Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
83.4 kB
(* ========================================================================= *)
(* HOL basics *)
(* ========================================================================= *)
ARITH_RULE
`(a * x + b * y + a * y) EXP 3 + (b * x) EXP 3 +
(a * x + b * y + b * x) EXP 3 + (a * y) EXP 3 =
(a * x + a * y + b * x) EXP 3 + (b * y) EXP 3 +
(a * y + b * y + b * x) EXP 3 + (a * x) EXP 3`;;
(* ========================================================================= *)
(* Propositional logic *)
(* ========================================================================= *)
TAUT
`(~input_a ==> (internal <=> T)) /\
(~input_b ==> (output <=> internal)) /\
(input_a ==> (output <=> F)) /\
(input_b ==> (output <=> F))
==> (output <=> ~(input_a \/ input_b))`;;
TAUT
`(i1 /\ i2 <=> a) /\
(i1 /\ i3 <=> b) /\
(i2 /\ i3 <=> c) /\
(i1 /\ c <=> d) /\
(m /\ r <=> e) /\
(m /\ w <=> f) /\
(n /\ w <=> g) /\
(p /\ w <=> h) /\
(q /\ w <=> i) /\
(s /\ x <=> j) /\
(t /\ x <=> k) /\
(v /\ x <=> l) /\
(i1 \/ i2 <=> m) /\
(i1 \/ i3 <=> n) /\
(i1 \/ q <=> p) /\
(i2 \/ i3 <=> q) /\
(i3 \/ a <=> r) /\
(a \/ w <=> s) /\
(b \/ w <=> t) /\
(d \/ h <=> u) /\
(c \/ w <=> v) /\
(~e <=> w) /\
(~u <=> x) /\
(i \/ l <=> o1) /\
(g \/ k <=> o2) /\
(f \/ j <=> o3)
==> (o1 <=> ~i1) /\ (o2 <=> ~i2) /\ (o3 <=> ~i3)`;;
(* ========================================================================= *)
(* Abstractions and quantifiers *)
(* ========================================================================= *)
MESON[]
`((?x. !y. P(x) <=> P(y)) <=> ((?x. Q(x)) <=> (!y. Q(y)))) <=>
((?x. !y. Q(x) <=> Q(y)) <=> ((?x. P(x)) <=> (!y. P(y))))`;;
MESON[]
`(!x y z. P x y /\ P y z ==> P x z) /\
(!x y z. Q x y /\ Q y z ==> Q x z) /\
(!x y. P x y ==> P y x) /\
(!x y. P x y \/ Q x y)
==> (!x y. P x y) \/ (!x y. Q x y)`;;
let ewd1062 = MESON[]
`(!x. x <= x) /\
(!x y z. x <= y /\ y <= z ==> x <= z) /\
(!x y. f(x) <= y <=> x <= g(y))
==> (!x y. x <= y ==> f(x) <= f(y)) /\
(!x y. x <= y ==> g(x) <= g(y))`;;
let ewd1062 = MESON[]
`(!x. R x x) /\
(!x y z. R x y /\ R y z ==> R x z) /\
(!x y. R (f x) y <=> R x (g y))
==> (!x y. R x y ==> R (f x) (f y)) /\
(!x y. R x y ==> R (g x) (g y))`;;
MESON[] `(?!x. g(f x) = x) <=> (?!y. f(g y) = y)`;;
MESON [ADD_ASSOC; ADD_SYM] `m + (n + p) = n + (m + p)`;;
(* ========================================================================= *)
(* Tactics and tacticals *)
(* ========================================================================= *)
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e DISCH_TAC;;
b();;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));;
e(SIMP_TAC[]);;
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);;
e DISCH_TAC;;
e(ASM_REWRITE_TAC[]);;
e(CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;;
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = top_thm();;
let trivial = prove
(`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`,
CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);;
let trivial = prove
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN
MP_TAC(SPECL [`x:real`; `--y`] REAL_LE_MUL) THEN REAL_ARITH_TAC);;
let trivial = prove
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`,
MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN REAL_ARITH_TAC);;
let SUM_OF_NUMBERS = prove
(`!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2`,
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
let SUM_OF_SQUARES = prove
(`!n. nsum(1..n) (\i. i * i) = (n * (n + 1) * (2 * n + 1)) DIV 6`,
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
let SUM_OF_CUBES = prove
(`!n. nsum(1..n) (\i. i*i*i) = (n * n * (n + 1) * (n + 1)) DIV 4`,
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;
(* ========================================================================= *)
(* HOL's number systems *)
(* ========================================================================= *)
REAL_ARITH `!x y:real. (abs(x) - abs(y)) <= abs(x - y)`;;
INT_ARITH
`!a b a' b' D:int.
(a pow 2 - D * b pow 2) * (a' pow 2 - D * b' pow 2) =
(a * a' + D * b * b') pow 2 - D * (a * b' + a' * b) pow 2`;;
REAL_ARITH
`!x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11:real.
x3 = abs(x2) - x1 /\
x4 = abs(x3) - x2 /\
x5 = abs(x4) - x3 /\
x6 = abs(x5) - x4 /\
x7 = abs(x6) - x5 /\
x8 = abs(x7) - x6 /\
x9 = abs(x8) - x7 /\
x10 = abs(x9) - x8 /\
x11 = abs(x10) - x9
==> x1 = x10 /\ x2 = x11`;;
REAL_ARITH `!x y:real. x < y ==> x < (x + y) / &2 /\ (x + y) / &2 < y`;;
REAL_ARITH
`((x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2) =
((&1 / &6) * ((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 +
(x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) +
(&1 / &6) * ((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 +
(x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4))`;;
ARITH_RULE `x < 2 ==> 2 * x + 1 < 4`;;
(**** Fails
ARITH_RULE `~(2 * m + 1 = 2 * n)`;;
****)
ARITH_RULE `x < 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;;
(**** Fails
ARITH_RULE `x <= 2 EXP 30 ==> (429496730 * x) DIV (2 EXP 32) = x DIV 10`;;
****)
(**** Fails
ARITH_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;;
****)
(**** Fails
REAL_ARITH `!x y:real. x = y ==> x * y = y pow 2`;;
****)
prioritize_real();;
REAL_RING
`s = (a + b + c) / &2
==> s * (s - b) * (s - c) + s * (s - c) * (s - a) +
s * (s - a) * (s - b) - (s - a) * (s - b) * (s - c) =
a * b * c`;;
REAL_RING `a pow 2 = &2 /\ x pow 2 + a * x + &1 = &0 ==> x pow 4 + &1 = &0`;;
REAL_RING
`(a * x pow 2 + b * x + c = &0) /\
(a * y pow 2 + b * y + c = &0) /\
~(x = y)
==> (a * x * y = c) /\ (a * (x + y) + b = &0)`;;
REAL_RING
`p = (&3 * a1 - a2 pow 2) / &3 /\
q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\
x = z + a2 / &3 /\
x * w = w pow 2 - p / &3
==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>
if p = &0 then x pow 3 = q
else (w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)`;;
REAL_FIELD `&0 < x ==> &1 / x - &1 / (&1 + x) = &1 / (x * (&1 + x))`;;
REAL_FIELD
`s pow 2 = b pow 2 - &4 * a * c
==> (a * x pow 2 + b * x + c = &0 <=>
if a = &0 then
if b = &0 then
if c = &0 then T else F
else x = --c / b
else x = (--b + s) / (&2 * a) \/ x = (--b + --s) / (&2 * a))`;;
(**** This needs an external SDP solver to assist with proof
needs "Examples/sos.ml";;
SOS_RULE `1 <= x /\ 1 <= y ==> 1 <= x * y`;;
REAL_SOS
`!a1 a2 a3 a4:real.
&0 <= a1 /\ &0 <= a2 /\ &0 <= a3 /\ &0 <= a4
==> a1 pow 2 +
((a1 + a2) / &2) pow 2 +
((a1 + a2 + a3) / &3) pow 2 +
((a1 + a2 + a3 + a4) / &4) pow 2
<= &4 * (a1 pow 2 + a2 pow 2 + a3 pow 2 + a4 pow 2)`;;
REAL_SOS
`!a b c:real.
a >= &0 /\ b >= &0 /\ c >= &0
==> &3 / &2 * (b + c) * (a + c) * (a + b) <=
a * (a + c) * (a + b) +
b * (b + c) * (a + b) +
c * (b + c) * (a + c)`;;
SOS_CONV `&2 * x pow 4 + &2 * x pow 3 * y - x pow 2 * y pow 2 + &5 * y pow 4`;;
PURE_SOS
`x pow 4 + &2 * x pow 2 * z + x pow 2 - &2 * x * y * z +
&2 * y pow 2 * z pow 2 + &2 * y * z pow 2 + &2 * z pow 2 - &2 * x +
&2 * y * z + &1 >= &0`;;
*****)
needs "Examples/cooper.ml";;
COOPER_RULE `ODD n ==> 2 * n DIV 2 < n`;;
COOPER_RULE `!n. n >= 8 ==> ?a b. n = 3 * a + 5 * b`;;
needs "Rqe/make.ml";;
REAL_QELIM_CONV `!x. &0 <= x ==> ?y. y pow 2 = x`;;
(* ========================================================================= *)
(* Inductive definitions *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Bug puzzle. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let move = new_definition
`move ((ax,ay),(bx,by),(cx,cy)) ((ax',ay'),(bx',by'),(cx',cy')) <=>
(?a. ax' = ax + a * (cx - bx) /\ ay' = ay + a * (cy - by) /\
bx' = bx /\ by' = by /\ cx' = cx /\ cy' = cy) \/
(?b. bx' = bx + b * (ax - cx) /\ by' = by + b * (ay - cy) /\
ax' = ax /\ ay' = ay /\ cx' = cx /\ cy' = cy) \/
(?c. ax' = ax /\ ay' = ay /\ bx' = bx /\ by' = by /\
cx' = cx + c * (bx - ax) /\ cy' = cy + c * (by - ay))`;;
let reachable_RULES,reachable_INDUCT,reachable_CASES =
new_inductive_definition
`(!p. reachable p p) /\
(!p q r. move p q /\ reachable q r ==> reachable p r)`;;
let oriented_area = new_definition
`oriented_area ((ax,ay),(bx,by),(cx,cy)) =
((bx - ax) * (cy - ay) - (cx - ax) * (by - ay)) / &2`;;
let MOVE_INVARIANT = prove
(`!p p'. move p p' ==> oriented_area p = oriented_area p'`,
REWRITE_TAC[FORALL_PAIR_THM; move; oriented_area] THEN CONV_TAC REAL_RING);;
let REACHABLE_INVARIANT = prove
(`!p p'. reachable p p' ==> oriented_area p = oriented_area p'`,
MATCH_MP_TAC reachable_INDUCT THEN MESON_TAC[MOVE_INVARIANT]);;
let IMPOSSIBILITY_B = prove
(`~(reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(&2,&5),(-- &2,&3)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&1,&2),(-- &2,&3),(&2,&5)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(&1,&2),(-- &2,&3)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((&2,&5),(-- &2,&3),(&1,&2)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&1,&2),(&2,&5)) \/
reachable ((&0,&0),(&3,&0),(&0,&3)) ((-- &2,&3),(&2,&5),(&1,&2)))`,
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REACHABLE_INVARIANT) THEN
REWRITE_TAC[oriented_area] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Verification of a simple concurrent program. *)
(* ------------------------------------------------------------------------- *)
let init = new_definition
`init (x,y,pc1,pc2,sem) <=>
pc1 = 10 /\ pc2 = 10 /\ x = 0 /\ y = 0 /\ sem = 1`;;
let trans = new_definition
`trans (x,y,pc1,pc2,sem) (x',y',pc1',pc2',sem') <=>
pc1 = 10 /\ sem > 0 /\ pc1' = 20 /\ sem' = sem - 1 /\
(x',y',pc2') = (x,y,pc2) \/
pc2 = 10 /\ sem > 0 /\ pc2' = 20 /\ sem' = sem - 1 /\
(x',y',pc1') = (x,y,pc1) \/
pc1 = 20 /\ pc1' = 30 /\ x' = x + 1 /\
(y',pc2',sem') = (y,pc2,sem) \/
pc2 = 20 /\ pc2' = 30 /\ y' = y + 1 /\ x' = x /\
pc1' = pc1 /\ sem' = sem \/
pc1 = 30 /\ pc1' = 10 /\ sem' = sem + 1 /\
(x',y',pc2') = (x,y,pc2) \/
pc2 = 30 /\ pc2' = 10 /\ sem' = sem + 1 /\
(x',y',pc1') = (x,y,pc1)`;;
let mutex = new_definition
`mutex (x,y,pc1,pc2,sem) <=> pc1 = 10 \/ pc2 = 10`;;
let indinv = new_definition
`indinv (x:num,y:num,pc1,pc2,sem) <=>
sem + (if pc1 = 10 then 0 else 1) + (if pc2 = 10 then 0 else 1) = 1`;;
needs "Library/rstc.ml";;
let INDUCTIVE_INVARIANT = prove
(`!init invariant transition P.
