Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
18.9 kB
/-
Copyright (c) 2021 Christopher Hoskin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Christopher Hoskin
-/
import algebra.group_power.basic -- Needed for squares
import algebra.order.group
import tactic.nth_rewrite
/-!
# Lattice ordered groups
Lattice ordered groups were introduced by [Birkhoff][birkhoff1942].
They form the algebraic underpinnings of vector lattices, Banach lattices, AL-space, AM-space etc.
This file develops the basic theory, concentrating on the commutative case.
## Main statements
- `pos_div_neg`: Every element `a` of a lattice ordered commutative group has a decomposition
`a⁺-a⁻` into the difference of the positive and negative component.
- `pos_inf_neg_eq_one`: The positive and negative components are coprime.
- `abs_triangle`: The absolute value operation satisfies the triangle inequality.
It is shown that the inf and sup operations are related to the absolute value operation by a
number of equations and inequalities.
## Notations
- `a⁺ = a βŠ” 0`: The *positive component* of an element `a` of a lattice ordered commutative group
- `a⁻ = (-a) βŠ” 0`: The *negative component* of an element `a` of a lattice ordered commutative group
- `|a| = aβŠ”(-a)`: The *absolute value* of an element `a` of a lattice ordered commutative group
## Implementation notes
A lattice ordered commutative group is a type `Ξ±` satisfying:
* `[lattice Ξ±]`
* `[comm_group Ξ±]`
* `[covariant_class Ξ± Ξ± (*) (≀)]`
The remainder of the file establishes basic properties of lattice ordered commutative groups. A
number of these results also hold in the non-commutative case ([Birkhoff][birkhoff1942],
[Fuchs][fuchs1963]) but we have not developed that here, since we are primarily interested in vector
lattices.
## References
* [Birkhoff, Lattice-ordered Groups][birkhoff1942]
* [Bourbaki, Algebra II][bourbaki1981]
* [Fuchs, Partially Ordered Algebraic Systems][fuchs1963]
* [Zaanen, Lectures on "Riesz Spaces"][zaanen1966]
* [Banasiak, Banach Lattices in Applications][banasiak]
## Tags
lattice, ordered, group
-/
universe u
-- A linearly ordered additive commutative group is a lattice ordered commutative group
@[priority 100, to_additive] -- see Note [lower instance priority]
instance linear_ordered_comm_group.to_covariant_class (Ξ± : Type u)
[linear_ordered_comm_group Ξ±] : covariant_class Ξ± Ξ± (*) (≀) :=
{ elim := Ξ» a b c bc, linear_ordered_comm_group.mul_le_mul_left _ _ bc a }
variables {Ξ± : Type u} [lattice Ξ±] [comm_group Ξ±]
-- Special case of Bourbaki A.VI.9 (1)
-- c + (a βŠ” b) = (c + a) βŠ” (c + b)
@[to_additive]
