2]) = | |
x1 * x2 + y1 * y2 + z1 * z2`, | |
REWRITE_TAC[dot; DIMINDEX_3; SUM_3; VECTOR_3]);; | |
let VECTOR_ZERO = prove | |
(`(vector [x;y;z] :real^3 = vec 0) <=> x = &0 /\ y = &0 /\ z = &0`, | |
SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; ARITH]);; | |
let ORTHOGONAL_VECTOR = prove | |
(`orthogonal (vector [x1;y1;z1] :real^3) (vector [x2;y2;z2]) = | |
(x1 * x2 + y1 * y2 + z1 * z2 = &0)`, | |
REWRITE_TAC[orthogonal; DOT_VECTOR]);; | |
parse_as_infix("cross",(20,"right"));; | |
let cross = new_definition | |
`(a:real^3) cross (b:real^3) = | |
vector [a$2 * b$3 - a$3 * b$2; | |
a$3 * b$1 - a$1 * b$3; | |
a$1 * b$2 - a$2 * b$1] :real^3`;; | |
let VEC3_TAC = | |
SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3; | |
vector_add; vec; dot; cross; orthogonal; basis; ARITH] THEN | |
CONV_TAC REAL_RING;; | |
let VEC3_RULE tm = prove(tm,VEC3_TAC);; | |
let ORTHOGONAL_CROSS = VEC3_RULE | |
`!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\ | |
orthogonal x (x cross y) /\ orthogonal y (x cross y)`;; | |
let LEMMA_0 = VEC3_RULE | |
`~(basis 1 :real^3 = vec 0) /\ | |
~(basis 2 :real^3 = vec 0) /\ | |
~(basis 3 :real^3 = vec 0)`;; | |
let LEMMA_1 = VEC3_RULE `!u v. u dot (u cross v) = &0`;; | |
let LEMMA_2 = VEC3_RULE `!u v. v dot (u cross v) = &0`;; | |
let LEMMA_3 = VEC3_RULE `!u:real^3. vec 0 dot u = &0`;; | |
let LEMMA_4 = VEC3_RULE `!u:real^3. u dot vec 0 = &0`;; | |
let LEMMA_5 = VEC3_RULE `!x. x cross x = vec 0`;; | |
let LEMMA_6 = VEC3_RULE | |
`!u. ~(u = vec 0) | |
==> ~(u cross basis 1 = vec 0) \/ | |
~(u cross basis 2 = vec 0) \/ | |
~(u cross basis 3 = vec 0)`;; | |
let LEMMA_7 = VEC3_RULE | |
`!u v w. (u cross v = vec 0) ==> (u dot (v cross w) = &0)`;; | |
let NORMAL_EXISTS = prove | |
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`, | |
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC | |
[`u:real^3 = vec 0`; `v:real^3 = vec 0`; `u cross v = vec 0`] THEN | |
ASM_REWRITE_TAC[orthogonal] THEN | |
ASM_MESON_TAC[LEMMA_0; LEMMA_1; LEMMA_2; LEMMA_3; LEMMA_4; | |
LEMMA_5; LEMMA_6; LEMMA_7]);; | |
(* ========================================================================= *) | |
(* Custom tactics *) | |
(* ========================================================================= *) | |
let points = | |
[((0, -1), (0, -1), (2, 0)); ((0, -1), (0, 0), (2, 0)); | |
((0, -1), (0, 1), (2, 0)); ((0, -1), (2, 0), (0, -1)); | |
((0, -1), (2, 0), (0, 0)); ((0, -1), (2, 0), (0, 1)); | |
((0, 0), (0, -1), (2, 0)); ((0, 0), (0, 0), (2, 0)); | |
((0, 0), (0, 1), (2, 0)); ((0, 0), (2, 0), (-2, 0)); | |
((0, 0), (2, 0), (0, -1)); ((0, 0), (2, 0), (0, 0)); | |
((0, 0), (2, 0), (0, 1)); ((0, 0), (2, 0), (2, 0)); | |
((0, 1), (0, -1), (2, 0)); ((0, 1), (0, 0), (2, 0)); | |
((0, 1), (0, 1), (2, 0)); ((0, 1), (2, 0), (0, -1)); | |
((0, 1), (2, 0), (0, 0)); ((0, 1), (2, 0), (0, 1)); | |
((2, 0), (-2, 0), (0, 0)); ((2, 0), (0, -1), (0, -1)); | |
((2, 0), (0, -1), (0, 0)); ((2, 0), (0, -1), (0, 1)); | |
((2, 0), (0, 0), (-2, 0)); ((2, 0), (0, 0), (0, -1)); | |
((2, 0), (0, 0), (0, 0)); ((2, 0), (0, 0), (0, 1)); | |
((2, 0), (0, 0), (2, 0)); ((2, 0), (0, 1), (0, -1)); | |
((2, 0), (0, 1), (0, 0)); ((2, 0), (0, 1), (0, 1)); | |
((2, 0), (2, 0), (0, 0))];; | |
let ortho = | |
let mult (x1,y1) (x2,y2) = (x1 * x2 + 2 * y1 * y2,x1 * y2 + y1 * x2) | |
and add (x1,y1) (x2,y2) = (x1 + x2,y1 + y2) in | |
let dot (x1,y1,z1) (x2,y2,z2) = | |
end_itlist add [mult x1 x2; mult y1 y2; mult z1 z2] in | |