(!s. init s ==> invariant s) /\
(!s s'. invariant s /\ transition s s' ==> invariant s') /\
(!s. invariant s ==> P s)
==> !s s':A. init s /\ RTC transition s s' ==> P s'`,
REPEAT GEN_TAC THEN MP_TAC(ISPECL
[`transition:A->A->bool`;
`\s s':A. invariant s ==> invariant s'`] RTC_INDUCT) THEN
MESON_TAC[]);;
let MUTEX = prove
(`!s s'. init s /\ RTC trans s s' ==> mutex s'`,
MATCH_MP_TAC INDUCTIVE_INVARIANT THEN EXISTS_TAC `indinv` THEN
REWRITE_TAC[init; trans; indinv; mutex; FORALL_PAIR_THM; PAIR_EQ] THEN
ARITH_TAC);;
(* ========================================================================= *)
(* Wellfounded induction *)
(* ========================================================================= *)
let NSQRT_2 = prove
(`!p q. p * p = 2 * q * q ==> q = 0`,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM `EVEN`) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`q:num`; `m:num`]) THEN
ASM_REWRITE_TAC[ARITH_RULE
`q < 2 * m ==> q * q = 2 * m * m ==> m = 0 <=>
(2 * m) * 2 * m = 2 * q * q ==> 2 * m <= q`] THEN
ASM_MESON_TAC[LE_MULT2; MULT_EQ_0; ARITH_RULE `2 * x <= x <=> x = 0`]);;
(* ========================================================================= *)
(* Changing proof style *)
(* ========================================================================= *)
let fix ts = MAP_EVERY X_GEN_TAC ts;;
let assume lab t =
DISCH_THEN(fun th -> if concl th = t then LABEL_TAC lab th
else failwith "assume");;
let we're finished tac = tac;;
let suffices_to_prove q tac = SUBGOAL_THEN q (fun th -> MP_TAC th THEN tac);;
let note(lab,t) tac =
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
DISCH_THEN(fun th -> LABEL_TAC lab th);;
let have t = note("",t);;
let cases (lab,t) tac =
SUBGOAL_THEN t MP_TAC THENL [tac; ALL_TAC] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN (LABEL_TAC lab));;
let consider (x,lab,t) tac =
let tm = mk_exists(x,t) in
SUBGOAL_THEN tm (X_CHOOSE_THEN x (LABEL_TAC lab)) THENL [tac; ALL_TAC];;
let trivial = MESON_TAC[];;
let algebra = CONV_TAC NUM_RING;;
let arithmetic = ARITH_TAC;;
let by labs tac = MAP_EVERY (fun l -> USE_THEN l MP_TAC) labs THEN tac;;
let using ths tac = MAP_EVERY MP_TAC ths THEN tac;;
let so constr arg tac = constr arg (FIRST_ASSUM MP_TAC THEN tac);;
let NSQRT_2 = prove
(`!p q. p * p = 2 * q * q ==> q = 0`,
suffices_to_prove
`!p. (!m. m < p ==> (!q. m * m = 2 * q * q ==> q = 0))
==> (!q. p * p = 2 * q * q ==> q = 0)`
(MATCH_ACCEPT_TAC num_WF) THEN
fix [`p:num`] THEN
assume("A") `!m. m < p ==> !q. m * m = 2 * q * q ==> q = 0` THEN
fix [`q:num`] THEN
assume("B") `p * p = 2 * q * q` THEN
so have `EVEN(p * p) <=> EVEN(2 * q * q)` (trivial) THEN
so have `EVEN(p)` (using [ARITH; EVEN_MULT] trivial) THEN
so consider (`m:num`,"C",`p = 2 * m`) (using [EVEN_EXISTS] trivial) THEN
cases ("D",`q < p \/ p <= q`) (arithmetic) THENL
[so have `q * q = 2 * m * m ==> m = 0` (by ["A"] trivial) THEN
so we're finished (by ["B"; "C"] algebra);
so have `p * p <= q * q` (using [LE_MULT2] trivial) THEN
so have `q * q = 0` (by ["B"] arithmetic) THEN
so we're finished (algebra)]);;
(* ========================================================================= *)
(* Recursive definitions *)
(* ========================================================================= *)
let fib = define
`fib n = if n = 0 \/ n = 1 then 1 else fib(n - 1) + fib(n - 2)`;;
let fib2 = define
`(fib2 0 = 1) /\
(fib2 1 = 1) /\
(fib2 (n + 2) = fib2(n) + fib2(n + 1))`;;
let halve = define `halve (2 * n) = n`;;
let unknown = define `unknown n = unknown(n + 1)`;;
define
`!n. collatz(n) = if n <= 1 then n
else if EVEN(n) then collatz(n DIV 2)
else collatz(3 * n + 1)`;;
let fusc_def = define
`(fusc (2 * n) = if n = 0 then 0 else fusc(n)) /\
(fusc (2 * n + 1) = if n = 0 then 1 else fusc(n) + fusc(n + 1))`;;
let fusc = prove
(`fusc 0 = 0 /\
fusc 1 = 1 /\
fusc (2 * n) = fusc(n) /\
fusc (2 * n + 1) = fusc(n) + fusc(n + 1)`,
REWRITE_TAC[fusc_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(INST [`0`,`n:num`] fusc_def) THEN ARITH_TAC);;
let binom = define
`(!n. binom(n,0) = 1) /\
(!k. binom(0,SUC(k)) = 0) /\
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;
let BINOM_LT = prove
(`!n k. n < k ==> (binom(n,k) = 0)`,
INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN
ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);;
let BINOM_REFL = prove
(`!n. binom(n,n) = 1`,
INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);;
let BINOM_FACT = prove
(`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`,
INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);;
let BINOMIAL_THEOREM = prove
(`!n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`,
INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN
REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN
ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN
REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN
MATCH_MP_TAC(ARITH_RULE `a = e /\ b = c + d ==> a + b = c + d + e`) THEN
CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN
SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN
REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN
SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN
SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN
SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN
REWRITE_TAC[MULT_AC]);;
(* ========================================================================= *)
(* Sets and functions *)
(* ========================================================================= *)
let SURJECTIVE_IFF_RIGHT_INVERSE = prove
(`(!y. ?x. g x = y) <=> (?f. g o f = I)`,
REWRITE_TAC[FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);;
let INJECTIVE_IFF_LEFT_INVERSE = prove
(`(!x y. f x = f y ==> x = y) <=> (?g. g o f = I)`,
let lemma = MESON[]
`(!x x'. f x = f x' ==> x = x') <=> (!y:B. ?u:A. !x. f x = y ==> u = x)` in
REWRITE_TAC[lemma; FUN_EQ_THM; o_DEF; I_DEF] THEN MESON_TAC[]);;
let cantor = new_definition
`cantor(x,y) = ((x + y) EXP 2 + 3 * x + y) DIV 2`;;
(**** Needs external SDP solver
needs "Examples/sos.ml";;
let CANTOR_LEMMA = prove
(`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`,
REWRITE_TAC[cantor] THEN CONV_TAC SOS_RULE);;
****)
let CANTOR_LEMMA_LEMMA = prove
(`x + y < x' + y' ==> cantor(x,y) < cantor(x',y')`,
REWRITE_TAC[ARITH_RULE `x + y < z <=> x + y + 1 <= z`] THEN DISCH_TAC THEN
REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN
MATCH_MP_TAC(ARITH_RULE `x + 2 <= y ==> x DIV 2 < y DIV 2`) THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `(x + y + 1) EXP 2 + (x + y + 1)` THEN
CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `a:num <= b /\ c <= d ==> a + c <= b + d + e`) THEN
ASM_SIMP_TAC[EXP_2; LE_MULT2]);;
let CANTOR_LEMMA = prove
(`cantor(x,y) = cantor(x',y') ==> x + y = x' + y'`,
MESON_TAC[LT_CASES; LT_REFL; CANTOR_LEMMA_LEMMA]);;
let CANTOR_INJ = prove
(`!w z. cantor w = cantor z ==> w = z`,
REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ] THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> MP_TAC th THEN ASSUME_TAC(MATCH_MP CANTOR_LEMMA th)) THEN
ASM_REWRITE_TAC[cantor; ARITH_RULE `3 * x + y = (x + y) + 2 * x`] THEN
REWRITE_TAC[ARITH_RULE `(a + b + 2 * x) DIV 2 = (a + b) DIV 2 + x`] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;
let CANTOR_THM = prove
(`~(?f:(A->bool)->A. (!x y. f(x) = f(y) ==> x = y))`,
REWRITE_TAC[INJECTIVE_IFF_LEFT_INVERSE; FUN_EQ_THM; I_DEF; o_DEF] THEN
STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\x:A. ~(g x x)`) THEN
MESON_TAC[]);;
(* ========================================================================= *)
(* Inductive datatypes *)
(* ========================================================================= *)
let line_INDUCT,line_RECURSION = define_type
"line = Line_1 | Line_2 | Line_3 | Line_4 |
Line_5 | Line_6 | Line_7";;
let point_INDUCT,point_RECURSION = define_type
"point = Point_1 | Point_2 | Point_3 | Point_4 |
Point_5 | Point_6 | Point_7";;
let fano_incidence =
[1,1; 1,2; 1,3; 2,1; 2,4; 2,5; 3,1; 3,6; 3,7; 4,2; 4,4;
4,6; 5,2; 5,5; 5,7; 6,3; 6,4; 6,7; 7,3; 7,5; 7,6];;
let fano_point i = mk_const("Point_"^string_of_int i,[]);;
let fano_line i = mk_const("Line_"^string_of_int i,[]);;
let p = `p:point` and l = `l:line` ;;
let fano_clause (i,j) = mk_conj(mk_eq(p,fano_point i),mk_eq(l,fano_line j));;
parse_as_infix("ON",(11,"right"));;
let ON = new_definition
(mk_eq(`((ON):point->line->bool) p l`,
list_mk_disj(map fano_clause fano_incidence)));;
let ON_CLAUSES = prove
(list_mk_conj(allpairs
(fun i j -> mk_eq(mk_comb(mk_comb(`(ON)`,fano_point i),fano_line j),
if mem (i,j) fano_incidence then `T` else `F`))
(1--7) (1--7)),
REWRITE_TAC[ON; distinctness "line"; distinctness "point"]);;
let FORALL_POINT = prove
(`(!p. P p) <=> P Point_1 /\ P Point_2 /\ P Point_3 /\ P Point_4 /\
P Point_5 /\ P Point_6 /\ P Point_7`,
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[point_INDUCT]]);;
let FORALL_LINE = prove
(`(!p. P p) <=> P Line_1 /\ P Line_2 /\ P Line_3 /\ P Line_4 /\
P Line_5 /\ P Line_6 /\ P Line_7`,
EQ_TAC THENL [SIMP_TAC[]; REWRITE_TAC[line_INDUCT]]);;
let EXISTS_POINT = prove
(`(?p. P p) <=> P Point_1 \/ P Point_2 \/ P Point_3 \/ P Point_4 \/
P Point_5 \/ P Point_6 \/ P Point_7`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_POINT]);;
