Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
49.2 kB
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl
-/
import algebra.abs
import algebra.order.sub
/-!
# Ordered groups
This file develops the basics of ordered groups.
## Implementation details
Unfortunately, the number of `'` appended to lemmas in this file
may differ between the multiplicative and the additive version of a lemma.
The reason is that we did not want to change existing names in the library.
-/
set_option old_structure_cmd true
open function
universe u
variable {α : Type u}
/-- An ordered additive commutative group is an additive commutative group
with a partial order in which addition is strictly monotone. -/
@[protect_proj, ancestor add_comm_group partial_order]
class ordered_add_comm_group (α : Type u) extends add_comm_group α, partial_order α :=
(add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b)
/-- An ordered commutative group is an commutative group
with a partial order in which multiplication is strictly monotone. -/
@[protect_proj, ancestor comm_group partial_order]
class ordered_comm_group (α : Type u) extends comm_group α, partial_order α :=
(mul_le_mul_left : ∀ a b : α, a ≤ b → ∀ c : α, c * a ≤ c * b)
attribute [to_additive] ordered_comm_group
@[to_additive]
instance ordered_comm_group.to_covariant_class_left_le (α : Type u) [ordered_comm_group α] :
covariant_class α α (*) (≤) :=
{ elim := λ a b c bc, ordered_comm_group.mul_le_mul_left b c bc a }
/--The units of an ordered commutative monoid form an ordered commutative group. -/
@[to_additive "The units of an ordered commutative additive monoid form an ordered commutative
additive group."]
instance units.ordered_comm_group [ordered_comm_monoid α] : ordered_comm_group αˣ :=
{ mul_le_mul_left := λ a b h c, (mul_le_mul_left' (h : (a : α) ≤ b) _ : (c : α) * a ≤ c * b),
.. units.partial_order,
.. units.comm_group }
@[priority 100, to_additive] -- see Note [lower instance priority]
instance ordered_comm_group.to_ordered_cancel_comm_monoid (α : Type u)
[s : ordered_comm_group α] :
ordered_cancel_comm_monoid α :=
{ mul_left_cancel := λ a b c, (mul_right_inj a).mp,
le_of_mul_le_mul_left := λ a b c, (mul_le_mul_iff_left a).mp,
..s }
@[priority 100, to_additive]
instance ordered_comm_group.has_exists_mul_of_le (α : Type u)
[ordered_comm_group α] :
has_exists_mul_of_le α :=
⟨λ a b hab, ⟨b * a⁻¹, (mul_inv_cancel_comm_assoc a b).symm⟩⟩
@[to_additive] instance [h : has_inv α] : has_inv αᵒᵈ := h
@[to_additive] instance [h : has_div α] : has_div αᵒᵈ := h
@[to_additive] instance [h : has_involutive_inv α] : has_involutive_inv αᵒᵈ := h
@[to_additive] instance [h : div_inv_monoid α] : div_inv_monoid αᵒᵈ := h
@[to_additive order_dual.subtraction_monoid]
instance [h : division_monoid α] : division_monoid αᵒᵈ := h
@[to_additive order_dual.subtraction_comm_monoid]
instance [h : division_comm_monoid α] : division_comm_monoid αᵒᵈ := h
@[to_additive] instance [h : group α] : group αᵒᵈ := h
@[to_additive] instance [h : comm_group α] : comm_group αᵒᵈ := h
instance [h : group_with_zero α] : group_with_zero αᵒᵈ := h
instance [h : comm_group_with_zero α] : comm_group_with_zero αᵒᵈ := h
@[to_additive] instance [ordered_comm_group α] : ordered_comm_group αᵒᵈ :=
{ .. order_dual.ordered_comm_monoid, .. order_dual.group }
section group
variables [group α]
section typeclasses_left_le
variables [has_le α] [covariant_class α α (*) (≤)] {a b c d : α}
/-- Uses `left` co(ntra)variant. -/
@[simp, to_additive left.neg_nonpos_iff]
lemma left.inv_le_one_iff :
a⁻¹ ≤ 11 ≤ a :=
by { rw [← mul_le_mul_iff_left a], simp }
/-- Uses `left` co(ntra)variant. -/
@[simp, to_additive left.nonneg_neg_iff]
lemma left.one_le_inv_iff :
1 ≤ a⁻¹ ↔ a ≤ 1 :=
by { rw [← mul_le_mul_iff_left a], simp }
@[simp, to_additive]
lemma le_inv_mul_iff_mul_le : b ≤ a⁻¹ * c ↔ a * b ≤ c :=
by { rw ← mul_le_mul_iff_left a, simp }
@[simp, to_additive]
lemma inv_mul_le_iff_le_mul : b⁻¹ * a ≤ c ↔ a ≤ b * c :=
by rw [← mul_le_mul_iff_left b, mul_inv_cancel_left]
@[to_additive neg_le_iff_add_nonneg']
lemma inv_le_iff_one_le_mul' : a⁻¹ ≤ b ↔ 1 ≤ a * b :=
(mul_le_mul_iff_left a).symm.trans $ by rw mul_inv_self
@[to_additive]
lemma le_inv_iff_mul_le_one_left : a ≤ b⁻¹ ↔ b * a ≤ 1 :=
(mul_le_mul_iff_left b).symm.trans $ by rw mul_inv_self
@[to_additive]
lemma le_inv_mul_iff_le : 1 ≤ b⁻¹ * a ↔ b ≤ a :=
by rw [← mul_le_mul_iff_left b, mul_one, mul_inv_cancel_left]
@[to_additive]
lemma inv_mul_le_one_iff : a⁻¹ * b ≤ 1 ↔ b ≤ a :=
trans (inv_mul_le_iff_le_mul) $ by rw mul_one
end typeclasses_left_le
section typeclasses_left_lt
variables [has_lt α] [covariant_class α α (*) (<)] {a b c : α}
/-- Uses `left` co(ntra)variant. -/
@[simp, to_additive left.neg_pos_iff]
lemma left.one_lt_inv_iff :
1 < a⁻¹ ↔ a < 1 :=
by rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one]
/-- Uses `left` co(ntra)variant. -/
@[simp, to_additive left.neg_neg_iff]
lemma left.inv_lt_one_iff :
a⁻¹ < 11 < a :=
by rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one]
@[simp, to_additive]
lemma lt_inv_mul_iff_mul_lt : b < a⁻¹ * c ↔ a * b < c :=
by { rw [← mul_lt_mul_iff_left a], simp }
@[simp, to_additive]
lemma inv_mul_lt_iff_lt_mul : b⁻¹ * a < c ↔ a < b * c :=
by rw [← mul_lt_mul_iff_left b, mul_inv_cancel_left]
@[to_additive]
lemma inv_lt_iff_one_lt_mul' : a⁻¹ < b ↔ 1 < a * b :=
(mul_lt_mul_iff_left a).symm.trans $ by rw mul_inv_self
@[to_additive]
lemma lt_inv_iff_mul_lt_one' : a < b⁻¹ ↔ b * a < 1 :=
(mul_lt_mul_iff_left b).symm.trans $ by rw mul_inv_self
@[to_additive]
lemma lt_inv_mul_iff_lt : 1 < b⁻¹ * a ↔ b < a :=
by rw [← mul_lt_mul_iff_left b, mul_one, mul_inv_cancel_left]
@[to_additive]
lemma inv_mul_lt_one_iff : a⁻¹ * b < 1 ↔ b < a :=
trans (inv_mul_lt_iff_lt_mul) $ by rw mul_one
end typeclasses_left_lt
section typeclasses_right_le
variables [has_le α] [covariant_class α α (swap (*)) (≤)] {a b c : α}
/-- Uses `right` co(ntra)variant. -/
@[simp, to_additive right.neg_nonpos_iff]
lemma right.inv_le_one_iff :
a⁻¹ ≤ 11 ≤ a :=
by { rw [← mul_le_mul_iff_right a], simp }
/-- Uses `right` co(ntra)variant. -/
@[simp, to_additive right.nonneg_neg_iff]
lemma right.one_le_inv_iff :
1 ≤ a⁻¹ ↔ a ≤ 1 :=
by { rw [← mul_le_mul_iff_right a], simp }
@[to_additive neg_le_iff_add_nonneg]
lemma inv_le_iff_one_le_mul : a⁻¹ ≤ b ↔ 1 ≤ b * a :=
(mul_le_mul_iff_right a).symm.trans $ by rw inv_mul_self
@[to_additive]
lemma le_inv_iff_mul_le_one_right : a ≤ b⁻¹ ↔ a * b ≤ 1 :=
(mul_le_mul_iff_right b).symm.trans $ by rw inv_mul_self
@[simp, to_additive]
lemma mul_inv_le_iff_le_mul : a * b⁻¹ ≤ c ↔ a ≤ c * b :=
(mul_le_mul_iff_right b).symm.trans $ by rw inv_mul_cancel_right
@[simp, to_additive]
lemma le_mul_inv_iff_mul_le : c ≤ a * b⁻¹ ↔ c * b ≤ a :=
(mul_le_mul_iff_right b).symm.trans $ by rw inv_mul_cancel_right
@[simp, to_additive]
lemma mul_inv_le_one_iff_le : a * b⁻¹ ≤ 1 ↔ a ≤ b :=
mul_inv_le_iff_le_mul.trans $ by rw one_mul
@[to_additive]
lemma le_mul_inv_iff_le : 1 ≤ a * b⁻¹ ↔ b ≤ a :=
by rw [← mul_le_mul_iff_right b, one_mul, inv_mul_cancel_right]
@[to_additive]
lemma mul_inv_le_one_iff : b * a⁻¹ ≤ 1 ↔ b ≤ a :=
trans (mul_inv_le_iff_le_mul) $ by rw one_mul
end typeclasses_right_le
section typeclasses_right_lt
variables [has_lt α] [covariant_class α α (swap (*)) (<)] {a b c : α}
/-- Uses `right` co(ntra)variant. -/
@[simp, to_additive right.neg_neg_iff "Uses `right` co(ntra)variant."]