fun (v1,v2) -> dot v1 v2 = (0,0);; | |
let opairs = filter ortho (allpairs (fun a b -> a,b) points points);; | |
let otrips = filter (fun (a,b,c) -> ortho(a,b) && ortho(a,c)) | |
(allpairs (fun a (b,c) -> a,b,c) points opairs);; | |
let hol_of_value = | |
let tm0 = `&0` and tm1 = `&2` and tm2 = `-- &2` | |
and tm3 = `sqrt(&2)` and tm4 = `--sqrt(&2)` in | |
function 0,0 -> tm0 | 2,0 -> tm1 | -2,0 -> tm2 | 0,1 -> tm3 | 0,-1 -> tm4;; | |
let hol_of_point = | |
let ptm = `vector:(real)list->real^3` in | |
fun (x,y,z) -> mk_comb(ptm,mk_flist(map hol_of_value [x;y;z]));; | |
let SQRT_2_POW = prove | |
(`sqrt(&2) pow 2 = &2`, | |
SIMP_TAC[SQRT_POW_2; REAL_POS]);; | |
let PROVE_NONTRIVIAL = | |
let ptm = `~(x :real^3 = vec 0)` and xtm = `x:real^3` in | |
fun x -> prove(vsubst [hol_of_point x,xtm] ptm, | |
GEN_REWRITE_TAC RAND_CONV [VECTOR_ZERO] THEN | |
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);; | |
let PROVE_ORTHOGONAL = | |
let ptm = `orthogonal:real^3->real^3->bool` in | |
fun (x,y) -> | |
prove(list_mk_comb(ptm,[hol_of_point x;hol_of_point y]), | |
ONCE_REWRITE_TAC[ORTHOGONAL_VECTOR] THEN | |
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);; | |
let ppoint = let p = `P:real^3->bool` in fun v -> mk_comb(p,hol_of_point v);; | |
let DEDUCE_POINT_TAC pts = | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
MAP_EVERY EXISTS_TAC (map hol_of_point pts) THEN | |
ASM_REWRITE_TAC[];; | |
let rec KOCHEN_SPECKER_TAC set_0 set_1 = | |
if intersect set_0 set_1 <> [] then | |
let p = ppoint(hd(intersect set_0 set_1)) in | |
let th1 = ASSUME(mk_neg p) and th2 = ASSUME p in | |
ACCEPT_TAC(EQ_MP (EQF_INTRO th1) th2) | |
else | |
let prf_1 = filter (fun (a,b) -> mem a set_0) opairs | |
and prf_0 = filter (fun (a,b,c) -> mem a set_1 && mem b set_1) otrips in | |
let new_1 = map snd prf_1 and new_0 = map (fun (a,b,c) -> c) prf_0 in | |
let set_0' = union new_0 set_0 and set_1' = union new_1 set_1 in | |
let del_0 = subtract set_0' set_0 and del_1 = subtract set_1' set_1 in | |
if del_0 <> [] || del_1 <> [] then | |
let prv_0 x = | |
let a,b,_ = find (fun (a,b,c) -> c = x) prf_0 in DEDUCE_POINT_TAC [a;b] | |
and prv_1 x = | |
let a,_ = find (fun (a,c) -> c = x) prf_1 in DEDUCE_POINT_TAC [a] in | |
let newuns = list_mk_conj | |
(map ppoint del_1 @ map (mk_neg o ppoint) del_0) | |
and tacs = map prv_1 del_1 @ map prv_0 del_0 in | |
SUBGOAL_THEN newuns STRIP_ASSUME_TAC THENL | |
[REPEAT CONJ_TAC THENL tacs; ALL_TAC] THEN | |
KOCHEN_SPECKER_TAC set_0' set_1' | |
else | |
let v = find (fun i -> not(mem i set_0) && not(mem i set_1)) points in | |
ASM_CASES_TAC (ppoint v) THENL | |
[KOCHEN_SPECKER_TAC set_0 (v::set_1); | |
KOCHEN_SPECKER_TAC (v::set_0) set_1];; | |
let KOCHEN_SPECKER_LEMMA = prove | |
(`!P. (!x y:real^3. ~(x = vec 0) /\ ~(y = vec 0) /\ orthogonal x y /\ | |
~(P x) ==> P y) /\ | |
(!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\ | |
orthogonal x y /\ orthogonal x z /\ orthogonal y z /\ | |
P x /\ P y ==> ~(P z)) | |
==> F`, | |
REPEAT STRIP_TAC THEN | |
MAP_EVERY (ASSUME_TAC o PROVE_NONTRIVIAL) points THEN | |
MAP_EVERY (ASSUME_TAC o PROVE_ORTHOGONAL) opairs THEN | |
KOCHEN_SPECKER_TAC [] []);; | |
let NONTRIVIAL_CROSS = prove | |
(`!x y. orthogonal x y /\ ~(x = vec 0) /\ ~(y = vec 0) | |
==> ~(x cross y = vec 0)`, | |
REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC);; | |
let KOCHEN_SPECKER_PARADOX = prove | |
(`~(?spin:real^3->num. | |