lemma mul_sup [covariant_class Ξ± Ξ± (*) (≀)] (a b c : Ξ±) : c * (a βŠ” b) = (c * a) βŠ” (c * b) :=
begin
refine le_antisymm _ (by simp),
rw [← mul_le_mul_iff_left (c⁻¹), ← mul_assoc, inv_mul_self, one_mul],
exact sup_le (by simp) (by simp),
end
@[to_additive]
lemma mul_inf [covariant_class Ξ± Ξ± (*) (≀)] (a b c : Ξ±) : c * (a βŠ“ b) = (c * a) βŠ“ (c * b) :=
begin
refine le_antisymm (by simp) _,
rw [← mul_le_mul_iff_left (c⁻¹), ← mul_assoc, inv_mul_self, one_mul],
exact le_inf (by simp) (by simp),
end
-- Special case of Bourbaki A.VI.9 (2)
-- -(a βŠ” b)=(-a) βŠ“ (-b)
@[to_additive]
lemma inv_sup_eq_inv_inf_inv [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : (a βŠ” b)⁻¹ = a⁻¹ βŠ“ b⁻¹ :=
begin
apply le_antisymm,
{ refine le_inf _ _,
{ rw inv_le_inv_iff, exact le_sup_left, },
{ rw inv_le_inv_iff, exact le_sup_right, } },
{ rw [← inv_le_inv_iff, inv_inv],
refine sup_le _ _,
{ rw ← inv_le_inv_iff, simp, },
{ rw ← inv_le_inv_iff, simp, } }
end
-- -(a βŠ“ b) = -a βŠ” -b
@[to_additive]
lemma inv_inf_eq_sup_inv [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : (a βŠ“ b)⁻¹ = a⁻¹ βŠ” b⁻¹ :=
by rw [← inv_inv (a⁻¹ βŠ” b⁻¹), inv_sup_eq_inv_inf_inv a⁻¹ b⁻¹, inv_inv, inv_inv]
-- Bourbaki A.VI.10 Prop 7
-- a βŠ“ b + (a βŠ” b) = a + b
@[to_additive]
lemma inf_mul_sup [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : (a βŠ“ b) * (a βŠ” b) = a * b :=
calc (a βŠ“ b) * (a βŠ” b) = (a βŠ“ b) * ((a * b) * (b⁻¹ βŠ” a⁻¹)) :
by { rw mul_sup b⁻¹ a⁻¹ (a * b), simp, }
... = (a βŠ“ b) * ((a * b) * (a βŠ“ b)⁻¹) : by rw [inv_inf_eq_sup_inv, sup_comm]
... = a * b : by rw [mul_comm, inv_mul_cancel_right]
namespace lattice_ordered_comm_group
/--
Let `Ξ±` be a lattice ordered commutative group with identity `1`. For an element `a` of type `Ξ±`,
the element `a βŠ” 1` is said to be the *positive component* of `a`, denoted `a⁺`.
-/
@[to_additive /-"
Let `Ξ±` be a lattice ordered commutative group with identity `0`. For an element `a` of type `Ξ±`,
the element `a βŠ” 0` is said to be the *positive component* of `a`, denoted `a⁺`.
"-/,
priority 100] -- see Note [lower instance priority]
instance has_one_lattice_has_pos_part : has_pos_part (Ξ±) := ⟨λ a, a βŠ” 1⟩
@[to_additive pos_part_def]
lemma m_pos_part_def (a : Ξ±) : a⁺ = a βŠ” 1 := rfl
/--
Let `Ξ±` be a lattice ordered commutative group with identity `1`. For an element `a` of type `Ξ±`,
the element `(-a) βŠ” 1` is said to be the *negative component* of `a`, denoted `a⁻`.
-/
@[to_additive /-"
Let `Ξ±` be a lattice ordered commutative group with identity `0`. For an element `a` of type `Ξ±`,
the element `(-a) βŠ” 0` is said to be the *negative component* of `a`, denoted `a⁻`.