lemma right.inv_lt_one_iff :
a⁻¹ < 11 < a :=
by rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul]
/-- Uses `right` co(ntra)variant. -/
@[simp, to_additive right.neg_pos_iff "Uses `right` co(ntra)variant."]
lemma right.one_lt_inv_iff :
1 < a⁻¹ ↔ a < 1 :=
by rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul]
@[to_additive]
lemma inv_lt_iff_one_lt_mul : a⁻¹ < b ↔ 1 < b * a :=
(mul_lt_mul_iff_right a).symm.trans $ by rw inv_mul_self
@[to_additive]
lemma lt_inv_iff_mul_lt_one : a < b⁻¹ ↔ a * b < 1 :=
(mul_lt_mul_iff_right b).symm.trans $ by rw inv_mul_self
@[simp, to_additive]
lemma mul_inv_lt_iff_lt_mul : a * b⁻¹ < c ↔ a < c * b :=
by rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right]
@[simp, to_additive]
lemma lt_mul_inv_iff_mul_lt : c < a * b⁻¹ ↔ c * b < a :=
(mul_lt_mul_iff_right b).symm.trans $ by rw inv_mul_cancel_right
@[simp, to_additive]
lemma inv_mul_lt_one_iff_lt : a * b⁻¹ < 1 ↔ a < b :=
by rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right, one_mul]
@[to_additive]
lemma lt_mul_inv_iff_lt : 1 < a * b⁻¹ ↔ b < a :=
by rw [← mul_lt_mul_iff_right b, one_mul, inv_mul_cancel_right]
@[to_additive]
lemma mul_inv_lt_one_iff : b * a⁻¹ < 1 ↔ b < a :=
trans (mul_inv_lt_iff_lt_mul) $ by rw one_mul
end typeclasses_right_lt
section typeclasses_left_right_le
variables [has_le α] [covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (≤)]
{a b c d : α}
@[simp, to_additive]
lemma inv_le_inv_iff : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
by { rw [← mul_le_mul_iff_left a, ← mul_le_mul_iff_right b], simp }
alias neg_le_neg_iff ↔ le_of_neg_le_neg _
section
variable (α)
/-- `x ↦ x⁻¹` as an order-reversing equivalence. -/
@[to_additive "`x ↦ -x` as an order-reversing equivalence.", simps]
def order_iso.inv : α ≃o αᵒᵈ :=
{ to_equiv := (equiv.inv α).trans order_dual.to_dual,
map_rel_iff' := λ a b, @inv_le_inv_iff α _ _ _ _ _ _ }
end
@[to_additive neg_le]
lemma inv_le' : a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
(order_iso.inv α).symm_apply_le
alias inv_le' ↔ inv_le_of_inv_le' _
attribute [to_additive neg_le_of_neg_le] inv_le_of_inv_le'
@[to_additive le_neg]
lemma le_inv' : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
(order_iso.inv α).le_symm_apply
@[to_additive]
lemma mul_inv_le_inv_mul_iff : a * b⁻¹ ≤ d⁻¹ * c ↔ d * a ≤ c * b :=
by rw [← mul_le_mul_iff_left d, ← mul_le_mul_iff_right b, mul_inv_cancel_left, mul_assoc,
inv_mul_cancel_right]
@[simp, to_additive] lemma div_le_self_iff (a : α) {b : α} : a / b ≤ a ↔ 1 ≤ b :=
by simp [div_eq_mul_inv]
@[simp, to_additive] lemma le_div_self_iff (a : α) {b : α} : a ≤ a / b ↔ b ≤ 1 :=
by simp [div_eq_mul_inv]
alias sub_le_self_iff ↔ _ sub_le_self
end typeclasses_left_right_le
section typeclasses_left_right_lt
variables [has_lt α] [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)]
{a b c d : α}
@[simp, to_additive]
lemma inv_lt_inv_iff : a⁻¹ < b⁻¹ ↔ b < a :=
by { rw [← mul_lt_mul_iff_left a, ← mul_lt_mul_iff_right b], simp }
@[to_additive neg_lt]
lemma inv_lt' : a⁻¹ < b ↔ b⁻¹ < a :=
by rw [← inv_lt_inv_iff, inv_inv]
@[to_additive lt_neg]
lemma lt_inv' : a < b⁻¹ ↔ b < a⁻¹ :=
by rw [← inv_lt_inv_iff, inv_inv]
alias lt_inv' ↔ lt_inv_of_lt_inv _
attribute [to_additive] lt_inv_of_lt_inv
alias inv_lt' ↔ inv_lt_of_inv_lt' _
attribute [to_additive neg_lt_of_neg_lt] inv_lt_of_inv_lt'
@[to_additive]
lemma mul_inv_lt_inv_mul_iff : a * b⁻¹ < d⁻¹ * c ↔ d * a < c * b :=
by rw [← mul_lt_mul_iff_left d, ← mul_lt_mul_iff_right b, mul_inv_cancel_left, mul_assoc,
inv_mul_cancel_right]
@[simp, to_additive] lemma div_lt_self_iff (a : α) {b : α} : a / b < a ↔ 1 < b :=
by simp [div_eq_mul_inv]
alias sub_lt_self_iff ↔ _ sub_lt_self
end typeclasses_left_right_lt
section pre_order
variable [preorder α]
section left_le
variables [covariant_class α α (*) (≤)] {a : α}
@[to_additive]
lemma left.inv_le_self (h : 1 ≤ a) : a⁻¹ ≤ a :=
le_trans (left.inv_le_one_iff.mpr h) h
alias left.neg_le_self ← neg_le_self
@[to_additive]
lemma left.self_le_inv (h : a1) : a ≤ a⁻¹ :=
le_trans h (left.one_le_inv_iff.mpr h)
end left_le
section left_lt
variables [covariant_class α α (*) (<)] {a : α}
@[to_additive]
lemma left.inv_lt_self (h : 1 < a) : a⁻¹ < a :=
(left.inv_lt_one_iff.mpr h).trans h
alias left.neg_lt_self ← neg_lt_self
@[to_additive]
lemma left.self_lt_inv (h : a < 1) : a < a⁻¹ :=
lt_trans h (left.one_lt_inv_iff.mpr h)
end left_lt
section right_le
variables [covariant_class α α (swap (*)) (≤)] {a : α}
@[to_additive]
lemma right.inv_le_self (h : 1 ≤ a) : a⁻¹ ≤ a :=
le_trans (right.inv_le_one_iff.mpr h) h
@[to_additive]
lemma right.self_le_inv (h : a1) : a ≤ a⁻¹ :=
le_trans h (right.one_le_inv_iff.mpr h)
end right_le
section right_lt
variables [covariant_class α α (swap (*)) (<)] {a : α}
@[to_additive]
lemma right.inv_lt_self (h : 1 < a) : a⁻¹ < a :=
(right.inv_lt_one_iff.mpr h).trans h
@[to_additive]
lemma right.self_lt_inv (h : a < 1) : a < a⁻¹ :=
lt_trans h (right.one_lt_inv_iff.mpr h)
end right_lt
end pre_order
end group
section comm_group
variables [comm_group α]
section has_le
variables [has_le α] [covariant_class α α (*) (≤)] {a b c d : α}
@[to_additive]
lemma inv_mul_le_iff_le_mul' : c⁻¹ * a ≤ b ↔ a ≤ b * c :=
by rw [inv_mul_le_iff_le_mul, mul_comm]
@[simp, to_additive]