!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\ | |
orthogonal x y /\ orthogonal x z /\ orthogonal y z | |
==> (spin x = 0) /\ (spin y = 1) /\ (spin z = 1) \/ | |
(spin x = 1) /\ (spin y = 0) /\ (spin z = 1) \/ | |
(spin x = 1) /\ (spin y = 1) /\ (spin z = 0))`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `\x:real^3. spin(x) = 1` KOCHEN_SPECKER_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN | |
POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`; NONTRIVIAL_CROSS; ORTHOGONAL_CROSS]);; | |
(* ========================================================================= *) | |
(* Defining new types *) | |
(* ========================================================================= *) | |
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir") | |
(MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);; | |
parse_as_infix("||",(11,"right"));; | |
parse_as_infix("_|_",(11,"right"));; | |
let perpdir = new_definition | |
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;; | |
let pardir = new_definition | |
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;; | |
let DIRECTION_CLAUSES = prove | |
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\ | |
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`, | |
MESON_TAC[direction_tybij]);; | |
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove) | |
(`(!x. x || x) /\ | |
(!x y. x || y <=> y || x) /\ | |
(!x y z. x || y /\ y || z ==> x || z)`, | |
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_1 = prove | |
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\ | |
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_2 = prove | |
(`!l l'. ?p. p _|_ l /\ p _|_ l'`, | |
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN | |
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);; | |
let DIRECTION_AXIOM_3 = prove | |
(`?p p' p''. | |
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ | |
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN | |
MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0]) | |
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN | |
VEC3_TAC);; | |
let CROSS_0 = VEC3_RULE `x cross vec 0 = vec 0 /\ vec 0 cross x = vec 0`;; | |
let DIRECTION_AXIOM_4_WEAK = prove | |
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`, | |
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\ | |
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/ | |
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\ | |
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/ | |
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\ | |
~((l cross basis 2) cross (l cross basis 3) = vec 0)` | |
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);; | |
let ORTHOGONAL_COMBINE = prove | |
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b) | |
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`, | |
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN | |
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN | |
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);; | |
let DIRECTION_AXIOM_4 = prove | |
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\ | |
p _|_ l /\ p' _|_ l /\ p'' _|_ l`, | |
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);; | |
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;; | |
let PERPDIR_WELLDEF = prove | |
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`, | |
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);; | |