"-/,
priority 100] -- see Note [lower instance priority]
instance has_one_lattice_has_neg_part : has_neg_part (Ξ±) := ⟨λ a, a⁻¹ βŠ” 1⟩
@[to_additive neg_part_def]
lemma m_neg_part_def (a : Ξ±) : a⁻ = a⁻¹ βŠ” 1 := rfl
@[simp, to_additive]
lemma pos_one : (1 : α)⁺ = 1 := sup_idem
@[simp, to_additive]
lemma neg_one : (1 : α)⁻ = 1 := by rw [m_neg_part_def, inv_one, sup_idem]
-- a⁻ = -(a βŠ“ 0)
@[to_additive]
lemma neg_eq_inv_inf_one [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : a⁻ = (a βŠ“ 1)⁻¹ :=
by rw [m_neg_part_def, ← inv_inj, inv_sup_eq_inv_inf_inv, inv_inv, inv_inv, inv_one]
@[to_additive le_abs]
lemma le_mabs (a : Ξ±) : a ≀ |a| := le_sup_left
@[to_additive]
-- -a ≀ |a|
lemma inv_le_abs (a : Ξ±) : a⁻¹ ≀ |a| := le_sup_right
-- 0 ≀ a⁺
@[to_additive pos_nonneg]
lemma one_le_pos (a : Ξ±) : 1 ≀ a⁺ := le_sup_right
-- 0 ≀ a⁻
@[to_additive neg_nonneg]
lemma one_le_neg (a : Ξ±) : 1 ≀ a⁻ := le_sup_right
@[to_additive] -- pos_nonpos_iff
lemma pos_le_one_iff {a : Ξ±} : a⁺ ≀ 1 ↔ a ≀ 1 :=
by { rw [m_pos_part_def, sup_le_iff], simp, }
@[to_additive] -- neg_nonpos_iff
lemma neg_le_one_iff {a : Ξ±} : a⁻ ≀ 1 ↔ a⁻¹ ≀ 1 :=
by { rw [m_neg_part_def, sup_le_iff], simp, }
@[to_additive]
lemma pos_eq_one_iff {a : Ξ±} : a⁺ = 1 ↔ a ≀ 1 :=
by { rw le_antisymm_iff, simp only [one_le_pos, and_true], exact pos_le_one_iff, }
@[to_additive]
lemma neg_eq_one_iff' {a : Ξ±} : a⁻ = 1 ↔ a⁻¹ ≀ 1 :=
by { rw le_antisymm_iff, simp only [one_le_neg, and_true], rw neg_le_one_iff, }
@[to_additive]
lemma neg_eq_one_iff [covariant_class Ξ± Ξ± has_mul.mul has_le.le] {a : Ξ±} : a⁻ = 1 ↔ 1 ≀ a :=
by { rw le_antisymm_iff, simp only [one_le_neg, and_true], rw [neg_le_one_iff, inv_le_one'], }
@[to_additive le_pos]
lemma m_le_pos (a : Ξ±) : a ≀ a⁺ := le_sup_left
-- -a ≀ a⁻
@[to_additive]
lemma inv_le_neg (a : Ξ±) : a⁻¹ ≀ a⁻ := le_sup_left
-- Bourbaki A.VI.12
-- a⁻ = (-a)⁺
@[to_additive]
lemma neg_eq_pos_inv (a : α) : a⁻ = (a⁻¹)⁺ := rfl
-- a⁺ = (-a)⁻
@[to_additive]
lemma pos_eq_neg_inv (a : α) : a⁺ = (a⁻¹)⁻ := by simp [neg_eq_pos_inv]
-- We use this in Bourbaki A.VI.12 Prop 9 a)
-- c + (a βŠ“ b) = (c + a) βŠ“ (c + b)
@[to_additive]
lemma mul_inf_eq_mul_inf_mul [covariant_class Ξ± Ξ± (*) (≀)]
(a b c : Ξ±) : c * (a βŠ“ b) = (c * a) βŠ“ (c * b) :=
begin
refine le_antisymm (by simp) _,
rw [← mul_le_mul_iff_left c⁻¹, ← mul_assoc, inv_mul_self, one_mul, le_inf_iff],
simp,
end
-- Bourbaki A.VI.12 Prop 9 a)
-- a = a⁺ - a⁻
@[simp, to_additive]
lemma pos_div_neg [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : a⁺ / a⁻ = a :=
begin
symmetry,
rw div_eq_mul_inv,
apply eq_mul_inv_of_mul_eq,
rw [m_neg_part_def, mul_sup, mul_one, mul_right_inv, sup_comm, m_pos_part_def],
