Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Christopher Hoskin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Christopher Hoskin | |
-/ | |
import algebra.group_power.basic -- Needed for squares | |
import algebra.order.group | |
import tactic.nth_rewrite | |
/-! | |
# Lattice ordered groups | |
Lattice ordered groups were introduced by [Birkhoff][birkhoff1942]. | |
They form the algebraic underpinnings of vector lattices, Banach lattices, AL-space, AM-space etc. | |
This file develops the basic theory, concentrating on the commutative case. | |
## Main statements | |
- `pos_div_neg`: Every element `a` of a lattice ordered commutative group has a decomposition | |
`aβΊ-aβ»` into the difference of the positive and negative component. | |
- `pos_inf_neg_eq_one`: The positive and negative components are coprime. | |
- `abs_triangle`: The absolute value operation satisfies the triangle inequality. | |
It is shown that the inf and sup operations are related to the absolute value operation by a | |
number of equations and inequalities. | |
## Notations | |
- `aβΊ = a β 0`: The *positive component* of an element `a` of a lattice ordered commutative group | |
- `aβ» = (-a) β 0`: The *negative component* of an element `a` of a lattice ordered commutative group | |
- `|a| = aβ(-a)`: The *absolute value* of an element `a` of a lattice ordered commutative group | |
## Implementation notes | |
A lattice ordered commutative group is a type `Ξ±` satisfying: | |
* `[lattice Ξ±]` | |
* `[comm_group Ξ±]` | |
* `[covariant_class Ξ± Ξ± (*) (β€)]` | |
The remainder of the file establishes basic properties of lattice ordered commutative groups. A | |
number of these results also hold in the non-commutative case ([Birkhoff][birkhoff1942], | |
[Fuchs][fuchs1963]) but we have not developed that here, since we are primarily interested in vector | |
lattices. | |
## References | |
* [Birkhoff, Lattice-ordered Groups][birkhoff1942] | |
* [Bourbaki, Algebra II][bourbaki1981] | |
* [Fuchs, Partially Ordered Algebraic Systems][fuchs1963] | |
* [Zaanen, Lectures on "Riesz Spaces"][zaanen1966] | |
* [Banasiak, Banach Lattices in Applications][banasiak] | |
## Tags | |
lattice, ordered, group | |
-/ | |
universe u | |
-- A linearly ordered additive commutative group is a lattice ordered commutative group | |
@[priority 100, to_additive] -- see Note [lower instance priority] | |
instance linear_ordered_comm_group.to_covariant_class (Ξ± : Type u) | |
[linear_ordered_comm_group Ξ±] : covariant_class Ξ± Ξ± (*) (β€) := | |
{ elim := Ξ» a b c bc, linear_ordered_comm_group.mul_le_mul_left _ _ bc a } | |
variables {Ξ± : Type u} [lattice Ξ±] [comm_group Ξ±] | |
-- Special case of Bourbaki A.VI.9 (1) | |
-- c + (a β b) = (c + a) β (c + b) | |
@[to_additive] | |