let EXISTS_LINE = prove
(`(?p. P p) <=> P Line_1 \/ P Line_2 \/ P Line_3 \/ P Line_4 \/
P Line_5 \/ P Line_6 \/ P Line_7`,
MATCH_MP_TAC(TAUT `(~p <=> ~q) ==> (p <=> q)`) THEN
REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM; FORALL_LINE]);;
let FANO_TAC =
GEN_REWRITE_TAC DEPTH_CONV
[FORALL_POINT; EXISTS_LINE; EXISTS_POINT; FORALL_LINE] THEN
GEN_REWRITE_TAC DEPTH_CONV
(basic_rewrites() @
[ON_CLAUSES; distinctness "point"; distinctness "line"]);;
let FANO_RULE tm = prove(tm,FANO_TAC);;
let AXIOM_1 = FANO_RULE
`!p p'. ~(p = p') ==> ?l. p ON l /\ p' ON l /\
!l'. p ON l' /\ p' ON l' ==> l' = l`;;
let AXIOM_2 = FANO_RULE
`!l l'. ?p. p ON l /\ p ON l'`;;
let AXIOM_3 = FANO_RULE
`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p ON l /\ p' ON l /\ p'' ON l)`;;
let AXIOM_4 = FANO_RULE
`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p ON l /\ p' ON l /\ p'' ON l`;;
(* ========================================================================= *)
(* Semantics of programming languages *)
(* ========================================================================= *)
let string_INDUCT,string_RECURSION =
define_type "string = String (int list)";;
let expression_INDUCT,expression_RECURSION = define_type
"expression = Literal num
| Variable string
| Plus expression expression
| Times expression expression";;
let command_INDUCT,command_RECURSION = define_type
"command = Assign string expression
| Sequence command command
| If expression command command
| While expression command";;
parse_as_infix(";;",(18,"right"));;
parse_as_infix(":=",(20,"right"));;
override_interface(";;",`Sequence`);;
override_interface(":=",`Assign`);;
overload_interface("+",`Plus`);;
overload_interface("*",`Times`);;
let value = define
`(value (Literal n) s = n) /\
(value (Variable x) s = s(x)) /\
(value (e1 + e2) s = value e1 s + value e2 s) /\
(value (e1 * e2) s = value e1 s * value e2 s)`;;
let sem_RULES,sem_INDUCT,sem_CASES = new_inductive_definition
`(!x e s s'. s'(x) = value e s /\ (!y. ~(y = x) ==> s'(y) = s(y))
==> sem (x := e) s s') /\
(!c1 c2 s s' s''. sem(c1) s s' /\ sem(c2) s' s'' ==> sem(c1 ;; c2) s s'') /\
(!e c1 c2 s s'. ~(value e s = 0) /\ sem(c1) s s' ==> sem(If e c1 c2) s s') /\
(!e c1 c2 s s'. value e s = 0 /\ sem(c2) s s' ==> sem(If e c1 c2) s s') /\
(!e c s. value e s = 0 ==> sem(While e c) s s) /\
(!e c s s' s''. ~(value e s = 0) /\ sem(c) s s' /\ sem(While e c) s' s''
==> sem(While e c) s s'')`;;
(**** Fails
define
`sem(While e c) s s' <=> if value e s = 0 then (s' = s)
else ?s''. sem c s s'' /\ sem(While e c) s'' s'`;;
****)
let DETERMINISM = prove
(`!c s s' s''. sem c s s' /\ sem c s s'' ==> (s' = s'')`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC sem_INDUCT THEN REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[sem_CASES] THEN
REWRITE_TAC[distinctness "command"; injectivity "command"] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[]);;
let wlp = new_definition
`wlp c q s <=> !s'. sem c s s' ==> q s'`;;
let terminates = new_definition
`terminates c s <=> ?s'. sem c s s'`;;
let wp = new_definition
`wp c q s <=> terminates c s /\ wlp c q s`;;
let WP_TOTAL = prove
(`!c. (wp c EMPTY = EMPTY)`,
REWRITE_TAC[FUN_EQ_THM; wp; wlp; terminates; EMPTY] THEN MESON_TAC[]);;
let WP_MONOTONIC = prove
(`q SUBSET r ==> wp c q SUBSET wp c r`,
REWRITE_TAC[SUBSET; IN; wp; wlp; terminates] THEN MESON_TAC[]);;
let WP_DISJUNCTIVE = prove
(`(wp c p) UNION (wp c q) = wp c (p UNION q)`,
REWRITE_TAC[FUN_EQ_THM; IN; wp; wlp; IN_ELIM_THM; UNION; terminates] THEN
MESON_TAC[DETERMINISM]);;
let WP_SEQ = prove
(`!c1 c2 q. wp (c1 ;; c2) = wp c1 o wp c2`,
REWRITE_TAC[wp; wlp; terminates; FUN_EQ_THM; o_THM] THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [sem_CASES] THEN
REWRITE_TAC[injectivity "command"; distinctness "command"] THEN
MESON_TAC[DETERMINISM]);;
let correct = new_definition
`correct p c q <=> p SUBSET (wp c q)`;;
let CORRECT_PRESTRENGTH = prove
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
REWRITE_TAC[correct; SUBSET_TRANS]);;
let CORRECT_POSTWEAK = prove
(`!p c q q'. correct p c q' /\ q' SUBSET q ==> correct p c q`,
REWRITE_TAC[correct] THEN MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);;
let CORRECT_SEQ = prove
(`!p q r c1 c2.
correct p c1 r /\ correct r c2 q ==> correct p (c1 ;; c2) q`,
REWRITE_TAC[correct; WP_SEQ; o_THM] THEN
MESON_TAC[WP_MONOTONIC; SUBSET_TRANS]);;
(* ------------------------------------------------------------------------- *)
(* Need a fresh HOL session here; now doing shallow embedding. *)
(* ------------------------------------------------------------------------- *)
let assign = new_definition
`Assign (f:S->S) (q:S->bool) = q o f`;;
parse_as_infix(";;",(18,"right"));;
let sequence = new_definition
`(c1:(S->bool)->(S->bool)) ;; (c2:(S->bool)->(S->bool)) = c1 o c2`;;
let if_def = new_definition
`If e (c:(S->bool)->(S->bool)) q = {s | if e s then c q s else q s}`;;
let ite_def = new_definition
`Ite e (c1:(S->bool)->(S->bool)) c2 q =
{s | if e s then c1 q s else c2 q s}`;;
let while_RULES,while_INDUCT,while_CASES = new_inductive_definition
`!q s. If e (c ;; while e c) q s ==> while e c q s`;;
let while_def = new_definition
`While e c q =
{s | !w. (!s:S. (if e(s) then c w s else q s) ==> w s) ==> w s}`;;
let monotonic = new_definition
`monotonic c <=> !q q'. q SUBSET q' ==> (c q) SUBSET (c q')`;;
let MONOTONIC_ASSIGN = prove
(`monotonic (Assign f)`,
SIMP_TAC[monotonic; assign; SUBSET; o_THM; IN]);;
let MONOTONIC_IF = prove
(`monotonic c ==> monotonic (If e c)`,
REWRITE_TAC[monotonic; if_def] THEN SET_TAC[]);;
let MONOTONIC_ITE = prove
(`monotonic c1 /\ monotonic c2 ==> monotonic (Ite e c1 c2)`,
REWRITE_TAC[monotonic; ite_def] THEN SET_TAC[]);;
let MONOTONIC_SEQ = prove
(`monotonic c1 /\ monotonic c2 ==> monotonic (c1 ;; c2)`,
REWRITE_TAC[monotonic; sequence; o_THM] THEN SET_TAC[]);;
let MONOTONIC_WHILE = prove
(`monotonic c ==> monotonic(While e c)`,
REWRITE_TAC[monotonic; while_def] THEN SET_TAC[]);;
let WHILE_THM = prove
(`!e c q:S->bool.
monotonic c
==> (!s. If e (c ;; While e c) q s ==> While e c q s) /\
(!w'. (!s. If e (c ;; (\q. w')) q s ==> w' s)
==> (!a. While e c q a ==> w' a)) /\
(!s. While e c q s <=> If e (c ;; While e c) q s)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
(MP_TAC o GEN_ALL o DISCH_ALL o derive_nonschematic_inductive_relations)
`!s:S. (if e s then c w s else q s) ==> w s` THEN
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM; IMP_IMP] THEN
DISCH_THEN MATCH_MP_TAC THEN
REWRITE_TAC[FUN_EQ_THM; while_def; IN_ELIM_THM] THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[monotonic] THEN SET_TAC[]);;
let WHILE_FIX = prove
(`!e c. monotonic c ==> (While e c = If e (c ;; While e c))`,
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[WHILE_THM]);;
let correct = new_definition
`correct p c q <=> p SUBSET (c q)`;;
let CORRECT_PRESTRENGTH = prove
(`!p p' c q. p SUBSET p' /\ correct p' c q ==> correct p c q`,
REWRITE_TAC[correct; SUBSET_TRANS]);;
let CORRECT_POSTWEAK = prove
(`!p c q q'. monotonic c /\ correct p c q' /\ q' SUBSET q ==> correct p c q`,
REWRITE_TAC[correct; monotonic] THEN SET_TAC[]);;
let CORRECT_ASSIGN = prove
(`!p f q. (p SUBSET (q o f)) ==> correct p (Assign f) q`,
REWRITE_TAC[correct; assign]);;
let CORRECT_SEQ = prove
(`!p q r c1 c2.
monotonic c1 /\ correct p c1 r /\ correct r c2 q
==> correct p (c1 ;; c2) q`,
REWRITE_TAC[correct; sequence; monotonic; o_THM] THEN SET_TAC[]);;
let CORRECT_ITE = prove
(`!p e c1 c2 q.
correct (p INTER e) c1 q /\ correct (p INTER (UNIV DIFF e)) c2 q
==> correct p (Ite e c1 c2) q`,
REWRITE_TAC[correct; ite_def] THEN SET_TAC[]);;
let CORRECT_IF = prove
(`!p e c q.
correct (p INTER e) c q /\ p INTER (UNIV DIFF e) SUBSET q
==> correct p (If e c) q`,
REWRITE_TAC[correct; if_def] THEN SET_TAC[]);;
let CORRECT_WHILE = prove
(`!(<<) p c q e invariant.
monotonic c /\
WF(<<) /\
p SUBSET invariant /\
(UNIV DIFF e) INTER invariant SUBSET q /\
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c
(invariant INTER (\s. s << X)))
==> correct p (While e c) q`,
REWRITE_TAC[correct; SUBSET; IN_INTER; IN_UNIV; IN_DIFF; IN] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!s:S. invariant s ==> While e c q s` MP_TAC THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[WF_IND]) THEN
X_GEN_TAC `s:S` THEN REPEAT DISCH_TAC THEN
FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP WHILE_FIX th]) THEN
REWRITE_TAC[if_def; sequence; o_THM; IN_ELIM_THM] THEN
COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`s:S`; `s:S`]) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [monotonic]) THEN
REWRITE_TAC[SUBSET; IN; RIGHT_IMP_FORALL_THM] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[INTER; IN_ELIM_THM; IN]);;
let assert_def = new_definition
`assert (p:S->bool) (q:S->bool) = q`;;
let variant_def = new_definition
`variant ((<<):S->S->bool) (q:S->bool) = q`;;
let CORRECT_SEQ_VC = prove
(`!p q r c1 c2.
monotonic c1 /\ correct p c1 r /\ correct r c2 q
==> correct p (c1 ;; assert r ;; c2) q`,
REWRITE_TAC[correct; sequence; monotonic; assert_def; o_THM] THEN SET_TAC[]);;
let CORRECT_WHILE_VC = prove
(`!(<<) p c q e invariant.