lemma mul_inv_le_iff_le_mul' : a * b⁻¹ ≤ c ↔ a ≤ b * c :=
by rw [← inv_mul_le_iff_le_mul, mul_comm]
@[to_additive add_neg_le_add_neg_iff]
lemma mul_inv_le_mul_inv_iff' : a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b :=
by rw [mul_comm c, mul_inv_le_inv_mul_iff, mul_comm]
end has_le
section has_lt
variables [has_lt α] [covariant_class α α (*) (<)] {a b c d : α}
@[to_additive]
lemma inv_mul_lt_iff_lt_mul' : c⁻¹ * a < b ↔ a < b * c :=
by rw [inv_mul_lt_iff_lt_mul, mul_comm]
@[simp, to_additive]
lemma mul_inv_lt_iff_le_mul' : a * b⁻¹ < c ↔ a < b * c :=
by rw [← inv_mul_lt_iff_lt_mul, mul_comm]
@[to_additive add_neg_lt_add_neg_iff]
lemma mul_inv_lt_mul_inv_iff' : a * b⁻¹ < c * d⁻¹ ↔ a * d < c * b :=
by rw [mul_comm c, mul_inv_lt_inv_mul_iff, mul_comm]
end has_lt
end comm_group
alias le_inv' ↔ le_inv_of_le_inv _
attribute [to_additive] le_inv_of_le_inv
alias left.inv_le_one_iff ↔ one_le_of_inv_le_one _
attribute [to_additive] one_le_of_inv_le_one
alias left.one_le_inv_iff ↔ le_one_of_one_le_inv _
attribute [to_additive nonpos_of_neg_nonneg] le_one_of_one_le_inv
alias inv_lt_inv_iff ↔ lt_of_inv_lt_inv _
attribute [to_additive] lt_of_inv_lt_inv
alias left.inv_lt_one_iff ↔ one_lt_of_inv_lt_one _
attribute [to_additive] one_lt_of_inv_lt_one
alias left.inv_lt_one_iff ← inv_lt_one_iff_one_lt
attribute [to_additive] inv_lt_one_iff_one_lt
alias left.inv_lt_one_iff ← inv_lt_one'
attribute [to_additive neg_lt_zero] inv_lt_one'
alias left.one_lt_inv_iff ↔ inv_of_one_lt_inv _
attribute [to_additive neg_of_neg_pos] inv_of_one_lt_inv
alias left.one_lt_inv_iff ↔ _ one_lt_inv_of_inv
attribute [to_additive neg_pos_of_neg] one_lt_inv_of_inv
alias le_inv_mul_iff_mul_le ↔ mul_le_of_le_inv_mul _
attribute [to_additive] mul_le_of_le_inv_mul
alias le_inv_mul_iff_mul_le ↔ _ le_inv_mul_of_mul_le
attribute [to_additive] le_inv_mul_of_mul_le
alias inv_mul_le_iff_le_mul ↔ _ inv_mul_le_of_le_mul
attribute [to_additive] inv_mul_le_iff_le_mul
alias lt_inv_mul_iff_mul_lt ↔ mul_lt_of_lt_inv_mul _
attribute [to_additive] mul_lt_of_lt_inv_mul
alias lt_inv_mul_iff_mul_lt ↔ _ lt_inv_mul_of_mul_lt
attribute [to_additive] lt_inv_mul_of_mul_lt
alias inv_mul_lt_iff_lt_mul ↔ lt_mul_of_inv_mul_lt inv_mul_lt_of_lt_mul
attribute [to_additive] lt_mul_of_inv_mul_lt
attribute [to_additive] inv_mul_lt_of_lt_mul
alias lt_mul_of_inv_mul_lt ← lt_mul_of_inv_mul_lt_left
attribute [to_additive] lt_mul_of_inv_mul_lt_left
alias left.inv_le_one_iff ← inv_le_one'
attribute [to_additive neg_nonpos] inv_le_one'
alias left.one_le_inv_iff ← one_le_inv'
attribute [to_additive neg_nonneg] one_le_inv'
alias left.one_lt_inv_iff ← one_lt_inv'
attribute [to_additive neg_pos] one_lt_inv'
alias mul_lt_mul_left' ← ordered_comm_group.mul_lt_mul_left'
attribute [to_additive ordered_add_comm_group.add_lt_add_left] ordered_comm_group.mul_lt_mul_left'
alias le_of_mul_le_mul_left' ← ordered_comm_group.le_of_mul_le_mul_left
attribute [to_additive ordered_add_comm_group.le_of_add_le_add_left]
ordered_comm_group.le_of_mul_le_mul_left
alias lt_of_mul_lt_mul_left' ← ordered_comm_group.lt_of_mul_lt_mul_left
attribute [to_additive ordered_add_comm_group.lt_of_add_lt_add_left]
ordered_comm_group.lt_of_mul_lt_mul_left
/-- Pullback an `ordered_comm_group` under an injective map.
See note [reducible non-instances]. -/
@[reducible, to_additive function.injective.ordered_add_comm_group
"Pullback an `ordered_add_comm_group` under an injective map."]
def function.injective.ordered_comm_group [ordered_comm_group α] {β : Type*}
[has_one β] [has_mul β] [has_inv β] [has_div β] [has_pow β ℕ] [has_pow β ℤ]
(f : β → α) (hf : function.injective f) (one : f 1 = 1)
(mul : ∀ x y, f (x * y) = f x * f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
ordered_comm_group β :=
{ ..partial_order.lift f hf,
..hf.ordered_comm_monoid f one mul npow,
..hf.comm_group f one mul inv div npow zpow }
/- Most of the lemmas that are primed in this section appear in ordered_field. -/
/- I (DT) did not try to minimise the assumptions. -/
section group
variables [group α] [has_le α]
section right
variables [covariant_class α α (swap (*)) (≤)] {a b c d : α}
@[simp, to_additive]
lemma div_le_div_iff_right (c : α) : a / c ≤ b / c ↔ a ≤ b :=
by simpa only [div_eq_mul_inv] using mul_le_mul_iff_right _
@[to_additive sub_le_sub_right]
lemma div_le_div_right' (h : a ≤ b) (c : α) : a / c ≤ b / c :=
(div_le_div_iff_right c).2 h
@[simp, to_additive sub_nonneg]
lemma one_le_div' : 1 ≤ a / b ↔ b ≤ a :=
by rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
alias sub_nonneg ↔ le_of_sub_nonneg sub_nonneg_of_le
@[simp, to_additive sub_nonpos]
lemma div_le_one' : a / b ≤ 1 ↔ a ≤ b :=
by rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
alias sub_nonpos ↔ le_of_sub_nonpos sub_nonpos_of_le
@[to_additive]
lemma le_div_iff_mul_le : a ≤ c / b ↔ a * b ≤ c :=
by rw [← mul_le_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right]
alias le_sub_iff_add_le ↔ add_le_of_le_sub_right le_sub_right_of_add_le
@[to_additive]
lemma div_le_iff_le_mul : a / c ≤ b ↔ a ≤ b * c :=
by rw [← mul_le_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right]
-- TODO: Should we get rid of `sub_le_iff_le_add` in favor of
-- (a renamed version of) `tsub_le_iff_right`?