lemma mul_sup [covariant_class Ξ± Ξ± (*) (β€)] (a b c : Ξ±) : c * (a β b) = (c * a) β (c * b) := | |
begin | |
refine le_antisymm _ (by simp), | |
rw [β mul_le_mul_iff_left (cβ»ΒΉ), β mul_assoc, inv_mul_self, one_mul], | |
exact sup_le (by simp) (by simp), | |
end | |
@[to_additive] | |
lemma mul_inf [covariant_class Ξ± Ξ± (*) (β€)] (a b c : Ξ±) : c * (a β b) = (c * a) β (c * b) := | |
begin | |
refine le_antisymm (by simp) _, | |
rw [β mul_le_mul_iff_left (cβ»ΒΉ), β mul_assoc, inv_mul_self, one_mul], | |
exact le_inf (by simp) (by simp), | |
end | |
-- Special case of Bourbaki A.VI.9 (2) | |
-- -(a β b)=(-a) β (-b) | |
@[to_additive] | |
lemma inv_sup_eq_inv_inf_inv [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : (a β b)β»ΒΉ = aβ»ΒΉ β bβ»ΒΉ := | |
begin | |
apply le_antisymm, | |
{ refine le_inf _ _, | |
{ rw inv_le_inv_iff, exact le_sup_left, }, | |
{ rw inv_le_inv_iff, exact le_sup_right, } }, | |
{ rw [β inv_le_inv_iff, inv_inv], | |
refine sup_le _ _, | |
{ rw β inv_le_inv_iff, simp, }, | |
{ rw β inv_le_inv_iff, simp, } } | |
end | |
-- -(a β b) = -a β -b | |
@[to_additive] | |
lemma inv_inf_eq_sup_inv [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : (a β b)β»ΒΉ = aβ»ΒΉ β bβ»ΒΉ := | |
by rw [β inv_inv (aβ»ΒΉ β bβ»ΒΉ), inv_sup_eq_inv_inf_inv aβ»ΒΉ bβ»ΒΉ, inv_inv, inv_inv] | |
-- Bourbaki A.VI.10 Prop 7 | |
-- a β b + (a β b) = a + b | |
@[to_additive] | |
lemma inf_mul_sup [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : (a β b) * (a β b) = a * b := | |
calc (a β b) * (a β b) = (a β b) * ((a * b) * (bβ»ΒΉ β aβ»ΒΉ)) : | |
by { rw mul_sup bβ»ΒΉ aβ»ΒΉ (a * b), simp, } | |
... = (a β b) * ((a * b) * (a β b)β»ΒΉ) : by rw [inv_inf_eq_sup_inv, sup_comm] | |
... = a * b : by rw [mul_comm, inv_mul_cancel_right] | |
namespace lattice_ordered_comm_group | |
/-- | |
Let `Ξ±` be a lattice ordered commutative group with identity `1`. For an element `a` of type `Ξ±`, | |
the element `a β 1` is said to be the *positive component* of `a`, denoted `aβΊ`. | |
-/ | |
@[to_additive /-" | |
Let `Ξ±` be a lattice ordered commutative group with identity `0`. For an element `a` of type `Ξ±`, | |
the element `a β 0` is said to be the *positive component* of `a`, denoted `aβΊ`. | |
"-/, | |
priority 100] -- see Note [lower instance priority] | |
instance has_one_lattice_has_pos_part : has_pos_part (Ξ±) := β¨Ξ» a, a β 1β© | |
@[to_additive pos_part_def] | |
lemma m_pos_part_def (a : Ξ±) : aβΊ = a β 1 := rfl | |
/-- | |
Let `Ξ±` be a lattice ordered commutative group with identity `1`. For an element `a` of type `Ξ±`, | |
the element `(-a) β 1` is said to be the *negative component* of `a`, denoted `aβ»`. | |
-/ | |
@[to_additive /-" | |
Let `Ξ±` be a lattice ordered commutative group with identity `0`. For an element `a` of type `Ξ±`, | |
the element `(-a) β 0` is said to be the *negative component* of `a`, denoted `aβ»`. | |