monotonic c /\
WF(<<) /\
p SUBSET invariant /\
(UNIV DIFF e) INTER invariant SUBSET q /\
(!X:S. correct (invariant INTER e INTER (\s. X = s)) c
(invariant INTER (\s. s << X)))
==> correct p (While e (assert invariant ;; variant(<<) ;; c)) q`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[sequence; variant_def; assert_def; o_DEF; ETA_AX] THEN
ASM_MESON_TAC[CORRECT_WHILE]);;
let MONOTONIC_ASSERT = prove
(`monotonic (assert p)`,
REWRITE_TAC[assert_def; monotonic]);;
let MONOTONIC_VARIANT = prove
(`monotonic (variant p)`,
REWRITE_TAC[variant_def; monotonic]);;
let MONO_TAC =
REPEAT(MATCH_MP_TAC MONOTONIC_WHILE ORELSE
(MAP_FIRST MATCH_MP_TAC
[MONOTONIC_SEQ; MONOTONIC_IF; MONOTONIC_ITE] THEN CONJ_TAC)) THEN
MAP_FIRST MATCH_ACCEPT_TAC
[MONOTONIC_ASSIGN; MONOTONIC_ASSERT; MONOTONIC_VARIANT];;
let VC_TAC =
FIRST
[MATCH_MP_TAC CORRECT_SEQ_VC THEN CONJ_TAC THENL [MONO_TAC; CONJ_TAC];
MATCH_MP_TAC CORRECT_ITE THEN CONJ_TAC;
MATCH_MP_TAC CORRECT_IF THEN CONJ_TAC;
MATCH_MP_TAC CORRECT_WHILE_VC THEN REPEAT CONJ_TAC THENL
[MONO_TAC; TRY(MATCH_ACCEPT_TAC WF_MEASURE); ALL_TAC; ALL_TAC;
REWRITE_TAC[FORALL_PAIR_THM; MEASURE] THEN REPEAT GEN_TAC];
MATCH_MP_TAC CORRECT_ASSIGN];;
needs "Library/prime.ml";;
(* ------------------------------------------------------------------------- *)
(* x = m, y = n; *)
(* while (!(x == 0 || y == 0)) *)
(* { if (x < y) y = y - x; *)
(* else x = x - y; *)
(* } *)
(* if (x == 0) x = y; *)
(* ------------------------------------------------------------------------- *)
g `correct
(\(m,n,x,y). T)
(Assign (\(m,n,x,y). m,n,m,n) ;; // x,y := m,n
assert (\(m,n,x,y). x = m /\ y = n) ;;
While (\(m,n,x,y). ~(x = 0 \/ y = 0))
(assert (\(m,n,x,y). gcd(x,y) = gcd(m,n)) ;;
variant(MEASURE(\(m,n,x,y). x + y)) ;;
Ite (\(m,n,x,y). x < y)
(Assign (\(m,n,x,y). m,n,x,y - x))
(Assign (\(m,n,x,y). m,n,x - y,y))) ;;
assert (\(m,n,x,y). (x = 0 \/ y = 0) /\ gcd(x,y) = gcd(m,n)) ;;
If (\(m,n,x,y). x = 0) (Assign (\(m,n,x,y). (m,n,y,y))))
(\(m,n,x,y). gcd(m,n) = x)`;;
e(REPEAT VC_TAC);;
b();;
e(REPEAT VC_TAC THEN REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:num`; `y:num`] THEN
REWRITE_TAC[IN; INTER; UNIV; DIFF; o_DEF; IN_ELIM_THM; PAIR_EQ] THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN SIMP_TAC[]);;
e(SIMP_TAC[GCD_SUB; LT_IMP_LE]);;
e ARITH_TAC;;
e(SIMP_TAC[GCD_SUB; NOT_LT] THEN ARITH_TAC);;
e(MESON_TAC[GCD_0]);;
e(MESON_TAC[GCD_0; GCD_SYM]);;
parse_as_infix("refines",(12,"right"));;
let refines = new_definition
`c2 refines c1 <=> !q. c1(q) SUBSET c2(q)`;;
let REFINES_REFL = prove
(`!c. c refines c`,
REWRITE_TAC[refines; SUBSET_REFL]);;
let REFINES_TRANS = prove
(`!c1 c2 c3. c3 refines c2 /\ c2 refines c1 ==> c3 refines c1`,
REWRITE_TAC[refines] THEN MESON_TAC[SUBSET_TRANS]);;
let REFINES_CORRECT = prove
(`correct p c1 q /\ c2 refines c1 ==> correct p c2 q`,
REWRITE_TAC[correct; refines] THEN MESON_TAC[SUBSET_TRANS]);;
let REFINES_WHILE = prove
(`c' refines c ==> While e c' refines While e c`,
REWRITE_TAC[refines; while_def; SUBSET; IN_ELIM_THM; IN] THEN MESON_TAC[]);;
let specification = new_definition
`specification(p,q) r = if q SUBSET r then p else {}`;;
let REFINES_SPECIFICATION = prove
(`c refines specification(p,q) ==> correct p c q`,
REWRITE_TAC[specification; correct; refines] THEN
MESON_TAC[SUBSET_REFL; SUBSET_EMPTY]);;
(* ========================================================================= *)
(* Number theory *)
(* ========================================================================= *)
needs "Library/prime.ml";;
needs "Library/pocklington.ml";;
needs "Library/binomial.ml";;
prioritize_num();;
let FERMAT_PRIME_CONV n =
let tm = subst [mk_small_numeral n,`x:num`] `prime(2 EXP (2 EXP x) + 1)` in
(RAND_CONV NUM_REDUCE_CONV THENC PRIME_CONV) tm;;
FERMAT_PRIME_CONV 0;;
FERMAT_PRIME_CONV 1;;
FERMAT_PRIME_CONV 2;;
FERMAT_PRIME_CONV 3;;
FERMAT_PRIME_CONV 4;;
FERMAT_PRIME_CONV 5;;
FERMAT_PRIME_CONV 6;;
FERMAT_PRIME_CONV 7;;
FERMAT_PRIME_CONV 8;;
let CONG_TRIVIAL = prove
(`!x y. n divides x /\ n divides y ==> (x == y) (mod n)`,
MESON_TAC[CONG_0; CONG_SYM; CONG_TRANS]);;
let LITTLE_CHECK_CONV tm =
EQT_ELIM((RATOR_CONV(LAND_CONV NUM_EXP_CONV) THENC CONG_CONV) tm);;
LITTLE_CHECK_CONV `(9 EXP 8 == 9) (mod 3)`;;
LITTLE_CHECK_CONV `(9 EXP 3 == 9) (mod 3)`;;
LITTLE_CHECK_CONV `(10 EXP 7 == 10) (mod 7)`;;
LITTLE_CHECK_CONV `(2 EXP 7 == 2) (mod 7)`;;
LITTLE_CHECK_CONV `(777 EXP 13 == 777) (mod 13)`;;
let DIVIDES_FACT_PRIME = prove
(`!p. prime p ==> !n. p divides (FACT n) <=> p <= n`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN REWRITE_TAC[FACT; LE] THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_0; PRIME_1];
ASM_MESON_TAC[PRIME_DIVPROD_EQ; DIVIDES_LE; NOT_SUC; DIVIDES_REFL;
ARITH_RULE `~(p <= n) /\ p <= SUC n ==> p = SUC n`]]);;
let DIVIDES_BINOM_PRIME = prove
(`!n p. prime p /\ 0 < n /\ n < p ==> p divides binom(p,n)`,
REPEAT STRIP_TAC THEN
MP_TAC(AP_TERM `(divides) p` (SPECL [`p - n`; `n:num`] BINOM_FACT)) THEN
ASM_SIMP_TAC[DIVIDES_FACT_PRIME; PRIME_DIVPROD_EQ; SUB_ADD; LT_IMP_LE] THEN
ASM_REWRITE_TAC[GSYM NOT_LT; LT_REFL] THEN
ASM_SIMP_TAC[ARITH_RULE `0 < n /\ n < p ==> p - n < p`]);;
let DIVIDES_NSUM = prove
(`!m n. (!i. m <= i /\ i <= n ==> p divides f(i)) ==> p divides nsum(m..n) f`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN
ASM_MESON_TAC[LE; LE_TRANS; DIVIDES_0; DIVIDES_ADD; LE_REFL]);;
let FLT_LEMMA = prove
(`!p a b. prime p ==> ((a + b) EXP p == a EXP p + b EXP p) (mod p)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[BINOMIAL_THEOREM] THEN
SUBGOAL_THEN `1 <= p /\ 0 < p` STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_IMP_NZ) THEN ARITH_TAC; ALL_TAC] THEN
ASM_SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0; ARITH; NSUM_CLAUSES_RIGHT] THEN
REWRITE_TAC[SUB_0; SUB_REFL; EXP; binom; BINOM_REFL; MULT_CLAUSES] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a + b = (b + 0) + a`] THEN
REPEAT(MATCH_MP_TAC CONG_ADD THEN REWRITE_TAC[CONG_REFL]) THEN
REWRITE_TAC[CONG_0] THEN MATCH_MP_TAC DIVIDES_NSUM THEN
ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_BINOM_PRIME; ARITH_RULE
`0 < p /\ 1 <= i /\ i <= p - 1 ==> 0 < i /\ i < p`]);;
let FERMAT_LITTLE = prove
(`!p a. prime p ==> (a EXP p == a) (mod p)`,
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
INDUCT_TAC THENL
[ASM_MESON_TAC[EXP_EQ_0; CONG_REFL; PRIME_0];
ASM_MESON_TAC[ADD1; FLT_LEMMA; EXP_ONE; CONG_ADD; CONG_TRANS; CONG_REFL]]);;
let FERMAT_LITTLE_COPRIME = prove
(`!p a. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[GSYM(CONJUNCT2 EXP)] THEN
ASM_SIMP_TAC[PRIME_IMP_NZ; ARITH_RULE `~(p = 0) ==> SUC(p - 1) = p`] THEN
ASM_SIMP_TAC[FERMAT_LITTLE; MULT_CLAUSES]);;
let FERMAT_LITTLE_VARIANT = prove
(`!p a. prime p ==> (a EXP (1 + m * (p - 1)) == a) (mod p)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_TAC o SPEC `a:num` o MATCH_MP PRIME_COPRIME_STRONG)
THENL [ASM_MESON_TAC[CONG_TRIVIAL; ADD_AC; ADD1; DIVIDES_REXP_SUC];
ALL_TAC] THEN
GEN_REWRITE_TAC LAND_CONV [ARITH_RULE `a = a * 1`] THEN
REWRITE_TAC[EXP_ADD; EXP_1] THEN MATCH_MP_TAC CONG_MULT THEN
REWRITE_TAC[GSYM EXP_EXP; CONG_REFL] THEN
ASM_MESON_TAC[COPRIME_SYM; COPRIME_EXP; PHI_PRIME; FERMAT_LITTLE_COPRIME]);;
let RSA = prove
(`prime p /\ prime q /\ ~(p = q) /\
(d * e == 1) (mod ((p - 1) * (q - 1))) /\
plaintext < p * q /\ (ciphertext = (plaintext EXP e) MOD (p * q))
==> (plaintext = (ciphertext EXP d) MOD (p * q))`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[MOD_EXP_MOD; MULT_EQ_0; PRIME_IMP_NZ; EXP_EXP] THEN
SUBGOAL_THEN `(plaintext == plaintext EXP (e * d)) (mod (p * q))` MP_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[CONG; MULT_EQ_0; PRIME_IMP_NZ; MOD_LT]] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o GEN_REWRITE_RULE I [CONG_TO_1]) THENL
[ASM_MESON_TAC[MULT_EQ_1; ARITH_RULE `p - 1 = 1 <=> p = 2`]; ALL_TAC] THEN
MATCH_MP_TAC CONG_CHINESE THEN ASM_SIMP_TAC[DISTINCT_PRIME_COPRIME] THEN
ASM_MESON_TAC[FERMAT_LITTLE_VARIANT; MULT_AC; CONG_SYM]);;
(* ========================================================================= *)
(* Real analysis *)
(* ========================================================================= *)
needs "Library/analysis.ml";;
needs "Library/transc.ml";;
let cheb = define
`(!x. cheb 0 x = &1) /\
(!x. cheb 1 x = x) /\
(!n x. cheb (n + 2) x = &2 * x * cheb (n + 1) x - cheb n x)`;;
let CHEB_INDUCT = prove
(`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN
INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN
ASM_SIMP_TAC[ARITH]);;
let CHEB_COS = prove
(`!n x. cheb n (cos x) = cos(&n * x)`,
MATCH_MP_TAC CHEB_INDUCT THEN
REWRITE_TAC[cheb; REAL_MUL_LZERO; REAL_MUL_LID; COS_0] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_MUL_LID; REAL_ADD_RDISTRIB] THEN
REWRITE_TAC[COS_ADD; COS_DOUBLE; SIN_DOUBLE] THEN
MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);;
let CHEB_RIPPLE = prove