let perpl,perpl_th = | |
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS) | |
"perpl" PERPDIR_WELLDEF;; | |
let line_lift_thm = lift_theorem line_tybij | |
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];; | |
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;; | |
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;; | |
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;; | |
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;; | |
let point_tybij = new_type_definition "point" ("mk_point","dest_point") | |
(prove(`?x:line. T`,REWRITE_TAC[]));; | |
parse_as_infix("on",(11,"right"));; | |
let on = new_definition `p on l <=> perpl (dest_point p) l`;; | |
let POINT_CLAUSES = prove | |
(`((p = p') <=> (dest_point p = dest_point p')) /\ | |
((!p. P (dest_point p)) <=> (!l. P l)) /\ | |
((?p. P (dest_point p)) <=> (?l. P l))`, | |
MESON_TAC[point_tybij]);; | |
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;; | |
let AXIOM_1 = prove | |
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\ | |
!l'. p on l' /\ p' on l' ==> (l' = l)`, | |
POINT_TAC LINE_AXIOM_1);; | |
let AXIOM_2 = prove | |
(`!l l'. ?p. p on l /\ p on l'`, | |
POINT_TAC LINE_AXIOM_2);; | |
let AXIOM_3 = prove | |
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
~(?l. p on l /\ p' on l /\ p'' on l)`, | |
POINT_TAC LINE_AXIOM_3);; | |
let AXIOM_4 = prove | |
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\ | |
p on l /\ p' on l /\ p'' on l`, | |
POINT_TAC LINE_AXIOM_4);; | |
(* ========================================================================= *) | |
(* Custom inference rules *) | |
(* ========================================================================= *) | |
let near_ring_axioms = | |
`(!x. 0 + x = x) /\ | |
(!x. neg x + x = 0) /\ | |
(!x y z. (x + y) + z = x + y + z) /\ | |
(!x y z. (x * y) * z = x * y * z) /\ | |
(!x y z. (x + y) * z = (x * z) + (y * z))`;; | |
(**** Works eventually but takes a very long time | |
MESON[] | |
`(!x. 0 + x = x) /\ | |
(!x. neg x + x = 0) /\ | |
(!x y z. (x + y) + z = x + y + z) /\ | |
(!x y z. (x * y) * z = x * y * z) /\ | |
(!x y z. (x + y) * z = (x * z) + (y * z)) | |
==> !a. 0 * a = 0`;; | |
****) | |
let is_realvar w x = is_var x && not(mem x w);; | |
let rec real_strip w tm = | |
if mem tm w then tm,[] else | |
let l,r = dest_comb tm in | |
let f,args = real_strip w l in f,args@[r];; | |
let weight lis (f,n) (g,m) = | |
let i = index f lis and j = index g lis in | |
i > j || i = j && n > m;; | |
let rec lexord ord l1 l2 = | |
match (l1,l2) with | |
(h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2 | |
else h1 = h2 && lexord ord t1 t2 | |
| _ -> false;; | |
let rec lpo_gt w s t = | |
if is_realvar w t then not(s = t) && mem t (frees s) | |
else if is_realvar w s || is_abs s || is_abs t then false else | |
let f,fargs = real_strip w s and g,gargs = real_strip w t in | |
exists (fun si -> lpo_ge w si t) fargs || | |
forall (lpo_gt w s) gargs && | |
(f = g && lexord (lpo_gt w) fargs gargs || | |
weight w (f,length fargs) (g,length gargs)) | |
and lpo_ge w s t = (s = t) || lpo_gt w s t;; | |
let rec istriv w env x t = | |
if is_realvar w t then t = x || defined env t && istriv w env x (apply env t) | |
else if is_const t then false else | |
let f,args = strip_comb t in | |
exists (istriv w env x) args && failwith "cyclic";; | |
let rec unify w env tp = | |
match tp with | |
((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) -> | |