"-/, | |
priority 100] -- see Note [lower instance priority] | |
instance has_one_lattice_has_neg_part : has_neg_part (Ξ±) := β¨Ξ» a, aβ»ΒΉ β 1β© | |
@[to_additive neg_part_def] | |
lemma m_neg_part_def (a : Ξ±) : aβ» = aβ»ΒΉ β 1 := rfl | |
@[simp, to_additive] | |
lemma pos_one : (1 : Ξ±)βΊ = 1 := sup_idem | |
@[simp, to_additive] | |
lemma neg_one : (1 : Ξ±)β» = 1 := by rw [m_neg_part_def, inv_one, sup_idem] | |
-- aβ» = -(a β 0) | |
@[to_additive] | |
lemma neg_eq_inv_inf_one [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : aβ» = (a β 1)β»ΒΉ := | |
by rw [m_neg_part_def, β inv_inj, inv_sup_eq_inv_inf_inv, inv_inv, inv_inv, inv_one] | |
@[to_additive le_abs] | |
lemma le_mabs (a : Ξ±) : a β€ |a| := le_sup_left | |
@[to_additive] | |
-- -a β€ |a| | |
lemma inv_le_abs (a : Ξ±) : aβ»ΒΉ β€ |a| := le_sup_right | |
-- 0 β€ aβΊ | |
@[to_additive pos_nonneg] | |
lemma one_le_pos (a : Ξ±) : 1 β€ aβΊ := le_sup_right | |
-- 0 β€ aβ» | |
@[to_additive neg_nonneg] | |
lemma one_le_neg (a : Ξ±) : 1 β€ aβ» := le_sup_right | |
@[to_additive] -- pos_nonpos_iff | |
lemma pos_le_one_iff {a : Ξ±} : aβΊ β€ 1 β a β€ 1 := | |
by { rw [m_pos_part_def, sup_le_iff], simp, } | |
@[to_additive] -- neg_nonpos_iff | |
lemma neg_le_one_iff {a : Ξ±} : aβ» β€ 1 β aβ»ΒΉ β€ 1 := | |
by { rw [m_neg_part_def, sup_le_iff], simp, } | |
@[to_additive] | |
lemma pos_eq_one_iff {a : Ξ±} : aβΊ = 1 β a β€ 1 := | |
by { rw le_antisymm_iff, simp only [one_le_pos, and_true], exact pos_le_one_iff, } | |
@[to_additive] | |
lemma neg_eq_one_iff' {a : Ξ±} : aβ» = 1 β aβ»ΒΉ β€ 1 := | |
by { rw le_antisymm_iff, simp only [one_le_neg, and_true], rw neg_le_one_iff, } | |
@[to_additive] | |
lemma neg_eq_one_iff [covariant_class Ξ± Ξ± has_mul.mul has_le.le] {a : Ξ±} : aβ» = 1 β 1 β€ a := | |
by { rw le_antisymm_iff, simp only [one_le_neg, and_true], rw [neg_le_one_iff, inv_le_one'], } | |
@[to_additive le_pos] | |
lemma m_le_pos (a : Ξ±) : a β€ aβΊ := le_sup_left | |
-- -a β€ aβ» | |
@[to_additive] | |
lemma inv_le_neg (a : Ξ±) : aβ»ΒΉ β€ aβ» := le_sup_left | |
-- Bourbaki A.VI.12 | |
-- aβ» = (-a)βΊ | |
@[to_additive] | |
lemma neg_eq_pos_inv (a : Ξ±) : aβ» = (aβ»ΒΉ)βΊ := rfl | |
-- aβΊ = (-a)β» | |
@[to_additive] | |
lemma pos_eq_neg_inv (a : Ξ±) : aβΊ = (aβ»ΒΉ)β» := by simp [neg_eq_pos_inv] | |
-- We use this in Bourbaki A.VI.12 Prop 9 a) | |
-- c + (a β b) = (c + a) β (c + b) | |
@[to_additive] | |
lemma mul_inf_eq_mul_inf_mul [covariant_class Ξ± Ξ± (*) (β€)] | |
(a b c : Ξ±) : c * (a β b) = (c * a) β (c * b) := | |
begin | |
refine le_antisymm (by simp) _, | |
rw [β mul_le_mul_iff_left cβ»ΒΉ, β mul_assoc, inv_mul_self, one_mul, le_inf_iff], | |
simp, | |
end | |
-- Bourbaki A.VI.12 Prop 9 a) | |
-- a = aβΊ - aβ» | |
@[simp, to_additive] | |