@[priority 100] -- see Note [lower instance priority]
instance add_group.to_has_ordered_sub {α : Type*} [add_group α] [has_le α]
[covariant_class α α (swap (+)) (≤)] : has_ordered_sub α :=
⟨λ a b c, sub_le_iff_le_add⟩
/-- `equiv.mul_right` as an `order_iso`. See also `order_embedding.mul_right`. -/
@[to_additive "`equiv.add_right` as an `order_iso`. See also `order_embedding.add_right`.",
simps to_equiv apply {simp_rhs := tt}]
def order_iso.mul_right (a : α) : α ≃o α :=
{ map_rel_iff' := λ _ _, mul_le_mul_iff_right a, to_equiv := equiv.mul_right a }
@[simp, to_additive] lemma order_iso.mul_right_symm (a : α) :
(order_iso.mul_right a).symm = order_iso.mul_right a⁻¹ :=
by { ext x, refl }
end right
section left
variables [covariant_class α α (*) (≤)]
/-- `equiv.mul_left` as an `order_iso`. See also `order_embedding.mul_left`. -/
@[to_additive "`equiv.add_left` as an `order_iso`. See also `order_embedding.add_left`.",
simps to_equiv apply {simp_rhs := tt}]
def order_iso.mul_left (a : α) : α ≃o α :=
{ map_rel_iff' := λ _ _, mul_le_mul_iff_left a, to_equiv := equiv.mul_left a }
@[simp, to_additive] lemma order_iso.mul_left_symm (a : α) :
(order_iso.mul_left a).symm = order_iso.mul_left a⁻¹ :=
by { ext x, refl }
variables [covariant_class α α (swap (*)) (≤)] {a b c : α}
@[simp, to_additive]
lemma div_le_div_iff_left (a : α) : a / b ≤ a / c ↔ c ≤ b :=
by rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_le_mul_iff_left a⁻¹, inv_mul_cancel_left,
inv_mul_cancel_left, inv_le_inv_iff]
@[to_additive sub_le_sub_left]
lemma div_le_div_left' (h : a ≤ b) (c : α) : c / b ≤ c / a :=
(div_le_div_iff_left c).2 h
end left
end group
section comm_group
variables [comm_group α]
section has_le
variables [has_le α] [covariant_class α α (*) (≤)] {a b c d : α}
@[to_additive sub_le_sub_iff]
lemma div_le_div_iff' : a / b ≤ c / d ↔ a * d ≤ c * b :=
by simpa only [div_eq_mul_inv] using mul_inv_le_mul_inv_iff'
@[to_additive]
lemma le_div_iff_mul_le' : b ≤ c / a ↔ a * b ≤ c :=
by rw [le_div_iff_mul_le, mul_comm]
alias le_sub_iff_add_le' ↔ add_le_of_le_sub_left le_sub_left_of_add_le
@[to_additive]
lemma div_le_iff_le_mul' : a / b ≤ c ↔ a ≤ b * c :=
by rw [div_le_iff_le_mul, mul_comm]
alias sub_le_iff_le_add' ↔ le_add_of_sub_left_le sub_left_le_of_le_add
@[simp, to_additive]
lemma inv_le_div_iff_le_mul : b⁻¹ ≤ a / c ↔ c ≤ a * b :=
le_div_iff_mul_le.trans inv_mul_le_iff_le_mul'
@[to_additive]
lemma inv_le_div_iff_le_mul' : a⁻¹ ≤ b / c ↔ c ≤ a * b :=
by rw [inv_le_div_iff_le_mul, mul_comm]
@[to_additive sub_le]
lemma div_le'' : a / b ≤ c ↔ a / c ≤ b :=
div_le_iff_le_mul'.trans div_le_iff_le_mul.symm
@[to_additive le_sub]
lemma le_div'' : a ≤ b / c ↔ c ≤ b / a :=
le_div_iff_mul_le'.trans le_div_iff_mul_le.symm
end has_le
section preorder
variables [preorder α] [covariant_class α α (*) (≤)] {a b c d : α}
@[to_additive sub_le_sub]
lemma div_le_div'' (hab : a ≤ b) (hcd : c ≤ d) :
a / d ≤ b / c :=
begin
rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_le_inv_mul_iff, mul_comm],
exact mul_le_mul' hab hcd
end
end preorder
end comm_group
/- Most of the lemmas that are primed in this section appear in ordered_field. -/
/- I (DT) did not try to minimise the assumptions. -/
section group
variables [group α] [has_lt α]
section right
variables [covariant_class α α (swap (*)) (<)] {a b c d : α}
@[simp, to_additive]
lemma div_lt_div_iff_right (c : α) : a / c < b / c ↔ a < b :=
by simpa only [div_eq_mul_inv] using mul_lt_mul_iff_right _
@[to_additive sub_lt_sub_right]
lemma div_lt_div_right' (h : a < b) (c : α) : a / c < b / c :=
(div_lt_div_iff_right c).2 h
@[simp, to_additive sub_pos]
lemma one_lt_div' : 1 < a / b ↔ b < a :=
by rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
alias sub_pos ↔ lt_of_sub_pos sub_pos_of_lt
@[simp, to_additive sub_neg]
lemma div_lt_one' : a / b < 1 ↔ a < b :=
by rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
alias sub_neg ↔ lt_of_sub_neg sub_neg_of_lt
alias sub_neg ← sub_lt_zero
@[to_additive]
lemma lt_div_iff_mul_lt : a < c / b ↔ a * b < c :=
by rw [← mul_lt_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right]
alias lt_sub_iff_add_lt ↔ add_lt_of_lt_sub_right lt_sub_right_of_add_lt
@[to_additive]
lemma div_lt_iff_lt_mul : a / c < b ↔ a < b * c :=
by rw [← mul_lt_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right]
alias sub_lt_iff_lt_add ↔ lt_add_of_sub_right_lt sub_right_lt_of_lt_add
end right
section left
variables [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)] {a b c : α}
@[simp, to_additive]
lemma div_lt_div_iff_left (a : α) : a / b < a / c ↔ c < b :=
by rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_lt_mul_iff_left a⁻¹, inv_mul_cancel_left,
inv_mul_cancel_left, inv_lt_inv_iff]
@[simp, to_additive]
lemma inv_lt_div_iff_lt_mul : a⁻¹ < b / c ↔ c < a * b :=
by rw [div_eq_mul_inv, lt_mul_inv_iff_mul_lt, inv_mul_lt_iff_lt_mul]
@[to_additive sub_lt_sub_left]
lemma div_lt_div_left' (h : a < b) (c : α) : c / b < c / a :=
(div_lt_div_iff_left c).2 h
end left
end group
section comm_group
variables [comm_group α]
section has_lt
variables [has_lt α] [covariant_class α α (*) (<)] {a b c d : α}
@[to_additive sub_lt_sub_iff]
lemma div_lt_div_iff' : a / b < c / d ↔ a * d < c * b :=