if defined env x then unify w env (apply env x,t) | |
else if istriv w env x t then env else (x|->t) env | |
| (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g) | |
| (s,t) -> if s = t then env else failwith "unify: not unifiable";; | |
let fullunify w (s,t) = | |
let env = unify w undefined (s,t) in | |
let th = map (fun (x,t) -> (t,x)) (graph env) in | |
let rec subs t = | |
let t' = vsubst th t in | |
if t' = t then t else subs t' in | |
map (fun (t,x) -> (subs t,x)) th;; | |
let rec listcases fn rfn lis acc = | |
match lis with | |
[] -> acc | |
| h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @ | |
listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;; | |
let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);; | |
let rec overlaps w th tm rfn = | |
let l,r = dest_eq(concl th) in | |
if not (is_comb tm) then [] else | |
let f,args = strip_comb tm in | |
listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args | |
(try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);; | |
let crit1 w eq1 eq2 = | |
let l1,r1 = dest_eq(concl eq1) | |
and l2,r2 = dest_eq(concl eq2) in | |
overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));; | |
let fixvariables s th = | |
let fvs = subtract (frees(concl th)) (freesl(hyp th)) in | |
let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v)) | |
fvs (1--length fvs) in | |
INST (zip gvs fvs) th;; | |
let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;; | |
let critical_pairs w tha thb = | |
let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;; | |
let normalize_and_orient w eqs th = | |
let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in | |
let s',t' = dest_eq(concl th') in | |
if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th' | |
else failwith "Can't orient equation";; | |
let status(eqs,crs) eqs0 = | |
if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else | |
(print_string(string_of_int(length eqs)^" equations and "^ | |
string_of_int(length crs)^" pending critical pairs"); | |
print_newline());; | |
let left_reducible eqs eq = | |
can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs)) | |
(concl eq);; | |
let rec complete w (eqs,crits) = | |
match crits with | |
(eq::ocrits) -> | |
let trip = | |
try let eq' = normalize_and_orient w eqs eq in | |
let s',t' = dest_eq(concl eq') in | |
if s' = t' then (eqs,ocrits) else | |
let crits',eqs' = partition(left_reducible [eq']) eqs in | |
let eqs'' = eq'::eqs' in | |
eqs'', | |
ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' [] | |
with Failure _ -> | |
if exists (can (normalize_and_orient w eqs)) ocrits | |
then (eqs,ocrits@[eq]) | |
else failwith "complete: no orientable equations" in | |
status trip eqs; complete w trip | |
| [] -> eqs;; | |
let complete_equations wts eqs = | |
let eqs' = map (normalize_and_orient wts []) eqs in | |
complete wts ([],eqs');; | |
complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] | |
[SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];; | |
complete_equations [`c:A`; `f:A->A`] | |
(map SPEC_ALL (CONJUNCTS (ASSUME | |
`((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));; | |
let eqs = map SPEC_ALL (CONJUNCTS (ASSUME | |
`(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\ | |
(!x y z. (x * y) * z = x * y * z)`)) in | |
map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);; | |
let COMPLETE_TAC w th = | |