end
-- Bourbaki A.VI.12 Prop 9 a)
-- a⁺ βŠ“ a⁻ = 0 (`a⁺` and `a⁻` are co-prime, and, since they are positive, disjoint)
@[to_additive]
lemma pos_inf_neg_eq_one [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : a⁺ βŠ“ a⁻ = 1 :=
by rw [←mul_right_inj (a⁻)⁻¹, mul_inf_eq_mul_inf_mul, mul_one, mul_left_inv, mul_comm,
← div_eq_mul_inv, pos_div_neg, neg_eq_inv_inf_one, inv_inv]
-- Bourbaki A.VI.12 (with a and b swapped)
-- aβŠ”b = b + (a - b)⁺
@[to_additive]
lemma sup_eq_mul_pos_div [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : a βŠ” b = b * (a / b)⁺ :=
calc a βŠ” b = (b * (a / b)) βŠ” (b * 1) : by rw [mul_one b, div_eq_mul_inv, mul_comm a,
mul_inv_cancel_left]
... = b * ((a / b) βŠ” 1) : by rw ← mul_sup (a / b) 1 b
-- Bourbaki A.VI.12 (with a and b swapped)
-- aβŠ“b = a - (a - b)⁺
@[to_additive]
lemma inf_eq_div_pos_div [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : a βŠ“ b = a / (a / b)⁺ :=
calc a βŠ“ b = (a * 1) βŠ“ (a * (b / a)) : by { rw [mul_one a, div_eq_mul_inv, mul_comm b,
mul_inv_cancel_left], }
... = a * (1 βŠ“ (b / a)) : by rw ← mul_inf_eq_mul_inf_mul 1 (b / a) a
... = a * ((b / a) βŠ“ 1) : by rw inf_comm
... = a * ((a / b)⁻¹ βŠ“ 1) : by { rw div_eq_mul_inv, nth_rewrite 0 ← inv_inv b,
rw [← mul_inv, mul_comm b⁻¹, ← div_eq_mul_inv], }
... = a * ((a / b)⁻¹ βŠ“ 1⁻¹) : by rw inv_one
... = a / ((a / b) βŠ” 1) : by rw [← inv_sup_eq_inv_inf_inv, ← div_eq_mul_inv]
-- Bourbaki A.VI.12 Prop 9 c)
@[to_additive le_iff_pos_le_neg_ge]
lemma m_le_iff_pos_le_neg_ge [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : a ≀ b ↔ a⁺ ≀ b⁺ ∧ b⁻ ≀ a⁻ :=
begin
split; intro h,
{ split,
{ exact sup_le (h.trans (m_le_pos b)) (one_le_pos b), },
{ rw ← inv_le_inv_iff at h,
exact sup_le (h.trans (inv_le_neg a)) (one_le_neg a), } },
{ rw [← pos_div_neg a, ← pos_div_neg b],
exact div_le_div'' h.1 h.2, }
end
@[to_additive neg_abs]
lemma m_neg_abs [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : |a|⁻ = 1 :=
begin
refine le_antisymm _ _,
{ rw ← pos_inf_neg_eq_one a,
apply le_inf,
{ rw pos_eq_neg_inv,
exact ((m_le_iff_pos_le_neg_ge _ _).mp (inv_le_abs a)).right, },
{ exact and.right (iff.elim_left (m_le_iff_pos_le_neg_ge _ _) (le_mabs a)), } },
{ exact one_le_neg _, }
end
@[to_additive pos_abs]
lemma m_pos_abs [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : |a|⁺ = |a| :=
begin
nth_rewrite 1 ← pos_div_neg (|a|),
rw div_eq_mul_inv,
symmetry,
rw [mul_right_eq_self, inv_eq_one],
exact m_neg_abs a,
end
@[to_additive abs_nonneg]
lemma one_le_abs [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : 1 ≀ |a| :=
by { rw ← m_pos_abs, exact one_le_pos _, }
-- The proof from Bourbaki A.VI.12 Prop 9 d)
-- |a| = a⁺ - a⁻