(`!x. abs(x) <= &1 ==> abs(cheb n x) <= &1`,
REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN
MESON_TAC[CHEB_COS; ACS_COS; COS_BOUNDS]);;
let NUM_ADD2_CONV =
let add_tm = `(+):num->num->num`
and two_tm = `2` in
fun tm ->
let m = mk_numeral(dest_numeral tm -/ Int 2) in
let tm' = mk_comb(mk_comb(add_tm,m),two_tm) in
SYM(NUM_ADD_CONV tm');;
let CHEB_CONV =
let [pth0;pth1;pth2] = CONJUNCTS cheb in
let rec conv tm =
(GEN_REWRITE_CONV I [pth0; pth1] ORELSEC
(LAND_CONV NUM_ADD2_CONV THENC
GEN_REWRITE_CONV I [pth2] THENC
COMB2_CONV
(funpow 3 RAND_CONV ((LAND_CONV NUM_ADD_CONV) THENC conv))
conv THENC
REAL_POLY_CONV)) tm in
conv;;
CHEB_CONV `cheb 8 x`;;
let CHEB_2N1 = prove
(`!n x. ((x - &1) * (cheb (2 * n + 1) x - &1) =
(cheb (n + 1) x - cheb n x) pow 2) /\
(&2 * (x pow 2 - &1) * (cheb (2 * n + 2) x - &1) =
(cheb (n + 2) x - cheb n x) pow 2)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
MATCH_MP_TAC CHEB_INDUCT THEN REWRITE_TAC[ARITH; cheb; CHEB_2; CHEB_3] THEN
REPEAT(CHANGED_TAC
(REWRITE_TAC[GSYM ADD_ASSOC; LEFT_ADD_DISTRIB; ARITH] THEN
REWRITE_TAC[ARITH_RULE `n + 5 = (n + 3) + 2`;
ARITH_RULE `n + 4 = (n + 2) + 2`;
ARITH_RULE `n + 3 = (n + 1) + 2`;
cheb])) THEN
CONV_TAC REAL_RING);;
let IVT_LEMMA1 = prove
(`!f. (!x. f contl x)
==> !x y. f(x) <= &0 /\ &0 <= f(y) ==> ?x. f(x) = &0`,
ASM_MESON_TAC[IVT; IVT2; REAL_LE_TOTAL]);;
let IVT_LEMMA2 = prove
(`!f. (!x. f contl x) /\ (?x. f(x) <= x) /\ (?y. y <= f(y)) ==> ?x. f(x) = x`,
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. f x - x` IVT_LEMMA1) THEN
ASM_SIMP_TAC[CONT_SUB; CONT_X] THEN
SIMP_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD; REAL_SUB_0; REAL_ADD_LID] THEN
ASM_MESON_TAC[]);;
let SARKOVSKII_TRIVIAL = prove
(`!f:real->real. (!x. f contl x) /\ (?x. f(f(f(x))) = x) ==> ?x. f(x) = x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THEN MATCH_MP_TAC
(MESON[] `P x \/ P (f x) \/ P (f(f x)) ==> ?x:real. P x`) THEN
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN REAL_ARITH_TAC);;
(* ========================================================================= *)
(* Embedding of logics *)
(* ========================================================================= *)
let string_INDUCT,string_RECURSION = define_type
"string = String num";;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
parse_as_prefix "Not";;
parse_as_prefix "Box";;
parse_as_prefix "Diamond";;
let form_INDUCT,form_RECURSION = define_type
"form = False
| True
| Atom string
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| Box form
| Diamond form";;
let holds = define
`(holds (W,R) V False w <=> F) /\
(holds (W,R) V True w <=> T) /\
(holds (W,R) V (Atom a) w <=> V a w) /\
(holds (W,R) V (Not p) w <=> ~(holds (W,R) V p w)) /\
(holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\
(holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\
(holds (W,R) V (p --> q) w <=> holds (W,R) V p w ==> holds (W,R) V q w) /\
(holds (W,R) V (p <-> q) w <=> holds (W,R) V p w <=> holds (W,R) V q w) /\
(holds (W,R) V (Box p) w <=>
!w'. w' IN W /\ R w w' ==> holds (W,R) V p w') /\
(holds (W,R) V (Diamond p) w <=>
?w'. w' IN W /\ R w w' /\ holds (W,R) V p w')`;;
let holds_in = new_definition
`holds_in (W,R) p = !V w. w IN W ==> holds (W,R) V p w`;;
parse_as_infix("|=",(11,"right"));;
let valid = new_definition
`L |= p <=> !f. L f ==> holds_in f p`;;
let S4 = new_definition
`S4(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\
(!x. x IN W ==> R x x) /\
(!x y z. R x y /\ R y z ==> R x z)`;;
let LTL = new_definition
`LTL(W,R) <=> (W = UNIV) /\ !x y:num. R x y <=> x <= y`;;
let GL = new_definition
`GL(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\
WF(\x y. R y x) /\ (!x y z:num. R x y /\ R y z ==> R x z)`;;
let MODAL_TAC =
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];;
let MODAL_RULE tm = prove(tm,MODAL_TAC);;
let TAUT_1 = MODAL_RULE `L |= Box True`;;
let TAUT_2 = MODAL_RULE `L |= Box(A --> B) --> Box A --> Box B`;;
let TAUT_3 = MODAL_RULE `L |= Diamond(A --> B) --> Box A --> Diamond B`;;
let TAUT_4 = MODAL_RULE `L |= Box(A --> B) --> Diamond A --> Diamond B`;;
let TAUT_5 = MODAL_RULE `L |= Box(A && B) --> Box A && Box B`;;
let TAUT_6 = MODAL_RULE `L |= Diamond(A || B) --> Diamond A || Diamond B`;;
let HOLDS_FORALL_LEMMA = prove
(`!W R P. (!A V. P(holds (W,R) V A)) <=> (!p:W->bool. P p)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC; SIMP_TAC[]] THEN
POP_ASSUM(MP_TAC o SPECL [`Atom a`; `\a:string. (p:W->bool)`]) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[holds] THEN REWRITE_TAC[ETA_AX]);;
let MODAL_SCHEMA_TAC =
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]);;
let MODAL_REFL = prove
(`!W R. (!w:W. w IN W ==> R w w) <=> !A. holds_in (W,R) (Box A --> A)`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let MODAL_TRANS = prove
(`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\
R w w' /\ R w' w'' ==> R w w'') <=>
(!A. holds_in (W,R) (Box A --> Box(Box A)))`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let MODAL_SERIAL = prove
(`!W R. (!w:W. w IN W ==> ?w'. w' IN W /\ R w w') <=>
(!A. holds_in (W,R) (Box A --> Diamond A))`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let MODAL_SYM = prove
(`!W R. (!w w':W. w IN W /\ w' IN W /\ R w w' ==> R w' w) <=>
(!A. holds_in (W,R) (A --> Box(Diamond A)))`,
MODAL_SCHEMA_TAC THEN EQ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v = w`; `w:W`]) THEN ASM_MESON_TAC[]);;
let MODAL_WFTRANS = prove
(`!W R. (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF(\x y. x IN W /\ y IN W /\ R y x) <=>
(!A. holds_in (W,R) (Box(Box A --> A) --> Box A))`,
MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN EQ_TAC THEN
STRIP_TAC THEN REPEAT CONJ_TAC THENL
[REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC;
X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL
[`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]);
X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN
MATCH_MP_TAC MONO_FORALL] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Need a fresh HOL session here: doing shallow embedding. *)
(* ------------------------------------------------------------------------- *)
parse_as_prefix "Not";;
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
let false_def = define `False = \t:num. F`;;
let true_def = define `True = \t:num. T`;;
let not_def = define `Not p = \t:num. ~(p t)`;;
let and_def = define `p && q = \t:num. p t /\ q t`;;
let or_def = define `p || q = \t:num. p t \/ q t`;;
let imp_def = define `p --> q = \t:num. p t ==> q t`;;
let iff_def = define `p <-> q = \t:num. p t <=> q t`;;
let forever = define `forever p = \t:num. !t'. t <= t' ==> p t'`;;
let sometime = define `sometime p = \t:num. ?t'. t <= t' /\ p t'`;;
let next = define `next p = \t:num. p(t + 1)`;;
parse_as_infix("until",(17,"right"));;
let until = define
`p until q =
\t:num. ?t'. t <= t' /\ (!t''. t <= t'' /\ t'' < t' ==> p t'') /\ q t'`;;
(* ========================================================================= *)
(* HOL as a functional programming language *)
(* ========================================================================= *)
type ite = False | True | Atomic of int | Ite of ite*ite*ite;;
let rec norm e =
match e with
Ite(False,y,z) -> norm z
| Ite(True,y,z) -> norm y
| Ite(Atomic i,y,z) -> Ite(Atomic i,norm y,norm z)
| Ite(Ite(u,v,w),y,z) -> norm(Ite(u,Ite(v,y,z),Ite(w,y,z)))
| _ -> e;;
let ite_INDUCT,ite_RECURSION = define_type
"ite = False | True | Atomic num | Ite ite ite ite";;
let eth = prove_general_recursive_function_exists
`?norm. (norm False = False) /\
(norm True = True) /\
(!i. norm (Atomic i) = Atomic i) /\
(!y z. norm (Ite False y z) = norm z) /\
(!y z. norm (Ite True y z) = norm y) /\
(!i y z. norm (Ite (Atomic i) y z) =
Ite (Atomic i) (norm y) (norm z)) /\
(!u v w y z. norm (Ite (Ite u v w) y z) =
norm (Ite u (Ite v y z) (Ite w y z)))`;;
let sizeof = define
`(sizeof False = 1) /\
(sizeof True = 1) /\
(sizeof(Atomic i) = 1) /\
(sizeof(Ite x y z) = sizeof x * (1 + sizeof y + sizeof z))`;;
let eth' =
let th = prove
(hd(hyp eth),
EXISTS_TAC `MEASURE sizeof` THEN
REWRITE_TAC[WF_MEASURE; MEASURE_LE; MEASURE; sizeof] THEN ARITH_TAC) in
PROVE_HYP th eth;;
let norm = new_specification ["norm"] eth';;
let SIZEOF_INDUCT = REWRITE_RULE[WF_IND; MEASURE] (ISPEC`sizeof` WF_MEASURE);;
let SIZEOF_NZ = prove
(`!e. ~(sizeof e = 0)`,
MATCH_MP_TAC ite_INDUCT THEN SIMP_TAC[sizeof; ADD_EQ_0; MULT_EQ_0; ARITH]);;
let ITE_INDUCT = prove
(`!P. P False /\
P True /\
(!i. P(Atomic i)) /\
(!y z. P z ==> P(Ite False y z)) /\
(!y z. P y ==> P(Ite True y z)) /\
(!i y z. P y /\ P z ==> P (Ite (Atomic i) y z)) /\
(!u v w x y z. P(Ite u (Ite v y z) (Ite w y z))
==> P(Ite (Ite u v w) y z))
==> !e. P e`,
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC SIZEOF_INDUCT THEN
MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC ite_INDUCT THEN POP_ASSUM_LIST