by simpa only [div_eq_mul_inv] using mul_inv_lt_mul_inv_iff'
@[to_additive]
lemma lt_div_iff_mul_lt' : b < c / a ↔ a * b < c :=
by rw [lt_div_iff_mul_lt, mul_comm]
alias lt_sub_iff_add_lt' ↔ add_lt_of_lt_sub_left lt_sub_left_of_add_lt
@[to_additive]
lemma div_lt_iff_lt_mul' : a / b < c ↔ a < b * c :=
by rw [div_lt_iff_lt_mul, mul_comm]
alias sub_lt_iff_lt_add' ↔ lt_add_of_sub_left_lt sub_left_lt_of_lt_add
@[to_additive]
lemma inv_lt_div_iff_lt_mul' : b⁻¹ < a / c ↔ c < a * b :=
lt_div_iff_mul_lt.trans inv_mul_lt_iff_lt_mul'
@[to_additive sub_lt]
lemma div_lt'' : a / b < c ↔ a / c < b :=
div_lt_iff_lt_mul'.trans div_lt_iff_lt_mul.symm
@[to_additive lt_sub]
lemma lt_div'' : a < b / c ↔ c < b / a :=
lt_div_iff_mul_lt'.trans lt_div_iff_mul_lt.symm
end has_lt
section preorder
variables [preorder α] [covariant_class α α (*) (<)] {a b c d : α}
@[to_additive sub_lt_sub]
lemma div_lt_div'' (hab : a < b) (hcd : c < d) :
a / d < b / c :=
begin
rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_lt_inv_mul_iff, mul_comm],
exact mul_lt_mul_of_lt_of_lt hab hcd
end
end preorder
end comm_group
section linear_order
variables [group α] [linear_order α] [covariant_class α α (*) (≤)]
section variable_names
variables {a b c : α}
@[to_additive]
lemma le_of_forall_one_lt_lt_mul (h : ∀ ε : α, 1 < ε → a < b * ε) : a ≤ b :=
le_of_not_lt (λ h₁, lt_irrefl a (by simpa using (h _ (lt_inv_mul_iff_lt.mpr h₁))))
@[to_additive]
lemma le_iff_forall_one_lt_lt_mul : a ≤ b ↔ ∀ ε, 1 < ε → a < b * ε :=
⟨λ h ε, lt_mul_of_le_of_one_lt h, le_of_forall_one_lt_lt_mul⟩
/- I (DT) introduced this lemma to prove (the additive version `sub_le_sub_flip` of)
`div_le_div_flip` below. Now I wonder what is the point of either of these lemmas... -/
@[to_additive]
lemma div_le_inv_mul_iff [covariant_class α α (swap (*)) (≤)] :
a / b ≤ a⁻¹ * b ↔ a ≤ b :=
begin
rw [div_eq_mul_inv, mul_inv_le_inv_mul_iff],
exact ⟨λ h, not_lt.mp (λ k, not_lt.mpr h (mul_lt_mul_of_lt_of_lt k k)), λ h, mul_le_mul' h h⟩,
end
/- What is the point of this lemma? See comment about `div_le_inv_mul_iff` above. -/
@[simp, to_additive]
lemma div_le_div_flip {α : Type*} [comm_group α] [linear_order α] [covariant_class α α (*) (≤)]
{a b : α}:
a / b ≤ b / a ↔ a ≤ b :=
begin
rw [div_eq_mul_inv b, mul_comm],
exact div_le_inv_mul_iff,
end
@[simp, to_additive] lemma max_one_div_max_inv_one_eq_self (a : α) :
max a 1 / max a⁻¹ 1 = a :=
by { rcases le_total a 1 with h|h; simp [h] }
alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self
end variable_names
section densely_ordered
variables [densely_ordered α] {a b c : α}
@[to_additive]
lemma le_of_forall_one_lt_le_mul (h : ∀ ε : α, 1 < ε → a ≤ b * ε) : a ≤ b :=
le_of_forall_le_of_dense $ λ c hc,
calc a ≤ b * (b⁻¹ * c) : h _ (lt_inv_mul_iff_lt.mpr hc)
... = c : mul_inv_cancel_left b c
@[to_additive]
lemma le_of_forall_lt_one_mul_le (h : ∀ ε < 1, a * ε ≤ b) : a ≤ b :=
@le_of_forall_one_lt_le_mul αᵒᵈ _ _ _ _ _ _ h
@[to_additive]
lemma le_of_forall_one_lt_div_le (h : ∀ ε : α, 1 < ε → a / ε ≤ b) : a ≤ b :=
le_of_forall_lt_one_mul_le $ λ ε ε1,
by simpa only [div_eq_mul_inv, inv_inv] using h ε⁻¹ (left.one_lt_inv_iff.2 ε1)
@[to_additive]
lemma le_iff_forall_one_lt_le_mul : a ≤ b ↔ ∀ ε, 1 < ε → a ≤ b * ε :=
⟨λ h ε ε_pos, le_mul_of_le_of_one_le h ε_pos.le, le_of_forall_one_lt_le_mul⟩
@[to_additive]
lemma le_iff_forall_lt_one_mul_le : a ≤ b ↔ ∀ ε < 1, a * ε ≤ b :=
@le_iff_forall_one_lt_le_mul αᵒᵈ _ _ _ _ _ _
end densely_ordered
end linear_order
/-!
### Linearly ordered commutative groups
-/
/-- A linearly ordered additive commutative group is an
additive commutative group with a linear order in which
addition is monotone. -/
@[protect_proj, ancestor ordered_add_comm_group linear_order]
class linear_ordered_add_comm_group (α : Type u) extends ordered_add_comm_group α, linear_order α
/-- A linearly ordered commutative monoid with an additively absorbing `⊤` element.
Instances should include number systems with an infinite element adjoined.` -/
@[protect_proj, ancestor linear_ordered_add_comm_monoid_with_top sub_neg_monoid nontrivial]
class linear_ordered_add_comm_group_with_top (α : Type*)
extends linear_ordered_add_comm_monoid_with_top α, sub_neg_monoid α, nontrivial α :=
(neg_top : - (⊤ : α) = ⊤)
(add_neg_cancel : ∀ a:α, a ≠ ⊤ → a + (- a) = 0)
/-- A linearly ordered commutative group is a
commutative group with a linear order in which
multiplication is monotone. -/
@[protect_proj, ancestor ordered_comm_group linear_order, to_additive]
class linear_ordered_comm_group (α : Type u) extends ordered_comm_group α, linear_order α
@[to_additive] instance [linear_ordered_comm_group α] :
linear_ordered_comm_group αᵒᵈ :=
{ .. order_dual.ordered_comm_group, .. order_dual.linear_order α }
section linear_ordered_comm_group
variables [linear_ordered_comm_group α] {a b c : α}
@[priority 100, to_additive] -- see Note [lower instance priority]
instance linear_ordered_comm_group.to_linear_ordered_cancel_comm_monoid :
linear_ordered_cancel_comm_monoid α :=
{ le_of_mul_le_mul_left := λ x y z, le_of_mul_le_mul_left',
mul_left_cancel := λ x y z, mul_left_cancel,
..‹linear_ordered_comm_group α› }
/-- Pullback a `linear_ordered_comm_group` under an injective map.