@[to_additive]
lemma pos_mul_neg [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : |a| = a⁺ * a⁻ :=
begin
refine le_antisymm _ _,
{ refine sup_le _ _,
{ nth_rewrite 0 ← mul_one a,
exact mul_le_mul' (m_le_pos a) (one_le_neg a) },
{ nth_rewrite 0 ← one_mul (a⁻¹),
exact mul_le_mul' (one_le_pos a) (inv_le_neg a) } },
{ rw [← inf_mul_sup, pos_inf_neg_eq_one, one_mul, ← m_pos_abs a],
apply sup_le,
{ exact ((m_le_iff_pos_le_neg_ge _ _).mp (le_mabs a)).left, },
{ rw neg_eq_pos_inv,
exact ((m_le_iff_pos_le_neg_ge _ _).mp (inv_le_abs a)).left, }, }
end
-- a βŠ” b - (a βŠ“ b) = |b - a|
@[to_additive]
lemma sup_div_inf_eq_abs_div [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) :
(a βŠ” b) / (a βŠ“ b) = |b / a| :=
begin
rw [sup_eq_mul_pos_div, inf_comm, inf_eq_div_pos_div, div_eq_mul_inv],
nth_rewrite 1 div_eq_mul_inv,
rw [mul_inv_rev, inv_inv, mul_comm, ← mul_assoc, inv_mul_cancel_right, pos_eq_neg_inv (a / b)],
nth_rewrite 1 div_eq_mul_inv,
rw [mul_inv_rev, ← div_eq_mul_inv, inv_inv, ← pos_mul_neg],
end
-- 2β€’(a βŠ” b) = a + b + |b - a|
@[to_additive two_sup_eq_add_add_abs_sub]
lemma sup_sq_eq_mul_mul_abs_div [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) :
(a βŠ” b)^2 = a * b * |b / a| :=
by rw [← inf_mul_sup a b, ← sup_div_inf_eq_abs_div, div_eq_mul_inv, ← mul_assoc, mul_comm,
mul_assoc, ← pow_two, inv_mul_cancel_left]
-- 2β€’(a βŠ“ b) = a + b - |b - a|
@[to_additive two_inf_eq_add_sub_abs_sub]
lemma inf_sq_eq_mul_div_abs_div [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) :
(a βŠ“ b)^2 = a * b / |b / a| :=
by rw [← inf_mul_sup a b, ← sup_div_inf_eq_abs_div, div_eq_mul_inv, div_eq_mul_inv,
mul_inv_rev, inv_inv, mul_assoc, mul_inv_cancel_comm_assoc, ← pow_two]
/--
Every lattice ordered commutative group is a distributive lattice
-/
@[to_additive
"Every lattice ordered commutative additive group is a distributive lattice"
]
def lattice_ordered_comm_group_to_distrib_lattice (Ξ± : Type u)
[s: lattice Ξ±] [comm_group Ξ±] [covariant_class Ξ± Ξ± (*) (≀)] : distrib_lattice Ξ± :=
{ le_sup_inf :=
begin
intros,
rw [← mul_le_mul_iff_left (x βŠ“ (y βŠ“ z)), inf_mul_sup x (y βŠ“ z),
← inv_mul_le_iff_le_mul, le_inf_iff],
split,
{ rw [inv_mul_le_iff_le_mul, ← inf_mul_sup x y],
apply mul_le_mul',
{ apply inf_le_inf_left, apply inf_le_left, },
{ apply inf_le_left, } },
{ rw [inv_mul_le_iff_le_mul, ← inf_mul_sup x z],
apply mul_le_mul',
{ apply inf_le_inf_left, apply inf_le_right, },
{ apply inf_le_right, }, }
end,
..s }
-- See, e.g. Zaanen, Lectures on Riesz Spaces
-- 3rd lecture
-- |a βŠ” c - (b βŠ” c)| + |a βŠ“ c-b βŠ“ c| = |a - b|
@[to_additive]
theorem abs_div_sup_mul_abs_div_inf [covariant_class Ξ± Ξ± (*) (≀)] (a b c : Ξ±) :