(fun ths -> REPEAT STRIP_TAC THEN FIRST(mapfilter MATCH_MP_TAC ths)) THEN
REPEAT CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REWRITE_TAC[sizeof] THEN TRY ARITH_TAC THEN
REWRITE_TAC[LEFT_ADD_DISTRIB; RIGHT_ADD_DISTRIB; MULT_CLAUSES] THEN
REWRITE_TAC[MULT_AC; ADD_AC; LT_ADD_LCANCEL] THEN
REWRITE_TAC[ADD_ASSOC; LT_ADD_RCANCEL] THEN
MATCH_MP_TAC(ARITH_RULE `~(b = 0) /\ ~(c = 0) ==> a < (b + a) + c`) THEN
REWRITE_TAC[MULT_EQ_0; SIZEOF_NZ]);;
let normalized = define
`(normalized False <=> T) /\
(normalized True <=> T) /\
(normalized(Atomic a) <=> T) /\
(normalized(Ite False x y) <=> F) /\
(normalized(Ite True x y) <=> F) /\
(normalized(Ite (Atomic a) x y) <=> normalized x /\ normalized y) /\
(normalized(Ite (Ite u v w) x y) <=> F)`;;
let NORMALIZED_NORM = prove
(`!e. normalized(norm e)`,
MATCH_MP_TAC ITE_INDUCT THEN REWRITE_TAC[norm; normalized]);;
let NORMALIZED_INDUCT = prove
(`P False /\
P True /\
(!i. P (Atomic i)) /\
(!i x y. P x /\ P y ==> P (Ite (Atomic i) x y))
==> !e. normalized e ==> P e`,
STRIP_TAC THEN MATCH_MP_TAC ite_INDUCT THEN ASM_REWRITE_TAC[normalized] THEN
MATCH_MP_TAC ite_INDUCT THEN ASM_MESON_TAC[normalized]);;
let holds = define
`(holds v False <=> F) /\
(holds v True <=> T) /\
(holds v (Atomic i) <=> v(i)) /\
(holds v (Ite b x y) <=> if holds v b then holds v x else holds v y)`;;
let HOLDS_NORM = prove
(`!e v. holds v (norm e) <=> holds v e`,
MATCH_MP_TAC ITE_INDUCT THEN SIMP_TAC[holds; norm] THEN
REPEAT STRIP_TAC THEN CONV_TAC TAUT);;
let taut = define
`(taut (t,f) False <=> F) /\
(taut (t,f) True <=> T) /\
(taut (t,f) (Atomic i) <=> MEM i t) /\
(taut (t,f) (Ite (Atomic i) x y) <=>
if MEM i t then taut (t,f) x
else if MEM i f then taut (t,f) y
else taut (CONS i t,f) x /\ taut (t,CONS i f) y)`;;
let tautology = define `tautology e = taut([],[]) (norm e)`;;
let NORMALIZED_TAUT = prove
(`!e. normalized e
==> !f t. (!a. ~(MEM a t /\ MEM a f))
==> (taut (t,f) e <=>
!v. (!a. MEM a t ==> v(a)) /\ (!a. MEM a f ==> ~v(a))
==> holds v e)`,
MATCH_MP_TAC NORMALIZED_INDUCT THEN REWRITE_TAC[holds; taut] THEN
REWRITE_TAC[NOT_FORALL_THM] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN EXISTS_TAC `\a:num. MEM a t` THEN ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN EQ_TAC THENL
[ALL_TAC; DISCH_THEN MATCH_MP_TAC] THEN ASM_MESON_TAC[];
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[])] THEN
ASM_SIMP_TAC[MEM; RIGHT_OR_DISTRIB; LEFT_OR_DISTRIB;
MESON[] `(!a. ~(MEM a t /\ a = i)) <=> ~(MEM i t)`;
MESON[] `(!a. ~(a = i /\ MEM a f)) <=> ~(MEM i f)`] THEN
ASM_REWRITE_TAC[AND_FORALL_THM] THEN AP_TERM_TAC THEN ABS_TAC THEN
MESON_TAC[]);;
let TAUTOLOGY = prove
(`!e. tautology e <=> !v. holds v e`,
MESON_TAC[tautology; HOLDS_NORM; NORMALIZED_TAUT; MEM; NORMALIZED_NORM]);;
let HOLDS_BACK = prove
(`!v. (F <=> holds v False) /\
(T <=> holds v True) /\
(!i. v i <=> holds v (Atomic i)) /\
(!p. ~holds v p <=> holds v (Ite p False True)) /\
(!p q. (holds v p /\ holds v q) <=> holds v (Ite p q False)) /\
(!p q. (holds v p \/ holds v q) <=> holds v (Ite p True q)) /\
(!p q. (holds v p <=> holds v q) <=>
holds v (Ite p q (Ite q False True))) /\
(!p q. holds v p ==> holds v q <=> holds v (Ite p q True))`,
REWRITE_TAC[holds] THEN CONV_TAC TAUT);;
let COND_CONV = GEN_REWRITE_CONV I [COND_CLAUSES];;
let AND_CONV = GEN_REWRITE_CONV I [TAUT `(F /\ a <=> F) /\ (T /\ a <=> a)`];;
let OR_CONV = GEN_REWRITE_CONV I [TAUT `(F \/ a <=> a) /\ (T \/ a <=> T)`];;
let rec COMPUTE_DEPTH_CONV conv tm =
if is_cond tm then
(RATOR_CONV(LAND_CONV(COMPUTE_DEPTH_CONV conv)) THENC
COND_CONV THENC
COMPUTE_DEPTH_CONV conv) tm
else if is_conj tm then
(LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC
AND_CONV THENC
COMPUTE_DEPTH_CONV conv) tm
else if is_disj tm then
(LAND_CONV (COMPUTE_DEPTH_CONV conv) THENC
OR_CONV THENC
COMPUTE_DEPTH_CONV conv) tm
else
(SUB_CONV (COMPUTE_DEPTH_CONV conv) THENC
TRY_CONV(conv THENC COMPUTE_DEPTH_CONV conv)) tm;;
g `!v. v 1 \/ v 2 \/ v 3 \/ v 4 \/ v 5 \/ v 6 \/
~v 1 \/ ~v 2 \/ ~v 3 \/ ~v 4 \/ ~v 5 \/ ~v 6`;;
e(MP_TAC HOLDS_BACK THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
SPEC_TAC(`v:num->bool`,`v:num->bool`) THEN
REWRITE_TAC[GSYM TAUTOLOGY; tautology]);;
time e (GEN_REWRITE_TAC COMPUTE_DEPTH_CONV [norm; taut; MEM; ARITH_EQ]);;
ignore(b()); time e (REWRITE_TAC[norm; taut; MEM; ARITH_EQ]);;
(* ========================================================================= *)
(* Vectors *)
(* ========================================================================= *)
needs "Multivariate/vectors.ml";;
needs "Examples/solovay.ml";;
g `orthogonal (A - B) (C - B)
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`;;
e SOLOVAY_VECTOR_TAC;;
e(CONV_TAC REAL_RING);;
g`!x y:real^N. x dot y <= norm x * norm y`;;
e SOLOVAY_VECTOR_TAC;;
(**** Needs external SDP solver
needs "Examples/sos.ml";;
e(CONV_TAC REAL_SOS);;
let EXAMPLE_0 = prove
(`!a x y:real^N. (y - x) dot (a - y) >= &0 ==> norm(y - a) <= norm(x - a)`,
SOLOVAY_VECTOR_TAC THEN CONV_TAC REAL_SOS);;
****)
needs "Rqe/make.ml";;
let EXAMPLE_10 = prove
(`!x:real^N y.
x dot y > &0
==> ?u. &0 < u /\
!v. &0 < v /\ v <= u ==> norm(v % y - x) < norm x`,
SOLOVAY_VECTOR_TAC THEN
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN
CONV_TAC REAL_QELIM_CONV);;
let FORALL_3 = prove
(`(!i. 1 <= i /\ i <= 3 ==> P i) <=> P 1 /\ P 2 /\ P 3`,
MESON_TAC[ARITH_RULE `1 <= i /\ i <= 3 <=> (i = 1) \/ (i = 2) \/ (i = 3)`]);;
let SUM_3 = prove
(`!t. sum(1..3) t = t(1) + t(2) + t(3)`,
REWRITE_TAC[num_CONV `3`; num_CONV `2`; SUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[SUM_SING_NUMSEG; ARITH; REAL_ADD_ASSOC]);;
let VECTOR_3 = prove
(`(vector [x;y;z] :real^3)$1 = x /\
(vector [x;y;z] :real^3)$2 = y /\
(vector [x;y;z] :real^3)$3 = z`,
SIMP_TAC[vector; LAMBDA_BETA; DIMINDEX_3; LENGTH; ARITH] THEN
REWRITE_TAC[num_CONV `2`; num_CONV `1`; EL; HD; TL]);;
let DOT_VECTOR = prove
(`(vector [x1;y1;z1] :real^3) dot (vector [x2;y2;z2]) =
x1 * x2 + y1 * y2 + z1 * z2`,
REWRITE_TAC[dot; DIMINDEX_3; SUM_3; VECTOR_3]);;
let VECTOR_ZERO = prove
(`(vector [x;y;z] :real^3 = vec 0) <=> x = &0 /\ y = &0 /\ z = &0`,
SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; VEC_COMPONENT; VECTOR_3; ARITH]);;
let ORTHOGONAL_VECTOR = prove
(`orthogonal (vector [x1;y1;z1] :real^3) (vector [x2;y2;z2]) =
(x1 * x2 + y1 * y2 + z1 * z2 = &0)`,
REWRITE_TAC[orthogonal; DOT_VECTOR]);;
parse_as_infix("cross",(20,"right"));;
let cross = new_definition
`(a:real^3) cross (b:real^3) =
vector [a$2 * b$3 - a$3 * b$2;
a$3 * b$1 - a$1 * b$3;
a$1 * b$2 - a$2 * b$1] :real^3`;;
let VEC3_TAC =
SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3;
vector_add; vec; dot; cross; orthogonal; basis; ARITH] THEN
CONV_TAC REAL_RING;;
let VEC3_RULE tm = prove(tm,VEC3_TAC);;
let ORTHOGONAL_CROSS = VEC3_RULE
`!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\
orthogonal x (x cross y) /\ orthogonal y (x cross y)`;;
let LEMMA_0 = VEC3_RULE
`~(basis 1 :real^3 = vec 0) /\
~(basis 2 :real^3 = vec 0) /\
~(basis 3 :real^3 = vec 0)`;;
let LEMMA_1 = VEC3_RULE `!u v. u dot (u cross v) = &0`;;
let LEMMA_2 = VEC3_RULE `!u v. v dot (u cross v) = &0`;;
let LEMMA_3 = VEC3_RULE `!u:real^3. vec 0 dot u = &0`;;
let LEMMA_4 = VEC3_RULE `!u:real^3. u dot vec 0 = &0`;;
let LEMMA_5 = VEC3_RULE `!x. x cross x = vec 0`;;
let LEMMA_6 = VEC3_RULE
`!u. ~(u = vec 0)
==> ~(u cross basis 1 = vec 0) \/
~(u cross basis 2 = vec 0) \/
~(u cross basis 3 = vec 0)`;;
let LEMMA_7 = VEC3_RULE
`!u v w. (u cross v = vec 0) ==> (u dot (v cross w) = &0)`;;
let NORMAL_EXISTS = prove
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
[`u:real^3 = vec 0`; `v:real^3 = vec 0`; `u cross v = vec 0`] THEN
ASM_REWRITE_TAC[orthogonal] THEN
ASM_MESON_TAC[LEMMA_0; LEMMA_1; LEMMA_2; LEMMA_3; LEMMA_4;
LEMMA_5; LEMMA_6; LEMMA_7]);;
(* ========================================================================= *)
(* Custom tactics *)
(* ========================================================================= *)
let points =
[((0, -1), (0, -1), (2, 0)); ((0, -1), (0, 0), (2, 0));
((0, -1), (0, 1), (2, 0)); ((0, -1), (2, 0), (0, -1));
((0, -1), (2, 0), (0, 0)); ((0, -1), (2, 0), (0, 1));
((0, 0), (0, -1), (2, 0)); ((0, 0), (0, 0), (2, 0));
((0, 0), (0, 1), (2, 0)); ((0, 0), (2, 0), (-2, 0));
((0, 0), (2, 0), (0, -1)); ((0, 0), (2, 0), (0, 0));
((0, 0), (2, 0), (0, 1)); ((0, 0), (2, 0), (2, 0));
((0, 1), (0, -1), (2, 0)); ((0, 1), (0, 0), (2, 0));
((0, 1), (0, 1), (2, 0)); ((0, 1), (2, 0), (0, -1));
((0, 1), (2, 0), (0, 0)); ((0, 1), (2, 0), (0, 1));
((2, 0), (-2, 0), (0, 0)); ((2, 0), (0, -1), (0, -1));
((2, 0), (0, -1), (0, 0)); ((2, 0), (0, -1), (0, 1));
((2, 0), (0, 0), (-2, 0)); ((2, 0), (0, 0), (0, -1));
((2, 0), (0, 0), (0, 0)); ((2, 0), (0, 0), (0, 1));
((2, 0), (0, 0), (2, 0)); ((2, 0), (0, 1), (0, -1));
((2, 0), (0, 1), (0, 0)); ((2, 0), (0, 1), (0, 1));