lemma pos_div_neg [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : aβΊ / aβ» = a := | |
begin | |
symmetry, | |
rw div_eq_mul_inv, | |
apply eq_mul_inv_of_mul_eq, | |
rw [m_neg_part_def, mul_sup, mul_one, mul_right_inv, sup_comm, m_pos_part_def], | |
end | |
-- Bourbaki A.VI.12 Prop 9 a) | |
-- aβΊ β aβ» = 0 (`aβΊ` and `aβ»` are co-prime, and, since they are positive, disjoint) | |
@[to_additive] | |
lemma pos_inf_neg_eq_one [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : aβΊ β aβ» = 1 := | |
by rw [βmul_right_inj (aβ»)β»ΒΉ, mul_inf_eq_mul_inf_mul, mul_one, mul_left_inv, mul_comm, | |
β div_eq_mul_inv, pos_div_neg, neg_eq_inv_inf_one, inv_inv] | |
-- Bourbaki A.VI.12 (with a and b swapped) | |
-- aβb = b + (a - b)βΊ | |
@[to_additive] | |
lemma sup_eq_mul_pos_div [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : a β b = b * (a / b)βΊ := | |
calc a β b = (b * (a / b)) β (b * 1) : by rw [mul_one b, div_eq_mul_inv, mul_comm a, | |
mul_inv_cancel_left] | |
... = b * ((a / b) β 1) : by rw β mul_sup (a / b) 1 b | |
-- Bourbaki A.VI.12 (with a and b swapped) | |
-- aβb = a - (a - b)βΊ | |
@[to_additive] | |
lemma inf_eq_div_pos_div [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : a β b = a / (a / b)βΊ := | |
calc a β b = (a * 1) β (a * (b / a)) : by { rw [mul_one a, div_eq_mul_inv, mul_comm b, | |
mul_inv_cancel_left], } | |
... = a * (1 β (b / a)) : by rw β mul_inf_eq_mul_inf_mul 1 (b / a) a | |
... = a * ((b / a) β 1) : by rw inf_comm | |
... = a * ((a / b)β»ΒΉ β 1) : by { rw div_eq_mul_inv, nth_rewrite 0 β inv_inv b, | |
rw [β mul_inv, mul_comm bβ»ΒΉ, β div_eq_mul_inv], } | |
... = a * ((a / b)β»ΒΉ β 1β»ΒΉ) : by rw inv_one | |
... = a / ((a / b) β 1) : by rw [β inv_sup_eq_inv_inf_inv, β div_eq_mul_inv] | |
-- Bourbaki A.VI.12 Prop 9 c) | |
@[to_additive le_iff_pos_le_neg_ge] | |
lemma m_le_iff_pos_le_neg_ge [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : a β€ b β aβΊ β€ bβΊ β§ bβ» β€ aβ» := | |
begin | |
split; intro h, | |
{ split, | |
{ exact sup_le (h.trans (m_le_pos b)) (one_le_pos b), }, | |
{ rw β inv_le_inv_iff at h, | |
exact sup_le (h.trans (inv_le_neg a)) (one_le_neg a), } }, | |
{ rw [β pos_div_neg a, β pos_div_neg b], | |
exact div_le_div'' h.1 h.2, } | |
end | |
@[to_additive neg_abs] | |
lemma m_neg_abs [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : |a|β» = 1 := | |
begin | |
refine le_antisymm _ _, | |
{ rw β pos_inf_neg_eq_one a, | |
apply le_inf, | |
{ rw pos_eq_neg_inv, | |
exact ((m_le_iff_pos_le_neg_ge _ _).mp (inv_le_abs a)).right, }, | |
{ exact and.right (iff.elim_left (m_le_iff_pos_le_neg_ge _ _) (le_mabs a)), } }, | |
{ exact one_le_neg _, } | |
end | |
@[to_additive pos_abs] | |
lemma m_pos_abs [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : |a|βΊ = |a| := | |
begin | |
nth_rewrite 1 β pos_div_neg (|a|), | |
rw div_eq_mul_inv, | |
