Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Jakob Scholbach. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jakob Scholbach | |
-/ | |
import algebra.char_p.basic | |
import algebra.char_zero | |
import data.nat.prime | |
/-! | |
# Exponential characteristic | |
This file defines the exponential characteristic and establishes a few basic results relating | |
it to the (ordinary characteristic). | |
The definition is stated for a semiring, but the actual results are for nontrivial rings | |
(as far as exponential characteristic one is concerned), respectively a ring without zero-divisors | |
(for prime characteristic). | |
## Main results | |
- `exp_char`: the definition of exponential characteristic | |
- `exp_char_is_prime_or_one`: the exponential characteristic is a prime or one | |
- `char_eq_exp_char_iff`: the characteristic equals the exponential characteristic iff the | |
characteristic is prime | |
## Tags | |
exponential characteristic, characteristic | |
-/ | |
universe u | |
variables (R : Type u) | |
section semiring | |
variables [semiring R] | |
/-- The definition of the exponential characteristic of a semiring. -/ | |
class inductive exp_char (R : Type u) [semiring R] : ℕ → Prop | |
| zero [char_zero R] : exp_char 1 | |
| prime {q : ℕ} (hprime : q.prime) [hchar : char_p R q] : exp_char q | |
/-- The exponential characteristic is one if the characteristic is zero. -/ | |
lemma exp_char_one_of_char_zero (q : ℕ) [hp : char_p R 0] [hq : exp_char R q] : | |
q = 1 := | |
begin | |
casesI hq with q hq_one hq_prime, | |
{ refl }, | |
{ exact false.elim (lt_irrefl _ ((hp.eq R hq_hchar).symm ▸ hq_prime : (0 : ℕ).prime).pos) } | |
end | |
/-- The characteristic equals the exponential characteristic iff the former is prime. -/ | |
theorem char_eq_exp_char_iff (p q : ℕ) [hp : char_p R p] [hq : exp_char R q] : | |
p = q ↔ p.prime := | |
begin | |
casesI hq with q hq_one hq_prime, | |
{ apply iff_of_false, | |
{ unfreezingI {rintro rfl}, | |
exact one_ne_zero (hp.eq R (char_p.of_char_zero R)) }, | |
{ intro pprime, | |
rw (char_p.eq R hp infer_instance : p = 0) at pprime, | |
exact nat.not_prime_zero pprime } }, | |
{ exact ⟨λ hpq, hpq.symm ▸ hq_prime, λ _, char_p.eq R hp hq_hchar⟩ }, | |
end | |
section nontrivial | |
variables [nontrivial R] | |
/-- The exponential characteristic is one if the characteristic is zero. -/ | |
lemma char_zero_of_exp_char_one (p : ℕ) [hp : char_p R p] [hq : exp_char R 1] : | |
p = 0 := | |
begin | |
casesI hq, | |
{ exact char_p.eq R hp infer_instance, }, | |
{ exact false.elim (char_p.char_ne_one R 1 rfl), } | |
end | |
/-- The characteristic is zero if the exponential characteristic is one. -/ | |
@[priority 100] -- see Note [lower instance priority] | |
instance char_zero_of_exp_char_one' [hq : exp_char R 1] : char_zero R := | |
begin | |
casesI hq, | |
{ assumption, }, | |
{ exact false.elim (char_p.char_ne_one R 1 rfl), } | |
end | |
/-- The exponential characteristic is one iff the characteristic is zero. -/ | |
theorem exp_char_one_iff_char_zero (p q : ℕ) [char_p R p] [exp_char R q] : | |
q = 1 ↔ p = 0 := | |
begin | |
split, | |
{ unfreezingI {rintro rfl}, | |
exact char_zero_of_exp_char_one R p, }, | |
{ unfreezingI {rintro rfl}, | |
exact exp_char_one_of_char_zero R q, } | |
end | |
section no_zero_divisors | |
variable [no_zero_divisors R] | |
/-- A helper lemma: the characteristic is prime if it is non-zero. -/ | |
lemma char_prime_of_ne_zero {p : ℕ} [hp : char_p R p] (p_ne_zero : p ≠ 0) : nat.prime p := | |
begin | |
cases char_p.char_is_prime_or_zero R p with h h, | |
{ exact h, }, | |
{ contradiction, } | |
end | |
/-- The exponential characteristic is a prime number or one. -/ | |
theorem exp_char_is_prime_or_one (q : ℕ) [hq : exp_char R q] : nat.prime q ∨ q = 1 := | |
or_iff_not_imp_right.mpr $ λ h, | |
begin | |
casesI char_p.exists R with p hp, | |
have p_ne_zero : p ≠ 0, | |
{ intro p_zero, | |
haveI : char_p R 0, { rwa ←p_zero }, | |
have : q = 1 := exp_char_one_of_char_zero R q, | |
contradiction, }, | |
have p_eq_q : p = q := (char_eq_exp_char_iff R p q).mpr (char_prime_of_ne_zero R p_ne_zero), | |
cases char_p.char_is_prime_or_zero R p with pprime, | |
{ rwa p_eq_q at pprime }, | |
{ contradiction }, | |
end | |
end no_zero_divisors | |
end nontrivial | |
end semiring | |