((2, 0), (2, 0), (0, 0))];;
let ortho =
let mult (x1,y1) (x2,y2) = (x1 * x2 + 2 * y1 * y2,x1 * y2 + y1 * x2)
and add (x1,y1) (x2,y2) = (x1 + x2,y1 + y2) in
let dot (x1,y1,z1) (x2,y2,z2) =
end_itlist add [mult x1 x2; mult y1 y2; mult z1 z2] in
fun (v1,v2) -> dot v1 v2 = (0,0);;
let opairs = filter ortho (allpairs (fun a b -> a,b) points points);;
let otrips = filter (fun (a,b,c) -> ortho(a,b) && ortho(a,c))
(allpairs (fun a (b,c) -> a,b,c) points opairs);;
let hol_of_value =
let tm0 = `&0` and tm1 = `&2` and tm2 = `-- &2`
and tm3 = `sqrt(&2)` and tm4 = `--sqrt(&2)` in
function 0,0 -> tm0 | 2,0 -> tm1 | -2,0 -> tm2 | 0,1 -> tm3 | 0,-1 -> tm4;;
let hol_of_point =
let ptm = `vector:(real)list->real^3` in
fun (x,y,z) -> mk_comb(ptm,mk_flist(map hol_of_value [x;y;z]));;
let SQRT_2_POW = prove
(`sqrt(&2) pow 2 = &2`,
SIMP_TAC[SQRT_POW_2; REAL_POS]);;
let PROVE_NONTRIVIAL =
let ptm = `~(x :real^3 = vec 0)` and xtm = `x:real^3` in
fun x -> prove(vsubst [hol_of_point x,xtm] ptm,
GEN_REWRITE_TAC RAND_CONV [VECTOR_ZERO] THEN
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);;
let PROVE_ORTHOGONAL =
let ptm = `orthogonal:real^3->real^3->bool` in
fun (x,y) ->
prove(list_mk_comb(ptm,[hol_of_point x;hol_of_point y]),
ONCE_REWRITE_TAC[ORTHOGONAL_VECTOR] THEN
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);;
let ppoint = let p = `P:real^3->bool` in fun v -> mk_comb(p,hol_of_point v);;
let DEDUCE_POINT_TAC pts =
FIRST_X_ASSUM MATCH_MP_TAC THEN
MAP_EVERY EXISTS_TAC (map hol_of_point pts) THEN
ASM_REWRITE_TAC[];;
let rec KOCHEN_SPECKER_TAC set_0 set_1 =
if intersect set_0 set_1 <> [] then
let p = ppoint(hd(intersect set_0 set_1)) in
let th1 = ASSUME(mk_neg p) and th2 = ASSUME p in
ACCEPT_TAC(EQ_MP (EQF_INTRO th1) th2)
else
let prf_1 = filter (fun (a,b) -> mem a set_0) opairs
and prf_0 = filter (fun (a,b,c) -> mem a set_1 && mem b set_1) otrips in
let new_1 = map snd prf_1 and new_0 = map (fun (a,b,c) -> c) prf_0 in
let set_0' = union new_0 set_0 and set_1' = union new_1 set_1 in
let del_0 = subtract set_0' set_0 and del_1 = subtract set_1' set_1 in
if del_0 <> [] || del_1 <> [] then
let prv_0 x =
let a,b,_ = find (fun (a,b,c) -> c = x) prf_0 in DEDUCE_POINT_TAC [a;b]
and prv_1 x =
let a,_ = find (fun (a,c) -> c = x) prf_1 in DEDUCE_POINT_TAC [a] in
let newuns = list_mk_conj
(map ppoint del_1 @ map (mk_neg o ppoint) del_0)
and tacs = map prv_1 del_1 @ map prv_0 del_0 in
SUBGOAL_THEN newuns STRIP_ASSUME_TAC THENL
[REPEAT CONJ_TAC THENL tacs; ALL_TAC] THEN
KOCHEN_SPECKER_TAC set_0' set_1'
else
let v = find (fun i -> not(mem i set_0) && not(mem i set_1)) points in
ASM_CASES_TAC (ppoint v) THENL
[KOCHEN_SPECKER_TAC set_0 (v::set_1);
KOCHEN_SPECKER_TAC (v::set_0) set_1];;
let KOCHEN_SPECKER_LEMMA = prove
(`!P. (!x y:real^3. ~(x = vec 0) /\ ~(y = vec 0) /\ orthogonal x y /\
~(P x) ==> P y) /\
(!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\
orthogonal x y /\ orthogonal x z /\ orthogonal y z /\
P x /\ P y ==> ~(P z))
==> F`,
REPEAT STRIP_TAC THEN
MAP_EVERY (ASSUME_TAC o PROVE_NONTRIVIAL) points THEN
MAP_EVERY (ASSUME_TAC o PROVE_ORTHOGONAL) opairs THEN
KOCHEN_SPECKER_TAC [] []);;
let NONTRIVIAL_CROSS = prove
(`!x y. orthogonal x y /\ ~(x = vec 0) /\ ~(y = vec 0)
==> ~(x cross y = vec 0)`,
REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC);;
let KOCHEN_SPECKER_PARADOX = prove
(`~(?spin:real^3->num.
!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\
orthogonal x y /\ orthogonal x z /\ orthogonal y z
==> (spin x = 0) /\ (spin y = 1) /\ (spin z = 1) \/
(spin x = 1) /\ (spin y = 0) /\ (spin z = 1) \/
(spin x = 1) /\ (spin y = 1) /\ (spin z = 0))`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\x:real^3. spin(x) = 1` KOCHEN_SPECKER_LEMMA) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN
POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`; NONTRIVIAL_CROSS; ORTHOGONAL_CROSS]);;
(* ========================================================================= *)
(* Defining new types *)
(* ========================================================================= *)
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
(MESON[LEMMA_0] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let perpdir = new_definition
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;
let pardir = new_definition
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;
let DIRECTION_CLAUSES = prove
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
MESON_TAC[direction_tybij]);;
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
(`(!x. x || x) /\
(!x y. x || y <=> y || x) /\
(!x y z. x || y /\ y || z ==> x || z)`,
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let DIRECTION_AXIOM_1 = prove
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_2 = prove
(`!l l'. ?p. p _|_ l /\ p _|_ l'`,
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;
let DIRECTION_AXIOM_3 = prove
(`?p p' p''.
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN
MAP_EVERY (fun t -> EXISTS_TAC t THEN REWRITE_TAC[LEMMA_0])
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
VEC3_TAC);;
let CROSS_0 = VEC3_RULE `x cross vec 0 = vec 0 /\ vec 0 cross x = vec 0`;;
let DIRECTION_AXIOM_4_WEAK = prove
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 2) cross (l cross basis 3) = vec 0)`
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;
let ORTHOGONAL_COMBINE = prove
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_4 = prove
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;
let PERPDIR_WELLDEF = prove
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let perpl,perpl_th =
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
"perpl" PERPDIR_WELLDEF;;
let line_lift_thm = lift_theorem line_tybij
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;
let point_tybij = new_type_definition "point" ("mk_point","dest_point")
(prove(`?x:line. T`,REWRITE_TAC[]));;
parse_as_infix("on",(11,"right"));;
let on = new_definition `p on l <=> perpl (dest_point p) l`;;
let POINT_CLAUSES = prove
(`((p = p') <=> (dest_point p = dest_point p')) /\
((!p. P (dest_point p)) <=> (!l. P l)) /\
((?p. P (dest_point p)) <=> (?l. P l))`,
MESON_TAC[point_tybij]);;
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;
let AXIOM_1 = prove
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
!l'. p on l' /\ p' on l' ==> (l' = l)`,
POINT_TAC LINE_AXIOM_1);;
let AXIOM_2 = prove
(`!l l'. ?p. p on l /\ p on l'`,
POINT_TAC LINE_AXIOM_2);;
let AXIOM_3 = prove
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p on l /\ p' on l /\ p'' on l)`,
POINT_TAC LINE_AXIOM_3);;
let AXIOM_4 = prove
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p on l /\ p' on l /\ p'' on l`,
POINT_TAC LINE_AXIOM_4);;
(* ========================================================================= *)
(* Custom inference rules *)
(* ========================================================================= *)
let near_ring_axioms =
`(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))`;;
(**** Works eventually but takes a very long time
MESON[]
`(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))
==> !a. 0 * a = 0`;;
****)
let is_realvar w x = is_var x && not(mem x w);;
let rec real_strip w tm =
if mem tm w then tm,[] else
let l,r = dest_comb tm in
let f,args = real_strip w l in f,args@[r];;
let weight lis (f,n) (g,m) =
let i = index f lis and j = index g lis in
i > j || i = j && n > m;;
let rec lexord ord l1 l2 =
match (l1,l2) with
(h1::t1,h2::t2) -> if ord h1 h2 then length t1 = length t2
else h1 = h2 && lexord ord t1 t2
| _ -> false;;
let rec lpo_gt w s t =
if is_realvar w t then not(s = t) && mem t (frees s)
else if is_realvar w s || is_abs s || is_abs t then false else
let f,fargs = real_strip w s and g,gargs = real_strip w t in
exists (fun si -> lpo_ge w si t) fargs ||
forall (lpo_gt w s) gargs &&
(f = g && lexord (lpo_gt w) fargs gargs ||
weight w (f,length fargs) (g,length gargs))
and lpo_ge w s t = (s = t) || lpo_gt w s t;;
let rec istriv w env x t =
if is_realvar w t then t = x || defined env t && istriv w env x (apply env t)
else if is_const t then false else
let f,args = strip_comb t in
exists (istriv w env x) args && failwith "cyclic";;
let rec unify w env tp =
match tp with
((Var(_,_) as x),t) | (t,(Var(_,_) as x)) when not(mem x w) ->
if defined env x then unify w env (apply env x,t)
else if istriv w env x t then env else (x|->t) env
| (Comb(f,x),Comb(g,y)) -> unify w (unify w env (x,y)) (f,g)
| (s,t) -> if s = t then env else failwith "unify: not unifiable";;
let fullunify w (s,t) =
let env = unify w undefined (s,t) in
let th = map (fun (x,t) -> (t,x)) (graph env) in
let rec subs t =
let t' = vsubst th t in
if t' = t then t else subs t' in
map (fun (t,x) -> (subs t,x)) th;;
let rec listcases fn rfn lis acc =
match lis with
[] -> acc
| h::t -> fn h (fun i h' -> rfn i (h'::map REFL t)) @