See note [reducible non-instances]. -/
@[reducible, to_additive function.injective.linear_ordered_add_comm_group
"Pullback a `linear_ordered_add_comm_group` under an injective map."]
def function.injective.linear_ordered_comm_group {β : Type*}
[has_one β] [has_mul β] [has_inv β] [has_div β] [has_pow β ℕ] [has_pow β ℤ]
[has_sup β] [has_inf β] (f : β → α) (hf : function.injective f) (one : f 1 = 1)
(mul : ∀ x y, f (x * y) = f x * f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(hsup : ∀ x y, f (x ⊔ y) = max (f x) (f y)) (hinf : ∀ x y, f (x ⊓ y) = min (f x) (f y)) :
linear_ordered_comm_group β :=
{ ..linear_order.lift f hf hsup hinf,
..hf.ordered_comm_group f one mul inv div npow zpow }
@[to_additive linear_ordered_add_comm_group.add_lt_add_left]
lemma linear_ordered_comm_group.mul_lt_mul_left'
(a b : α) (h : a < b) (c : α) : c * a < c * b :=
mul_lt_mul_left' h c
@[to_additive min_neg_neg]
lemma min_inv_inv' (a b : α) : min (a⁻¹) (b⁻¹) = (max a b)⁻¹ :=
eq.symm $ @monotone.map_max α αᵒᵈ _ _ has_inv.inv a b $ λ a b, inv_le_inv_iff.mpr
@[to_additive max_neg_neg]
lemma max_inv_inv' (a b : α) : max (a⁻¹) (b⁻¹) = (min a b)⁻¹ :=
eq.symm $ @monotone.map_min α αᵒᵈ _ _ has_inv.inv a b $ λ a b, inv_le_inv_iff.mpr
@[to_additive min_sub_sub_right]
lemma min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c :=
by simpa only [div_eq_mul_inv] using min_mul_mul_right a b (c⁻¹)
@[to_additive max_sub_sub_right]
lemma max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c :=
by simpa only [div_eq_mul_inv] using max_mul_mul_right a b (c⁻¹)
@[to_additive min_sub_sub_left]
lemma min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c :=
by simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv']
@[to_additive max_sub_sub_left]
lemma max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c :=
by simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv']
@[to_additive eq_zero_of_neg_eq]
lemma eq_one_of_inv_eq' (h : a⁻¹ = a) : a = 1 :=
match lt_trichotomy a 1 with
| or.inl h₁ :=
have 1 < a, from h ▸ one_lt_inv_of_inv h₁,
absurd h₁ this.asymm
| or.inr (or.inl h₁) := h₁
| or.inr (or.inr h₁) :=
have a < 1, from h ▸ inv_lt_one'.mpr h₁,
absurd h₁ this.asymm
end
@[to_additive exists_zero_lt]
lemma exists_one_lt' [nontrivial α] : ∃ (a:α), 1 < a :=
begin
obtain ⟨y, hy⟩ := decidable.exists_ne (1 : α),
cases hy.lt_or_lt,
{ exact ⟨y⁻¹, one_lt_inv'.mpr h⟩ },
{ exact ⟨y, h⟩ }
end
@[priority 100, to_additive] -- see Note [lower instance priority]
instance linear_ordered_comm_group.to_no_max_order [nontrivial α] :
no_max_order α :=
begin
obtain ⟨y, hy⟩ : ∃ (a:α), 1 < a := exists_one_lt',
exact λ a, ⟨a * y, lt_mul_of_one_lt_right' a hy⟩
end
@[priority 100, to_additive] -- see Note [lower instance priority]
instance linear_ordered_comm_group.to_no_min_order [nontrivial α] : no_min_order α :=
begin
obtain ⟨y, hy⟩ : ∃ (a:α), 1 < a := exists_one_lt',
exact λ a, ⟨a / y, (div_lt_self_iff a).mpr hy⟩
end
end linear_ordered_comm_group
section covariant_add_le
section has_neg
/-- `abs a` is the absolute value of `a`. -/
@[to_additive "`abs a` is the absolute value of `a`",
priority 100] -- see Note [lower instance priority]
instance has_inv.to_has_abs [has_inv α] [has_sup α] : has_abs α := ⟨λ a, a ⊔ a⁻¹⟩
@[to_additive] lemma abs_eq_sup_inv [has_inv α] [has_sup α] (a : α) : |a| = a ⊔ a⁻¹ := rfl
variables [has_neg α] [linear_order α] {a b: α}
lemma abs_eq_max_neg : abs a = max a (-a) :=
rfl
lemma abs_choice (x : α) : |x| = x ∨ |x| = -x := max_choice _ _
lemma abs_le' : |a| ≤ b ↔ a ≤ b ∧ -a ≤ b := max_le_iff
lemma le_abs : a ≤ |b| ↔ a ≤ b ∨ a ≤ -b := le_max_iff
lemma le_abs_self (a : α) : a ≤ |a| := le_max_left _ _
lemma neg_le_abs_self (a : α) : -a ≤ |a| := le_max_right _ _
lemma lt_abs : a < |b| ↔ a < b ∨ a < -b := lt_max_iff
theorem abs_le_abs (h₀ : a ≤ b) (h₁ : -a ≤ b) : |a| ≤ |b| :=
(abs_le'.2 ⟨h₀, h₁⟩).trans (le_abs_self b)
lemma abs_by_cases (P : α → Prop) {a : α} (h1 : P a) (h2 : P (-a)) : P (|a|) :=
sup_ind _ _ h1 h2
end has_neg
section add_group
variables [add_group α] [linear_order α]
@[simp] lemma abs_neg (a : α) : | -a| = |a| :=
begin
rw [abs_eq_max_neg, max_comm, neg_neg, abs_eq_max_neg]
end
lemma eq_or_eq_neg_of_abs_eq {a b : α} (h : |a| = b) : a = b ∨ a = -b :=
by simpa only [← h, eq_comm, eq_neg_iff_eq_neg] using abs_choice a
lemma abs_eq_abs {a b : α} : |a| = |b| ↔ a = b ∨ a = -b :=
begin
refine ⟨λ h, _, λ h, _⟩,
{ obtain rfl | rfl := eq_or_eq_neg_of_abs_eq h;
simpa only [neg_eq_iff_neg_eq, neg_inj, or.comm, @eq_comm _ (-b)] using abs_choice b },
{ cases h; simp only [h, abs_neg] },
end
lemma abs_sub_comm (a b : α) : |a - b| = |b - a| :=
calc |a - b| = | - (b - a)| : congr_arg _ (neg_sub b a).symm
... = |b - a| : abs_neg (b - a)
variables [covariant_class α α (+) (≤)] {a b c : α}
lemma abs_of_nonneg (h : 0 ≤ a) : |a| = a :=
max_eq_left $ (neg_nonpos.2 h).trans h
lemma abs_of_pos (h : 0 < a) : |a| = a :=
abs_of_nonneg h.le
lemma abs_of_nonpos (h : a0) : |a| = -a :=
max_eq_right $ h.trans (neg_nonneg.2 h)
lemma abs_of_neg (h : a < 0) : |a| = -a :=
abs_of_nonpos h.le
@[simp] lemma abs_zero : |0| = (0:α) :=
abs_of_nonneg le_rfl
@[simp] lemma abs_pos : 0 < |a| ↔ a ≠ 0 :=
begin
rcases lt_trichotomy a 0 with (ha|rfl|ha),
{ simp [abs_of_neg ha, neg_pos, ha.ne, ha] },
{ simp },
{ simp [abs_of_pos ha, ha, ha.ne.symm] }
end
lemma abs_pos_of_pos (h : 0 < a) : 0 < |a| := abs_pos.2 h.ne.symm
lemma abs_pos_of_neg (h : a < 0) : 0 < |a| := abs_pos.2 h.ne
lemma neg_abs_le_self (a : α) : -|a| ≤ a :=
begin
cases le_total 0 a with h h,
{ calc -|a| = - a : congr_arg (has_neg.neg) (abs_of_nonneg h)
... ≤ 0 : neg_nonpos.mpr h
... ≤ a : h },
{ calc -|a| = - - a : congr_arg (has_neg.neg) (abs_of_nonpos h)
... ≤ a : (neg_neg a).le }
end
lemma add_abs_nonneg (a : α) : 0 ≤ a + |a| :=
begin
rw ←add_right_neg a,
apply add_le_add_left,
exact (neg_le_abs_self a),
end
lemma neg_abs_le_neg (a : α) : -|a| ≤ -a :=
by simpa using neg_abs_le_self (-a)
@[simp] lemma abs_nonneg (a : α) : 0 ≤ |a| :=
(le_total 0 a).elim (λ h, h.trans (le_abs_self a)) (λ h, (neg_nonneg.2 h).trans $ neg_le_abs_self a)
@[simp] lemma abs_abs (a : α) : | |a| | = |a| :=
abs_of_nonneg $ abs_nonneg a
@[simp] lemma abs_eq_zero : |a| = 0 ↔ a = 0 :=