symmetry, | |
rw [mul_right_eq_self, inv_eq_one], | |
exact m_neg_abs a, | |
end | |
@[to_additive abs_nonneg] | |
lemma one_le_abs [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : 1 β€ |a| := | |
by { rw β m_pos_abs, exact one_le_pos _, } | |
-- The proof from Bourbaki A.VI.12 Prop 9 d) | |
-- |a| = aβΊ - aβ» | |
@[to_additive] | |
lemma pos_mul_neg [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : |a| = aβΊ * aβ» := | |
begin | |
refine le_antisymm _ _, | |
{ refine sup_le _ _, | |
{ nth_rewrite 0 β mul_one a, | |
exact mul_le_mul' (m_le_pos a) (one_le_neg a) }, | |
{ nth_rewrite 0 β one_mul (aβ»ΒΉ), | |
exact mul_le_mul' (one_le_pos a) (inv_le_neg a) } }, | |
{ rw [β inf_mul_sup, pos_inf_neg_eq_one, one_mul, β m_pos_abs a], | |
apply sup_le, | |
{ exact ((m_le_iff_pos_le_neg_ge _ _).mp (le_mabs a)).left, }, | |
{ rw neg_eq_pos_inv, | |
exact ((m_le_iff_pos_le_neg_ge _ _).mp (inv_le_abs a)).left, }, } | |
end | |
-- a β b - (a β b) = |b - a| | |
@[to_additive] | |
lemma sup_div_inf_eq_abs_div [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : | |
(a β b) / (a β b) = |b / a| := | |
begin | |
rw [sup_eq_mul_pos_div, inf_comm, inf_eq_div_pos_div, div_eq_mul_inv], | |
nth_rewrite 1 div_eq_mul_inv, | |
rw [mul_inv_rev, inv_inv, mul_comm, β mul_assoc, inv_mul_cancel_right, pos_eq_neg_inv (a / b)], | |
nth_rewrite 1 div_eq_mul_inv, | |
rw [mul_inv_rev, β div_eq_mul_inv, inv_inv, β pos_mul_neg], | |
end | |
-- 2β’(a β b) = a + b + |b - a| | |
@[to_additive two_sup_eq_add_add_abs_sub] | |
lemma sup_sq_eq_mul_mul_abs_div [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : | |
(a β b)^2 = a * b * |b / a| := | |
by rw [β inf_mul_sup a b, β sup_div_inf_eq_abs_div, div_eq_mul_inv, β mul_assoc, mul_comm, | |
mul_assoc, β pow_two, inv_mul_cancel_left] | |
-- 2β’(a β b) = a + b - |b - a| | |
@[to_additive two_inf_eq_add_sub_abs_sub] | |
lemma inf_sq_eq_mul_div_abs_div [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : | |
(a β b)^2 = a * b / |b / a| := | |
by rw [β inf_mul_sup a b, β sup_div_inf_eq_abs_div, div_eq_mul_inv, div_eq_mul_inv, | |
mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_comm_assoc, β pow_two] | |
/-- | |
Every lattice ordered commutative group is a distributive lattice | |
-/ | |
@[to_additive | |
"Every lattice ordered commutative additive group is a distributive lattice" | |
] | |
def lattice_ordered_comm_group_to_distrib_lattice (Ξ± : Type u) | |
[s: lattice Ξ±] [comm_group Ξ±] [covariant_class Ξ± Ξ± (*) (β€)] : distrib_lattice Ξ± := | |
{ le_sup_inf := | |
begin | |
intros, | |
rw [β mul_le_mul_iff_left (x β (y β z)), inf_mul_sup x (y β z), | |
β inv_mul_le_iff_le_mul, le_inf_iff], | |
split, | |
{ rw [inv_mul_le_iff_le_mul, β inf_mul_sup x y], | |
apply mul_le_mul', | |
{ apply inf_le_inf_left, apply inf_le_left, }, | |