|(a βŠ” c) / (b βŠ” c)| * |(a βŠ“ c) / (b βŠ“ c)| = |a / b| :=
begin
letI : distrib_lattice Ξ± := lattice_ordered_comm_group_to_distrib_lattice Ξ±,
calc |(a βŠ” c) / (b βŠ” c)| * |(a βŠ“ c) / (b βŠ“ c)| =
((b βŠ” c βŠ” (a βŠ” c)) / ((b βŠ” c) βŠ“ (a βŠ” c))) * |(a βŠ“ c) / (b βŠ“ c)| : by rw sup_div_inf_eq_abs_div
... = (b βŠ” c βŠ” (a βŠ” c)) / ((b βŠ” c) βŠ“ (a βŠ” c)) * (((b βŠ“ c) βŠ” (a βŠ“ c)) / ((b βŠ“ c) βŠ“ (a βŠ“ c))) :
by rw sup_div_inf_eq_abs_div (b βŠ“ c) (a βŠ“ c)
... = (b βŠ” a βŠ” c) / ((b βŠ“ a) βŠ” c) * (((b βŠ” a) βŠ“ c) / (b βŠ“ a βŠ“ c)) : by
{ rw [← sup_inf_right, ← inf_sup_right, sup_assoc],
nth_rewrite 1 sup_comm,
rw [sup_right_idem, sup_assoc, inf_assoc],
nth_rewrite 3 inf_comm,
rw [inf_right_idem, inf_assoc], }
... = (b βŠ” a βŠ” c) * ((b βŠ” a) βŠ“ c) /(((b βŠ“ a) βŠ” c) * (b βŠ“ a βŠ“ c)) : by rw div_mul_div_comm
... = (b βŠ” a) * c / ((b βŠ“ a) * c) :
by rw [mul_comm, inf_mul_sup, mul_comm (b βŠ“ a βŠ” c), inf_mul_sup]
... = (b βŠ” a) / (b βŠ“ a) : by rw [div_eq_mul_inv, mul_inv_rev, mul_assoc, mul_inv_cancel_left,
← div_eq_mul_inv]
... = |a / b| : by rw sup_div_inf_eq_abs_div
end
/-- If `a` is positive, then it is equal to its positive component `a⁺`. -/ -- pos_of_nonneg
@[to_additive "If `a` is positive, then it is equal to its positive component `a⁺`."]
lemma pos_of_one_le (a : Ξ±) (h : 1 ≀ a) : a⁺ = a :=
by { rw m_pos_part_def, exact sup_of_le_left h, }
-- 0 ≀ a implies a⁺ = a
@[to_additive] -- pos_of_nonpos
lemma pos_of_le_one (a : Ξ±) (h : a ≀ 1) : a⁺ = 1 :=
pos_eq_one_iff.mpr h
@[to_additive neg_of_inv_nonneg]
lemma neg_of_one_le_inv (a : Ξ±) (h : 1 ≀ a⁻¹) : a⁻ = a⁻¹ :=
by { rw neg_eq_pos_inv, exact pos_of_one_le _ h, }
@[to_additive] -- neg_of_neg_nonpos
lemma neg_of_inv_le_one (a : Ξ±) (h : a⁻¹ ≀ 1) : a⁻ = 1 :=
neg_eq_one_iff'.mpr h
@[to_additive] -- neg_of_nonpos
lemma neg_of_le_one [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) (h : a ≀ 1) : a⁻ = a⁻¹ :=
by { refine neg_of_one_le_inv _ _, rw one_le_inv', exact h, }
@[to_additive] -- neg_of_nonneg'
lemma neg_of_one_le [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) (h : 1 ≀ a) : a⁻ = 1 :=
neg_eq_one_iff.mpr h
-- 0 ≀ a implies |a| = a
@[to_additive abs_of_nonneg]
lemma mabs_of_one_le [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) (h : 1 ≀ a) : |a| = a :=
begin
unfold has_abs.abs,
rw [sup_eq_mul_pos_div, div_eq_mul_inv, inv_inv, ← pow_two, inv_mul_eq_iff_eq_mul,
← pow_two, pos_of_one_le],
rw pow_two,
apply one_le_mul h h,
end
/-- The unary operation of taking the absolute value is idempotent. -/
@[simp, to_additive abs_abs "The unary operation of taking the absolute value is idempotent."]