decidable.not_iff_not.1 $ ne_comm.trans $ (abs_nonneg a).lt_iff_ne.symm.trans abs_pos
@[simp] lemma abs_nonpos_iff {a : α} : |a| ≤ 0 ↔ a = 0 :=
(abs_nonneg a).le_iff_eq.trans abs_eq_zero
variable [covariant_class α α (swap (+)) (≤)]
lemma abs_lt : |a| < b ↔ - b < a ∧ a < b :=
max_lt_iff.trans $ and.comm.trans $ by rw [neg_lt]
lemma neg_lt_of_abs_lt (h : |a| < b) : -b < a := (abs_lt.mp h).1
lemma lt_of_abs_lt (h : |a| < b) : a < b := (abs_lt.mp h).2
lemma max_sub_min_eq_abs' (a b : α) : max a b - min a b = |a - b| :=
begin
cases le_total a b with ab ba,
{ rw [max_eq_right ab, min_eq_left ab, abs_of_nonpos, neg_sub], rwa sub_nonpos },
{ rw [max_eq_left ba, min_eq_right ba, abs_of_nonneg], rwa sub_nonneg }
end
lemma max_sub_min_eq_abs (a b : α) : max a b - min a b = |b - a| :=
by { rw abs_sub_comm, exact max_sub_min_eq_abs' _ _ }
end add_group
end covariant_add_le
section linear_ordered_add_comm_group
variables [linear_ordered_add_comm_group α] {a b c d : α}
lemma abs_le : |a| ≤ b ↔ - b ≤ a ∧ a ≤ b := by rw [abs_le', and.comm, neg_le]
lemma le_abs' : a ≤ |b| ↔ b ≤ -a ∨ a ≤ b := by rw [le_abs, or.comm, le_neg]
lemma neg_le_of_abs_le (h : |a| ≤ b) : -b ≤ a := (abs_le.mp h).1
lemma le_of_abs_le (h : |a| ≤ b) : a ≤ b := (abs_le.mp h).2
@[to_additive] lemma apply_abs_le_mul_of_one_le' {β : Type*} [mul_one_class β] [preorder β]
[covariant_class β β (*) (≤)] [covariant_class β β (swap (*)) (≤)] {f : α → β} {a : α}
(h₁ : 1 ≤ f a) (h₂ : 1 ≤ f (-a)) :
f (|a|) ≤ f a * f (-a) :=
(le_total a 0).by_cases (λ ha, (abs_of_nonpos ha).symm ▸ le_mul_of_one_le_left' h₁)
(λ ha, (abs_of_nonneg ha).symm ▸ le_mul_of_one_le_right' h₂)
@[to_additive] lemma apply_abs_le_mul_of_one_le {β : Type*} [mul_one_class β] [preorder β]
[covariant_class β β (*) (≤)] [covariant_class β β (swap (*)) (≤)] {f : α → β}
(h : ∀ x, 1 ≤ f x) (a : α) :
f (|a|) ≤ f a * f (-a) :=
apply_abs_le_mul_of_one_le' (h _) (h _)
/--
The **triangle inequality** in `linear_ordered_add_comm_group`s.
-/
lemma abs_add (a b : α) : |a + b| ≤ |a| + |b| :=
abs_le.2 ⟨(neg_add (|a|) (|b|)).symm ▸
add_le_add (neg_le.2 $ neg_le_abs_self _) (neg_le.2 $ neg_le_abs_self _),
add_le_add (le_abs_self _) (le_abs_self _)⟩
lemma abs_add' (a b : α) : |a| ≤ |b| + |b + a| :=
by simpa using abs_add (-b) (b + a)
theorem abs_sub (a b : α) :
|a - b| ≤ |a| + |b| :=
by { rw [sub_eq_add_neg, ←abs_neg b], exact abs_add a _ }
lemma abs_sub_le_iff : |a - b| ≤ c ↔ a - b ≤ c ∧ b - a ≤ c :=
by rw [abs_le, neg_le_sub_iff_le_add, sub_le_iff_le_add', and_comm, sub_le_iff_le_add']
lemma abs_sub_lt_iff : |a - b| < c ↔ a - b < c ∧ b - a < c :=
by rw [abs_lt, neg_lt_sub_iff_lt_add', sub_lt_iff_lt_add', and_comm, sub_lt_iff_lt_add']
lemma sub_le_of_abs_sub_le_left (h : |a - b| ≤ c) : b - c ≤ a :=
sub_le.1 $ (abs_sub_le_iff.1 h).2
lemma sub_le_of_abs_sub_le_right (h : |a - b| ≤ c) : a - c ≤ b :=
sub_le_of_abs_sub_le_left (abs_sub_comm a b ▸ h)
lemma sub_lt_of_abs_sub_lt_left (h : |a - b| < c) : b - c < a :=
sub_lt.1 $ (abs_sub_lt_iff.1 h).2
lemma sub_lt_of_abs_sub_lt_right (h : |a - b| < c) : a - c < b :=
sub_lt_of_abs_sub_lt_left (abs_sub_comm a b ▸ h)
lemma abs_sub_abs_le_abs_sub (a b : α) : |a| - |b| ≤ |a - b| :=
sub_le_iff_le_add.2 $
calc |a| = |a - b + b| : by rw [sub_add_cancel]
... ≤ |a - b| + |b| : abs_add _ _
lemma abs_abs_sub_abs_le_abs_sub (a b : α) : | |a| - |b| | ≤ |a - b| :=
abs_sub_le_iff.2 ⟨abs_sub_abs_le_abs_sub _ _, by rw abs_sub_comm; apply abs_sub_abs_le_abs_sub⟩
lemma abs_eq (hb : 0 ≤ b) : |a| = b ↔ a = b ∨ a = -b :=
begin
refine ⟨eq_or_eq_neg_of_abs_eq, _⟩,
rintro (rfl|rfl); simp only [abs_neg, abs_of_nonneg hb]
end
lemma abs_le_max_abs_abs (hab : a ≤ b) (hbc : b ≤ c) : |b| ≤ max (|a|) (|c|) :=
abs_le'.2
⟨by simp [hbc.trans (le_abs_self c)],
by simp [(neg_le_neg_iff.mpr hab).trans (neg_le_abs_self a)]⟩
lemma eq_of_abs_sub_eq_zero {a b : α} (h : |a - b| = 0) : a = b :=
sub_eq_zero.1 $ abs_eq_zero.1 h
lemma abs_sub_le (a b c : α) : |a - c| ≤ |a - b| + |b - c| :=
calc
|a - c| = |a - b + (b - c)| : by rw [sub_add_sub_cancel]
... ≤ |a - b| + |b - c| : abs_add _ _
lemma abs_add_three (a b c : α) : |a + b + c| ≤ |a| + |b| + |c| :=
(abs_add _ _).trans (add_le_add_right (abs_add _ _) _)
lemma dist_bdd_within_interval {a b lb ub : α} (hal : lb ≤ a) (hau : a ≤ ub)
(hbl : lb ≤ b) (hbu : b ≤ ub) : |a - b| ≤ ub - lb :=
abs_sub_le_iff.2 ⟨sub_le_sub hau hbl, sub_le_sub hbu hal⟩
lemma eq_of_abs_sub_nonpos (h : |a - b| ≤ 0) : a = b :=
eq_of_abs_sub_eq_zero (le_antisymm h (abs_nonneg (a - b)))
lemma max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) :=
begin
simp only [sub_le_iff_le_add, max_le_iff], split,
calc a = a - c + c : (sub_add_cancel a c).symm
... ≤ max (a - c) (b - d) + max c d : add_le_add (le_max_left _ _) (le_max_left _ _),
calc b = b - d + d : (sub_add_cancel b d).symm
... ≤ max (a - c) (b - d) + max c d : add_le_add (le_max_right _ _) (le_max_right _ _)
end
lemma abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) :=
begin
refine abs_sub_le_iff.2 ⟨_, _⟩,
{ exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _)) },
{ rw [abs_sub_comm a c, abs_sub_comm b d],
exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _)) }
end
lemma abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) :=
by simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm]
using abs_max_sub_max_le_max (-a) (-b) (-c) (-d)
lemma abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| :=
by simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)]
using abs_max_sub_max_le_max a c b c
instance with_top.linear_ordered_add_comm_group_with_top :
linear_ordered_add_comm_group_with_top (with_top α) :=
{ neg := option.map (λ a : α, -a),
neg_top := @option.map_none _ _ (λ a : α, -a),
add_neg_cancel := begin
rintro (a | a) ha,
{ exact (ha rfl).elim },
{ exact with_top.coe_add.symm.trans (with_top.coe_eq_coe.2 (add_neg_self a)) }
end,
.. with_top.linear_ordered_add_comm_monoid_with_top,
.. option.nontrivial }
@[simp, norm_cast]
lemma with_top.coe_neg (a : α) : ((-a : α) : with_top α) = -a := rfl
end linear_ordered_add_comm_group
namespace add_comm_group
/-- A collection of elements in an `add_comm_group` designated as "non-negative".