{ apply inf_le_left, } }, | |
{ rw [inv_mul_le_iff_le_mul, β inf_mul_sup x z], | |
apply mul_le_mul', | |
{ apply inf_le_inf_left, apply inf_le_right, }, | |
{ apply inf_le_right, }, } | |
end, | |
..s } | |
-- See, e.g. Zaanen, Lectures on Riesz Spaces | |
-- 3rd lecture | |
-- |a β c - (b β c)| + |a β c-b β c| = |a - b| | |
@[to_additive] | |
theorem abs_div_sup_mul_abs_div_inf [covariant_class Ξ± Ξ± (*) (β€)] (a b c : Ξ±) : | |
|(a β c) / (b β c)| * |(a β c) / (b β c)| = |a / b| := | |
begin | |
letI : distrib_lattice Ξ± := lattice_ordered_comm_group_to_distrib_lattice Ξ±, | |
calc |(a β c) / (b β c)| * |(a β c) / (b β c)| = | |
((b β c β (a β c)) / ((b β c) β (a β c))) * |(a β c) / (b β c)| : by rw sup_div_inf_eq_abs_div | |
... = (b β c β (a β c)) / ((b β c) β (a β c)) * (((b β c) β (a β c)) / ((b β c) β (a β c))) : | |
by rw sup_div_inf_eq_abs_div (b β c) (a β c) | |
... = (b β a β c) / ((b β a) β c) * (((b β a) β c) / (b β a β c)) : by | |
{ rw [β sup_inf_right, β inf_sup_right, sup_assoc], | |
nth_rewrite 1 sup_comm, | |
rw [sup_right_idem, sup_assoc, inf_assoc], | |
nth_rewrite 3 inf_comm, | |
rw [inf_right_idem, inf_assoc], } | |
... = (b β a β c) * ((b β a) β c) /(((b β a) β c) * (b β a β c)) : by rw div_mul_div_comm | |
... = (b β a) * c / ((b β a) * c) : | |
by rw [mul_comm, inf_mul_sup, mul_comm (b β a β c), inf_mul_sup] | |
... = (b β a) / (b β a) : by rw [div_eq_mul_inv, mul_inv_rev, mul_assoc, mul_inv_cancel_left, | |
β div_eq_mul_inv] | |
... = |a / b| : by rw sup_div_inf_eq_abs_div | |
end | |
/-- If `a` is positive, then it is equal to its positive component `aβΊ`. -/ -- pos_of_nonneg | |
@[to_additive "If `a` is positive, then it is equal to its positive component `aβΊ`."] | |
lemma pos_of_one_le (a : Ξ±) (h : 1 β€ a) : aβΊ = a := | |
by { rw m_pos_part_def, exact sup_of_le_left h, } | |
-- 0 β€ a implies aβΊ = a | |
@[to_additive] -- pos_of_nonpos | |
lemma pos_of_le_one (a : Ξ±) (h : a β€ 1) : aβΊ = 1 := | |
pos_eq_one_iff.mpr h | |
@[to_additive neg_of_inv_nonneg] | |
lemma neg_of_one_le_inv (a : Ξ±) (h : 1 β€ aβ»ΒΉ) : aβ» = aβ»ΒΉ := | |
by { rw neg_eq_pos_inv, exact pos_of_one_le _ h, } | |
@[to_additive] -- neg_of_neg_nonpos | |
lemma neg_of_inv_le_one (a : Ξ±) (h : aβ»ΒΉ β€ 1) : aβ» = 1 := | |
neg_eq_one_iff'.mpr h | |
@[to_additive] -- neg_of_nonpos | |
lemma neg_of_le_one [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) (h : a β€ 1) : aβ» = aβ»ΒΉ := | |
by { refine neg_of_one_le_inv _ _, rw one_le_inv', exact h, } | |
@[to_additive] -- neg_of_nonneg' | |
lemma neg_of_one_le [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) (h : 1 β€ a) : aβ» = 1 := | |
neg_eq_one_iff.mpr h | |
-- 0 β€ a implies |a| = a | |
@[to_additive abs_of_nonneg] | |
lemma mabs_of_one_le [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) (h : 1 β€ a) : |a| = a := | |