let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in | |
let eqs' = complete_equations w eqs in | |
MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';; | |
g `(!x. 1 * x = x) /\ | |
(!x. i(x) * x = 1) /\ | |
(!x y z. (x * y) * z = x * y * z) | |
==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;; | |
e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));; | |
e(ASM_REWRITE_TAC[]);; | |
g `(!x. 0 + x = x) /\ | |
(!x. neg x + x = 0) /\ | |
(!x y z. (x + y) + z = x + y + z) /\ | |
(!x y z. (x * y) * z = x * y * z) /\ | |
(!x y z. (x + y) * z = (x * z) + (y * z)) | |
==> (neg 0 * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) = | |
a + b)`;; | |
e (DISCH_THEN(COMPLETE_TAC | |
[`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));; | |
e(ASM_REWRITE_TAC[]);; | |
(**** Could have done this instead | |
e (DISCH_THEN(COMPLETE_TAC | |
[`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));; | |
****) | |
(* ========================================================================= *) | |
(* Linking external tools *) | |
(* ========================================================================= *) | |
let maximas e = | |
let filename = Filename.temp_file "maxima" ".out" in | |
let s = | |
"echo 'linel:10000; display2d:false;" ^ e ^ | |
";' | maxima | grep '^(%o3)' | sed -e 's/^(%o3) //' >" ^ | |
filename in | |
if Sys.command s <> 0 then failwith "maxima" else | |
let fd = Pervasives.open_in filename in | |
let data = input_line fd in | |
close_in fd; Sys.remove filename; data;; | |
prioritize_real();; | |
let maxima_ops = ["+",`(+)`; "-",`(-)`; "*",`( * )`; "/",`(/)`; "^",`(pow)`];; | |
let maxima_funs = ["sin",`sin`; "cos",`cos`];; | |
let mk_uneg = curry mk_comb `(--)`;; | |
let dest_uneg = | |
let ntm = `(--)` in | |
fun tm -> let op,t = dest_comb tm in | |
if op = ntm then t else failwith "dest_uneg";; | |
let mk_pow = let f = mk_binop `(pow)` in fun x y -> f x (rand y);; | |
let mk_realvar = let real_ty = `:real` in fun x -> mk_var(x,real_ty);; | |
let rec string_of_hol tm = | |
if is_ratconst tm then "("^string_of_num(rat_of_term tm)^")" | |
else if is_numeral tm then string_of_num(dest_numeral tm) | |
else if is_var tm then fst(dest_var tm) | |
else if can dest_uneg tm then "-(" ^ string_of_hol(rand tm) ^ ")" else | |
let lop,r = dest_comb tm in | |
try let op,l = dest_comb lop in | |
"("^string_of_hol l^" "^ rev_assoc op maxima_ops^" "^string_of_hol r^")" | |
with Failure _ -> rev_assoc lop maxima_funs ^ "(" ^ string_of_hol r ^ ")";; | |
string_of_hol `(x + sin(-- &2 * x)) pow 2 - cos(x - &22 / &7)`;; | |
let lexe s = map (function Resword s -> s | Ident s -> s) (lex(explode s));; | |
let parse_bracketed prs inp = | |
match prs inp with | |
ast,")"::rst -> ast,rst | |
| _ -> failwith "Closing bracket expected";; | |
let rec parse_ginfix op opup sof prs inp = | |
match prs inp with | |
e1,hop::rst when hop = op -> parse_ginfix op opup (opup sof e1) prs rst | |
| e1,rest -> sof e1,rest;; | |
let parse_general_infix op = | |
let opcon = if op = "^" then mk_pow else mk_binop (assoc op maxima_ops) in | |
let constr = if op <> "^" && snd(get_infix_status op) = "right" | |
then fun f e1 e2 -> f(opcon e1 e2) | |
else fun f e1 e2 -> opcon(f e1) e2 in | |
parse_ginfix op constr (fun x -> x);; | |
let rec parse_atomic_expression inp = | |
match inp with | |
[] -> failwith "expression expected" | |
| "(" :: rest -> parse_bracketed parse_expression rest | |