This is useful for constructing an `ordered_add_commm_group`
by choosing a positive cone in an exisiting `add_comm_group`. -/
@[nolint has_inhabited_instance]
structure positive_cone (α : Type*) [add_comm_group α] :=
(nonneg : α → Prop)
(pos : α → Prop := λ a, nonneg a ∧ ¬ nonneg (-a))
(pos_iff : ∀ a, pos a ↔ nonneg a ∧ ¬ nonneg (-a) . order_laws_tac)
(zero_nonneg : nonneg 0)
(add_nonneg : ∀ {a b}, nonneg a → nonneg b → nonneg (a + b))
(nonneg_antisymm : ∀ {a}, nonneg a → nonneg (-a) → a = 0)
/-- A positive cone in an `add_comm_group` induces a linear order if
for every `a`, either `a` or `-a` is non-negative. -/
@[nolint has_inhabited_instance]
structure total_positive_cone (α : Type*) [add_comm_group α] extends positive_cone α :=
(nonneg_decidable : decidable_pred nonneg)
(nonneg_total : ∀ a : α, nonneg a ∨ nonneg (-a))
/-- Forget that a `total_positive_cone` is total. -/
add_decl_doc total_positive_cone.to_positive_cone
end add_comm_group
namespace ordered_add_comm_group
open add_comm_group
/-- Construct an `ordered_add_comm_group` by
designating a positive cone in an existing `add_comm_group`. -/
def mk_of_positive_cone {α : Type*} [add_comm_group α] (C : positive_cone α) :
ordered_add_comm_group α :=
{ le := λ a b, C.nonneg (b - a),
lt := λ a b, C.pos (b - a),
lt_iff_le_not_le := λ a b, by simp; rw [C.pos_iff]; simp,
le_refl := λ a, by simp [C.zero_nonneg],
le_trans := λ a b c nab nbc, by simp [-sub_eq_add_neg];
rw ← sub_add_sub_cancel; exact C.add_nonneg nbc nab,
le_antisymm := λ a b nab nba, eq_of_sub_eq_zero $
C.nonneg_antisymm nba (by rw neg_sub; exact nab),
add_le_add_left := λ a b nab c, by simpa [(≤), preorder.le] using nab,
..‹add_comm_group α› }
end ordered_add_comm_group
namespace linear_ordered_add_comm_group
open add_comm_group
/-- Construct a `linear_ordered_add_comm_group` by
designating a positive cone in an existing `add_comm_group`
such that for every `a`, either `a` or `-a` is non-negative. -/
def mk_of_positive_cone {α : Type*} [add_comm_group α] (C : total_positive_cone α) :
linear_ordered_add_comm_group α :=
{ le_total := λ a b, by { convert C.nonneg_total (b - a), change C.nonneg _ = _, congr, simp, },
decidable_le := λ a b, C.nonneg_decidable _,
..ordered_add_comm_group.mk_of_positive_cone C.to_positive_cone }
end linear_ordered_add_comm_group
namespace prod
variables {G H : Type*}
@[to_additive]
instance [ordered_comm_group G] [ordered_comm_group H] :
ordered_comm_group (G × H) :=
{ .. prod.comm_group, .. prod.partial_order G H, .. prod.ordered_cancel_comm_monoid }
end prod
section type_tags
instance [ordered_add_comm_group α] : ordered_comm_group (multiplicative α) :=
{ ..multiplicative.comm_group,
..multiplicative.ordered_comm_monoid }
instance [ordered_comm_group α] : ordered_add_comm_group (additive α) :=
{ ..additive.add_comm_group,
..additive.ordered_add_comm_monoid }
instance [linear_ordered_add_comm_group α] : linear_ordered_comm_group (multiplicative α) :=
{ ..multiplicative.linear_order,
..multiplicative.ordered_comm_group }
instance [linear_ordered_comm_group α] : linear_ordered_add_comm_group (additive α) :=
{ ..additive.linear_order,
..additive.ordered_add_comm_group }
end type_tags
section norm_num_lemmas
/- The following lemmas are stated so that the `norm_num` tactic can use them with the
expected signatures. -/
variables [ordered_comm_group α] {a b : α}
@[to_additive neg_le_neg]
lemma inv_le_inv' : a ≤ b → b⁻¹ ≤ a⁻¹ :=
inv_le_inv_iff.mpr
@[to_additive neg_lt_neg]
lemma inv_lt_inv' : a < b → b⁻¹ < a⁻¹ :=
inv_lt_inv_iff.mpr
/- The additive version is also a `linarith` lemma. -/
@[to_additive]
theorem inv_lt_one_of_one_lt : 1 < a → a⁻¹ < 1 :=
inv_lt_one_iff_one_lt.mpr
/- The additive version is also a `linarith` lemma. -/
@[to_additive]
lemma inv_le_one_of_one_le : 1 ≤ a → a⁻¹ ≤ 1 :=
inv_le_one'.mpr
@[to_additive neg_nonneg_of_nonpos]
lemma one_le_inv_of_le_one : a11 ≤ a⁻¹ :=
one_le_inv'.mpr
end norm_num_lemmas
section
variables {β : Type*}
[group α] [preorder α] [covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (≤)]
[preorder β] {f : β → α} {s : set β}
@[to_additive] lemma monotone.inv (hf : monotone f) : antitone (λ x, (f x)⁻¹) :=
λ x y hxy, inv_le_inv_iff.2 (hf hxy)
@[to_additive] lemma antitone.inv (hf : antitone f) : monotone (λ x, (f x)⁻¹) :=
λ x y hxy, inv_le_inv_iff.2 (hf hxy)
@[to_additive] lemma monotone_on.inv (hf : monotone_on f s) :
antitone_on (λ x, (f x)⁻¹) s :=
λ x hx y hy hxy, inv_le_inv_iff.2 (hf hx hy hxy)
@[to_additive] lemma antitone_on.inv (hf : antitone_on f s) :
monotone_on (λ x, (f x)⁻¹) s :=
λ x hx y hy hxy, inv_le_inv_iff.2 (hf hx hy hxy)
end
section
variables {β : Type*}
[group α] [preorder α] [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)]
[preorder β] {f : β → α} {s : set β}
@[to_additive] lemma strict_mono.inv (hf : strict_mono f) : strict_anti (λ x, (f x)⁻¹) :=
λ x y hxy, inv_lt_inv_iff.2 (hf hxy)
@[to_additive] lemma strict_anti.inv (hf : strict_anti f) : strict_mono (λ x, (f x)⁻¹) :=
λ x y hxy, inv_lt_inv_iff.2 (hf hxy)
@[to_additive] lemma strict_mono_on.inv (hf : strict_mono_on f s) :
strict_anti_on (λ x, (f x)⁻¹) s :=
λ x hx y hy hxy, inv_lt_inv_iff.2 (hf hx hy hxy)
@[to_additive] lemma strict_anti_on.inv (hf : strict_anti_on f s) :
strict_mono_on (λ x, (f x)⁻¹) s :=
λ x hx y hy hxy, inv_lt_inv_iff.2 (hf hx hy hxy)
end