listcases fn (fun i t' -> rfn i (REFL h::t')) t acc;;
let LIST_MK_COMB f ths = rev_itlist (fun s t -> MK_COMB(t,s)) ths (REFL f);;
let rec overlaps w th tm rfn =
let l,r = dest_eq(concl th) in
if not (is_comb tm) then [] else
let f,args = strip_comb tm in
listcases (overlaps w th) (fun i a -> rfn i (LIST_MK_COMB f a)) args
(try [rfn (fullunify w (l,tm)) th] with Failure _ -> []);;
let crit1 w eq1 eq2 =
let l1,r1 = dest_eq(concl eq1)
and l2,r2 = dest_eq(concl eq2) in
overlaps w eq1 l2 (fun i th -> TRANS (SYM(INST i th)) (INST i eq2));;
let fixvariables s th =
let fvs = subtract (frees(concl th)) (freesl(hyp th)) in
let gvs = map2 (fun v n -> mk_var(s^string_of_int n,type_of v))
fvs (1--length fvs) in
INST (zip gvs fvs) th;;
let renamepair (th1,th2) = fixvariables "x" th1,fixvariables "y" th2;;
let critical_pairs w tha thb =
let th1,th2 = renamepair (tha,thb) in crit1 w th1 th2 @ crit1 w th2 th1;;
let normalize_and_orient w eqs th =
let th' = GEN_REWRITE_RULE TOP_DEPTH_CONV eqs th in
let s',t' = dest_eq(concl th') in
if lpo_ge w s' t' then th' else if lpo_ge w t' s' then SYM th'
else failwith "Can't orient equation";;
let status(eqs,crs) eqs0 =
if eqs = eqs0 && (length crs) mod 1000 <> 0 then () else
(print_string(string_of_int(length eqs)^" equations and "^
string_of_int(length crs)^" pending critical pairs");
print_newline());;
let left_reducible eqs eq =
can (CHANGED_CONV(GEN_REWRITE_CONV (LAND_CONV o ONCE_DEPTH_CONV) eqs))
(concl eq);;
let rec complete w (eqs,crits) =
match crits with
(eq::ocrits) ->
let trip =
try let eq' = normalize_and_orient w eqs eq in
let s',t' = dest_eq(concl eq') in
if s' = t' then (eqs,ocrits) else
let crits',eqs' = partition(left_reducible [eq']) eqs in
let eqs'' = eq'::eqs' in
eqs'',
ocrits @ crits' @ itlist ((@) o critical_pairs w eq') eqs'' []
with Failure _ ->
if exists (can (normalize_and_orient w eqs)) ocrits
then (eqs,ocrits@[eq])
else failwith "complete: no orientable equations" in
status trip eqs; complete w trip
| [] -> eqs;;
let complete_equations wts eqs =
let eqs' = map (normalize_and_orient wts []) eqs in
complete wts ([],eqs');;
complete_equations [`1`; `( * ):num->num->num`; `i:num->num`]
[SPEC_ALL(ASSUME `!a b. i(a) * a * b = b`)];;
complete_equations [`c:A`; `f:A->A`]
(map SPEC_ALL (CONJUNCTS (ASSUME
`((f(f(f(f(f c))))) = c:A) /\ (f(f(f c)) = c)`)));;
let eqs = map SPEC_ALL (CONJUNCTS (ASSUME
`(!x. 1 * x = x) /\ (!x. i(x) * x = 1) /\
(!x y z. (x * y) * z = x * y * z)`)) in
map concl (complete_equations [`1`; `( * ):num->num->num`; `i:num->num`] eqs);;
let COMPLETE_TAC w th =
let eqs = map SPEC_ALL (CONJUNCTS(SPEC_ALL th)) in
let eqs' = complete_equations w eqs in
MAP_EVERY (ASSUME_TAC o GEN_ALL) eqs';;
g `(!x. 1 * x = x) /\
(!x. i(x) * x = 1) /\
(!x y z. (x * y) * z = x * y * z)
==> !x y. i(y) * i(i(i(x * i(y)))) * x = 1`;;
e (DISCH_THEN(COMPLETE_TAC [`1`; `( * ):num->num->num`; `i:num->num`]));;
e(ASM_REWRITE_TAC[]);;
g `(!x. 0 + x = x) /\
(!x. neg x + x = 0) /\
(!x y z. (x + y) + z = x + y + z) /\
(!x y z. (x * y) * z = x * y * z) /\
(!x y z. (x + y) * z = (x * z) + (y * z))
==> (neg 0 * (x * y + z + neg(neg(w + z))) + neg(neg b + neg a) =
a + b)`;;
e (DISCH_THEN(COMPLETE_TAC
[`0`; `(+):num->num->num`; `neg:num->num`; `( * ):num->num->num`]));;
e(ASM_REWRITE_TAC[]);;
(**** Could have done this instead
e (DISCH_THEN(COMPLETE_TAC
[`0`; `(+):num->num->num`; `( * ):num->num->num`; `neg:num->num`]));;
****)
(* ========================================================================= *)
(* Linking external tools *)
(* ========================================================================= *)
let maximas e =
let filename = Filename.temp_file "maxima" ".out" in
let s =
"echo 'linel:10000; display2d:false;" ^ e ^
";' | maxima | grep '^(%o3)' | sed -e 's/^(%o3) //' >" ^
filename in
if Sys.command s <> 0 then failwith "maxima" else
let fd = Pervasives.open_in filename in
let data = input_line fd in
close_in fd; Sys.remove filename; data;;
prioritize_real();;
let maxima_ops = ["+",`(+)`; "-",`(-)`; "*",`( * )`; "/",`(/)`; "^",`(pow)`];;
let maxima_funs = ["sin",`sin`; "cos",`cos`];;
let mk_uneg = curry mk_comb `(--)`;;
let dest_uneg =
let ntm = `(--)` in
fun tm -> let op,t = dest_comb tm in
if op = ntm then t else failwith "dest_uneg";;
let mk_pow = let f = mk_binop `(pow)` in fun x y -> f x (rand y);;
let mk_realvar = let real_ty = `:real` in fun x -> mk_var(x,real_ty);;
let rec string_of_hol tm =
if is_ratconst tm then "("^string_of_num(rat_of_term tm)^")"
else if is_numeral tm then string_of_num(dest_numeral tm)
else if is_var tm then fst(dest_var tm)
else if can dest_uneg tm then "-(" ^ string_of_hol(rand tm) ^ ")" else
let lop,r = dest_comb tm in
try let op,l = dest_comb lop in
"("^string_of_hol l^" "^ rev_assoc op maxima_ops^" "^string_of_hol r^")"
with Failure _ -> rev_assoc lop maxima_funs ^ "(" ^ string_of_hol r ^ ")";;
string_of_hol `(x + sin(-- &2 * x)) pow 2 - cos(x - &22 / &7)`;;
let lexe s = map (function Resword s -> s | Ident s -> s) (lex(explode s));;
let parse_bracketed prs inp =
match prs inp with
ast,")"::rst -> ast,rst
| _ -> failwith "Closing bracket expected";;
let rec parse_ginfix op opup sof prs inp =
match prs inp with
e1,hop::rst when hop = op -> parse_ginfix op opup (opup sof e1) prs rst
| e1,rest -> sof e1,rest;;
let parse_general_infix op =
let opcon = if op = "^" then mk_pow else mk_binop (assoc op maxima_ops) in
let constr = if op <> "^" && snd(get_infix_status op) = "right"
then fun f e1 e2 -> f(opcon e1 e2)
else fun f e1 e2 -> opcon(f e1) e2 in
parse_ginfix op constr (fun x -> x);;
let rec parse_atomic_expression inp =
match inp with
[] -> failwith "expression expected"
| "(" :: rest -> parse_bracketed parse_expression rest
| s :: rest when forall isnum (explode s) ->
term_of_rat(num_of_string s),rest
| s :: "(" :: rest when forall isalnum (explode s) ->
let e,rst = parse_bracketed parse_expression rest in
mk_comb(assoc s maxima_funs,e),rst
| s :: rest when forall isalnum (explode s) -> mk_realvar s,rest
and parse_exp inp = parse_general_infix "^" parse_atomic_expression inp
and parse_neg inp =
match inp with
| "-" :: rest -> let e,rst = parse_neg rest in mk_uneg e,rst
| _ -> parse_exp inp
and parse_expression inp =
itlist parse_general_infix (map fst maxima_ops) parse_neg inp;;
let hol_of_string = fst o parse_expression o lexe;;
hol_of_string "sin(x) - cos(-(- - 1 + x))";;
let FACTOR_CONV tm =
let s = "factor("^string_of_hol tm^")" in
let tm' = hol_of_string(maximas s) in
REAL_RING(mk_eq(tm,tm'));;
FACTOR_CONV `&1234567890`;;
FACTOR_CONV `x pow 6 - &1`;;
FACTOR_CONV `r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x`;;
let ANTIDERIV_CONV tm =
let x,bod = dest_abs tm in
let s = "integrate("^string_of_hol bod^","^fst(dest_var x)^")" in
let tm' = mk_abs(x,hol_of_string(maximas s)) in
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV)
(SPEC x (DIFF_CONV tm')) in
let th2 = REAL_RING(mk_eq(lhand(concl th1),bod)) in
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);;
ANTIDERIV_CONV `\x. (x + &5) pow 2 + &77 * x`;;
ANTIDERIV_CONV `\x. sin(x) + x pow 11`;;
(**** This one fails
ANTIDERIV_CONV `\x. sin(x) pow 3`;;
****)
let SIN_N_CLAUSES = prove
(`(sin(&(NUMERAL(BIT0 n)) * x) =
&2 * sin(&(NUMERAL n) * x) * cos(&(NUMERAL n) * x)) /\
(sin(&(NUMERAL(BIT1 n)) * x) =
sin(&(NUMERAL(BIT0 n)) * x) * cos(x) +
sin(x) * cos(&(NUMERAL(BIT0 n)) * x)) /\
(cos(&(NUMERAL(BIT0 n)) * x) =
cos(&(NUMERAL n) * x) pow 2 - sin(&(NUMERAL n) * x) pow 2) /\
(cos(&(NUMERAL(BIT1 n)) * x) =
cos(&(NUMERAL(BIT0 n)) * x) * cos(x) -
sin(x) * sin(&(NUMERAL(BIT0 n)) * x))`,
REWRITE_TAC[REAL_MUL_2; REAL_POW_2] THEN
REWRITE_TAC[NUMERAL; BIT0; BIT1] THEN
REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[REAL_ADD_RDISTRIB; SIN_ADD; COS_ADD; REAL_MUL_LID] THEN
CONV_TAC REAL_RING);;
let TRIG_IDENT_TAC x =
REWRITE_TAC[SIN_N_CLAUSES; SIN_ADD; COS_ADD] THEN
REWRITE_TAC[REAL_MUL_LZERO; SIN_0; COS_0; REAL_MUL_RZERO] THEN
MP_TAC(SPEC x SIN_CIRCLE) THEN CONV_TAC REAL_RING;;
let ANTIDERIV_CONV tm =
let x,bod = dest_abs tm in
let s = "expand(integrate("^string_of_hol bod^","^fst(dest_var x)^"))" in
let tm' = mk_abs(x,hol_of_string(maximas s)) in
let th1 = CONV_RULE (NUM_REDUCE_CONV THENC REAL_RAT_REDUCE_CONV)
(SPEC x (DIFF_CONV tm')) in
let th2 = prove(mk_eq(lhand(concl th1),bod),TRIG_IDENT_TAC x) in
GEN x (GEN_REWRITE_RULE LAND_CONV [th2] th1);;
time ANTIDERIV_CONV `\x. sin(x) pow 3`;;
time ANTIDERIV_CONV `\x. sin(x) * sin(x) pow 5 * cos(x) pow 4 + cos(x)`;;
let FCT1_WEAK = prove
(`(!x. (f diffl f'(x)) x) ==> !x. &0 <= x ==> defint(&0,x) f' (f x - f(&0))`,
MESON_TAC[FTC1]);;
let INTEGRAL_CONV tm =
let th1 = MATCH_MP FCT1_WEAK (ANTIDERIV_CONV tm) in
(CONV_RULE REAL_RAT_REDUCE_CONV o
REWRITE_RULE[SIN_0; COS_0; REAL_MUL_LZERO; REAL_MUL_RZERO] o
CONV_RULE REAL_RAT_REDUCE_CONV o BETA_RULE) th1;;
INTEGRAL_CONV `\x. sin(x) pow 13`;;