| s :: rest when forall isnum (explode s) -> | |
term_of_rat(num_of_string s),rest | |
| s :: "(" :: rest when forall isalnum (explode s) -> | |
let e,rst = parse_bracketed parse_expression rest in | |
mk_comb(assoc s maxima_funs,e),rst | |
| s :: rest when forall isalnum (explode s) -> mk_realvar s,rest | |
and parse_exp inp = parse_general_infix "^" parse_atomic_expression inp | |
and parse_neg inp = | |
match inp with | |
| "-" :: rest -> let e,rst = parse_neg rest in mk_uneg e,rst | |
| _ -> parse_exp inp | |
and parse_expression inp = | |
itlist parse_general_infix (map fst maxima_ops) parse_neg inp;; | |
let hol_of_string = fst o parse_expression o lexe;; | |
hol_of_string "sin(x) - cos(-(- - 1 + x))";; | |
let FACTOR_CONV tm = | |
let s = "factor("^string_of_hol tm^")" in | |
let tm' = hol_of_string(maximas s) in | |
REAL_RING(mk_eq(tm,tm'));; | |
FACTOR_CONV `&1234567890`;; | |
FACTOR_CONV `x pow 6 - &1`;; | |
FACTOR_CONV `r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x`;; | |
let ANTIDERIV_CONV tm = | |
let x,bod = dest_abs tm in | |
let s = "integrate("^string_of_hol bod^","^fst(dest_var x)^")" in | |
let tm' = mk_abs(x,hol_of_string(maximas s)) in | |
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) | |
(SPEC x (DIFF_CONV tm')) in | |
let th2 = REAL_RING(mk_eq(lhand(concl th1),bod)) in | |
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);; | |
ANTIDERIV_CONV `\x. (x + &5) pow 2 + &77 * x`;; | |
ANTIDERIV_CONV `\x. sin(x) + x pow 11`;; | |
(**** This one fails | |
ANTIDERIV_CONV `\x. sin(x) pow 3`;; | |
****) | |
let SIN_N_CLAUSES = prove | |
(`(sin(&(NUMERAL(BIT0 n)) * x) = | |
&2 * sin(&(NUMERAL n) * x) * cos(&(NUMERAL n) * x)) /\ | |
(sin(&(NUMERAL(BIT1 n)) * x) = | |
sin(&(NUMERAL(BIT0 n)) * x) * cos(x) + | |
sin(x) * cos(&(NUMERAL(BIT0 n)) * x)) /\ | |
(cos(&(NUMERAL(BIT0 n)) * x) = | |
cos(&(NUMERAL n) * x) pow 2 - sin(&(NUMERAL n) * x) pow 2) /\ | |
(cos(&(NUMERAL(BIT1 n)) * x) = | |
cos(&(NUMERAL(BIT0 n)) * x) * cos(x) - | |
sin(x) * sin(&(NUMERAL(BIT0 n)) * x))`, | |
REWRITE_TAC[REAL_MUL_2; REAL_POW_2] THEN | |
REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN | |
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN | |
REWRITE_TAC[REAL_ADD_RDISTRIB; SIN_ADD; COS_ADD; REAL_MUL_LID] THEN | |
CONV_TAC REAL_RING);; | |
let TRIG_IDENT_TAC x = | |
REWRITE_TAC[SIN_N_CLAUSES; SIN_ADD; COS_ADD] THEN | |
REWRITE_TAC[REAL_MUL_LZERO; SIN_0; COS_0; REAL_MUL_RZERO] THEN | |
MP_TAC(SPEC x SIN_CIRCLE) THEN CONV_TAC REAL_RING;; | |
let ANTIDERIV_CONV tm = | |
let x,bod = dest_abs tm in | |
let s = "expand(integrate("^string_of_hol bod^","^fst(dest_var x)^"))" in | |
let tm' = mk_abs(x,hol_of_string(maximas s)) in | |
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV) | |
(SPEC x (DIFF_CONV tm')) in | |
let th2 = prove(mk_eq(lhand(concl th1),bod),TRIG_IDENT_TAC x) in | |
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);; | |
time ANTIDERIV_CONV `\x. sin(x) pow 3`;; | |
time ANTIDERIV_CONV `\x. sin(x) * sin(x) pow 5 * cos(x) pow 4 + cos(x)`;; | |
let FCT1_WEAK = prove | |
(`(!x. (f diffl f'(x)) x) ==> !x. &0 <= x ==> defint(&0,x) f' (f x - f(&0))`, | |
MESON_TAC[FTC1]);; | |
let INTEGRAL_CONV tm = | |
let th1 = MATCH_MP FCT1_WEAK (ANTIDERIV_CONV tm) in | |
(CONV_RULE REAL_RAT_REDUCE_CONV o | |
REWRITE_RULE[SIN_0; COS_0; REAL_MUL_LZERO; REAL_MUL_RZERO] o | |
CONV_RULE REAL_RAT_REDUCE_CONV o BETA_RULE) th1;; | |
INTEGRAL_CONV `\x. sin(x) pow 13`;; | |