begin | |
unfold has_abs.abs, | |
rw [sup_eq_mul_pos_div, div_eq_mul_inv, inv_inv, β pow_two, inv_mul_eq_iff_eq_mul, | |
β pow_two, pos_of_one_le], | |
rw pow_two, | |
apply one_le_mul h h, | |
end | |
/-- The unary operation of taking the absolute value is idempotent. -/ | |
@[simp, to_additive abs_abs "The unary operation of taking the absolute value is idempotent."] | |
lemma mabs_mabs [covariant_class Ξ± Ξ± (*) (β€)] (a : Ξ±) : | |a| | = |a| := | |
mabs_of_one_le _ (one_le_abs _) | |
@[to_additive abs_sup_sub_sup_le_abs] | |
lemma mabs_sup_div_sup_le_mabs [covariant_class Ξ± Ξ± (*) (β€)] (a b c : Ξ±) : | |
|(a β c) / (b β c)| β€ |a / b| := | |
begin | |
apply le_of_mul_le_of_one_le_left, | |
{ rw abs_div_sup_mul_abs_div_inf, }, | |
{ exact one_le_abs _, }, | |
end | |
@[to_additive abs_inf_sub_inf_le_abs] | |
lemma mabs_inf_div_inf_le_mabs [covariant_class Ξ± Ξ± (*) (β€)] (a b c : Ξ±) : | |
|(a β c) / (b β c)| β€ |a / b| := | |
begin | |
apply le_of_mul_le_of_one_le_right, | |
{ rw abs_div_sup_mul_abs_div_inf, }, | |
{ exact one_le_abs _, }, | |
end | |
-- Commutative case, Zaanen, 3rd lecture | |
-- For the non-commutative case, see Birkhoff Theorem 19 (27) | |
-- |(a β c) - (b β c)| β |(a β c) - (b β c)| β€ |a - b| | |
@[to_additive Birkhoff_inequalities] | |
theorem m_Birkhoff_inequalities [covariant_class Ξ± Ξ± (*) (β€)] (a b c : Ξ±) : | |
|(a β c) / (b β c)| β |(a β c) / (b β c)| β€ |a / b| := | |
sup_le (mabs_sup_div_sup_le_mabs a b c) (mabs_inf_div_inf_le_mabs a b c) | |
-- Banasiak Proposition 2.12, Zaanen 2nd lecture | |
/-- | |
The absolute value satisfies the triangle inequality. | |
-/ | |
@[to_additive abs_add_le] | |
lemma mabs_mul_le [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : |a * b| β€ |a| * |b| := | |
begin | |
apply sup_le, | |
{ exact mul_le_mul' (le_mabs a) (le_mabs b), }, | |
{ rw mul_inv, | |
exact mul_le_mul' (inv_le_abs _) (inv_le_abs _), } | |
end | |
-- |a - b| = |b - a| | |
@[to_additive] | |
lemma abs_inv_comm (a b : Ξ±) : |a/b| = |b/a| := | |
begin | |
unfold has_abs.abs, | |
rw [inv_div a b, β inv_inv (a / b), inv_div, sup_comm], | |
end | |
-- | |a| - |b| | β€ |a - b| | |
@[to_additive] | |
lemma abs_abs_div_abs_le [covariant_class Ξ± Ξ± (*) (β€)] (a b : Ξ±) : | |a| / |b| | β€ |a / b| := | |
begin | |
unfold has_abs.abs, | |
rw sup_le_iff, | |
split, | |
{ apply div_le_iff_le_mul.2, | |
convert mabs_mul_le (a/b) b, | |
{ rw div_mul_cancel', }, | |
{ rw div_mul_cancel', }, | |
{ exact covariant_swap_mul_le_of_covariant_mul_le Ξ±, } }, | |
{ rw [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_le_iff_le_mul, β abs_eq_sup_inv (a / b), | |
abs_inv_comm], | |
convert mabs_mul_le (b/a) a, | |
{ rw div_mul_cancel', }, | |
{rw div_mul_cancel', } }, | |
end | |
end lattice_ordered_comm_group | |