Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.09 kB
/-
Copyright (c) 2021 Jakob Scholbach. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jakob Scholbach
-/
import algebra.char_p.basic
import algebra.char_zero
import data.nat.prime
/-!
# Exponential characteristic
This file defines the exponential characteristic and establishes a few basic results relating
it to the (ordinary characteristic).
The definition is stated for a semiring, but the actual results are for nontrivial rings
(as far as exponential characteristic one is concerned), respectively a ring without zero-divisors
(for prime characteristic).
## Main results
- `exp_char`: the definition of exponential characteristic
- `exp_char_is_prime_or_one`: the exponential characteristic is a prime or one
- `char_eq_exp_char_iff`: the characteristic equals the exponential characteristic iff the
characteristic is prime
## Tags
exponential characteristic, characteristic
-/
universe u
variables (R : Type u)
section semiring
variables [semiring R]
/-- The definition of the exponential characteristic of a semiring. -/
class inductive exp_char (R : Type u) [semiring R] : ℕ → Prop
| zero [char_zero R] : exp_char 1
| prime {q : ℕ} (hprime : q.prime) [hchar : char_p R q] : exp_char q
/-- The exponential characteristic is one if the characteristic is zero. -/
lemma exp_char_one_of_char_zero (q : ℕ) [hp : char_p R 0] [hq : exp_char R q] :
q = 1 :=
begin
casesI hq with q hq_one hq_prime,
{ refl },
{ exact false.elim (lt_irrefl _ ((hp.eq R hq_hchar).symm ▸ hq_prime : (0 : ℕ).prime).pos) }
end
/-- The characteristic equals the exponential characteristic iff the former is prime. -/
theorem char_eq_exp_char_iff (p q : ℕ) [hp : char_p R p] [hq : exp_char R q] :
p = q ↔ p.prime :=
begin
casesI hq with q hq_one hq_prime,
{ apply iff_of_false,
{ unfreezingI {rintro rfl},
exact one_ne_zero (hp.eq R (char_p.of_char_zero R)) },
{ intro pprime,
rw (char_p.eq R hp infer_instance : p = 0) at pprime,
exact nat.not_prime_zero pprime } },
{ exact ⟨λ hpq, hpq.symm ▸ hq_prime, λ _, char_p.eq R hp hq_hchar⟩ },
end
section nontrivial
variables [nontrivial R]
/-- The exponential characteristic is one if the characteristic is zero. -/
lemma char_zero_of_exp_char_one (p : ℕ) [hp : char_p R p] [hq : exp_char R 1] :
p = 0 :=
begin
casesI hq,
{ exact char_p.eq R hp infer_instance, },
{ exact false.elim (char_p.char_ne_one R 1 rfl), }
end
/-- The characteristic is zero if the exponential characteristic is one. -/
@[priority 100] -- see Note [lower instance priority]
instance char_zero_of_exp_char_one' [hq : exp_char R 1] : char_zero R :=
begin
casesI hq,
{ assumption, },
{ exact false.elim (char_p.char_ne_one R 1 rfl), }
end
/-- The exponential characteristic is one iff the characteristic is zero. -/
theorem exp_char_one_iff_char_zero (p q : ℕ) [char_p R p] [exp_char R q] :
q = 1 ↔ p = 0 :=
begin
split,
{ unfreezingI {rintro rfl},
exact char_zero_of_exp_char_one R p, },
{ unfreezingI {rintro rfl},
exact exp_char_one_of_char_zero R q, }
end
section no_zero_divisors
variable [no_zero_divisors R]
/-- A helper lemma: the characteristic is prime if it is non-zero. -/
lemma char_prime_of_ne_zero {p : ℕ} [hp : char_p R p] (p_ne_zero : p0) : nat.prime p :=
begin
cases char_p.char_is_prime_or_zero R p with h h,
{ exact h, },
{ contradiction, }
end
/-- The exponential characteristic is a prime number or one. -/
theorem exp_char_is_prime_or_one (q : ℕ) [hq : exp_char R q] : nat.prime q ∨ q = 1 :=
or_iff_not_imp_right.mpr $ λ h,
begin
casesI char_p.exists R with p hp,
have p_ne_zero : p0,
{ intro p_zero,
haveI : char_p R 0, { rwa ←p_zero },
have : q = 1 := exp_char_one_of_char_zero R q,
contradiction, },
have p_eq_q : p = q := (char_eq_exp_char_iff R p q).mpr (char_prime_of_ne_zero R p_ne_zero),
cases char_p.char_is_prime_or_zero R p with pprime,
{ rwa p_eq_q at pprime },
{ contradiction },
end
end no_zero_divisors
end nontrivial
end semiring