lemma mabs_mabs [covariant_class Ξ± Ξ± (*) (≀)] (a : Ξ±) : | |a| | = |a| :=
mabs_of_one_le _ (one_le_abs _)
@[to_additive abs_sup_sub_sup_le_abs]
lemma mabs_sup_div_sup_le_mabs [covariant_class Ξ± Ξ± (*) (≀)] (a b c : Ξ±) :
|(a βŠ” c) / (b βŠ” c)| ≀ |a / b| :=
begin
apply le_of_mul_le_of_one_le_left,
{ rw abs_div_sup_mul_abs_div_inf, },
{ exact one_le_abs _, },
end
@[to_additive abs_inf_sub_inf_le_abs]
lemma mabs_inf_div_inf_le_mabs [covariant_class Ξ± Ξ± (*) (≀)] (a b c : Ξ±) :
|(a βŠ“ c) / (b βŠ“ c)| ≀ |a / b| :=
begin
apply le_of_mul_le_of_one_le_right,
{ rw abs_div_sup_mul_abs_div_inf, },
{ exact one_le_abs _, },
end
-- Commutative case, Zaanen, 3rd lecture
-- For the non-commutative case, see Birkhoff Theorem 19 (27)
-- |(a βŠ” c) - (b βŠ” c)| βŠ” |(a βŠ“ c) - (b βŠ“ c)| ≀ |a - b|
@[to_additive Birkhoff_inequalities]
theorem m_Birkhoff_inequalities [covariant_class Ξ± Ξ± (*) (≀)] (a b c : Ξ±) :
|(a βŠ” c) / (b βŠ” c)| βŠ” |(a βŠ“ c) / (b βŠ“ c)| ≀ |a / b| :=
sup_le (mabs_sup_div_sup_le_mabs a b c) (mabs_inf_div_inf_le_mabs a b c)
-- Banasiak Proposition 2.12, Zaanen 2nd lecture
/--
The absolute value satisfies the triangle inequality.
-/
@[to_additive abs_add_le]
lemma mabs_mul_le [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : |a * b| ≀ |a| * |b| :=
begin
apply sup_le,
{ exact mul_le_mul' (le_mabs a) (le_mabs b), },
{ rw mul_inv,
exact mul_le_mul' (inv_le_abs _) (inv_le_abs _), }
end
-- |a - b| = |b - a|
@[to_additive]
lemma abs_inv_comm (a b : Ξ±) : |a/b| = |b/a| :=
begin
unfold has_abs.abs,
rw [inv_div a b, ← inv_inv (a / b), inv_div, sup_comm],
end
-- | |a| - |b| | ≀ |a - b|
@[to_additive]
lemma abs_abs_div_abs_le [covariant_class Ξ± Ξ± (*) (≀)] (a b : Ξ±) : | |a| / |b| | ≀ |a / b| :=
begin
unfold has_abs.abs,
rw sup_le_iff,
split,
{ apply div_le_iff_le_mul.2,
convert mabs_mul_le (a/b) b,
{ rw div_mul_cancel', },
{ rw div_mul_cancel', },
{ exact covariant_swap_mul_le_of_covariant_mul_le Ξ±, } },
{ rw [div_eq_mul_inv, mul_inv_rev, inv_inv, mul_inv_le_iff_le_mul, ← abs_eq_sup_inv (a / b),
abs_inv_comm],
convert mabs_mul_le (b/a) a,
{ rw div_mul_cancel', },
{rw div_mul_cancel', } },
end
end lattice_ordered_comm_group