Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /control /equiv_functor.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.28 kB
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import logic.equiv.basic
/-!
# Functions functorial with respect to equivalences
An `equiv_functor` is a function from `Type → Type` equipped with the additional data of
coherently mapping equivalences to equivalences.
In categorical language, it is an endofunctor of the "core" of the category `Type`.
-/
universes u₀ u₁ u₂ v₀ v₁ v₂
open function
/--
An `equiv_functor` is only functorial with respect to equivalences.
To construct an `equiv_functor`, it suffices to supply just the function `f α → f β` from
an equivalence `α ≃ β`, and then prove the functor laws. It's then a consequence that
this function is part of an equivalence, provided by `equiv_functor.map_equiv`.
-/
class equiv_functor (f : Type u₀ → Type u₁) :=
(map : Π {α β}, (α ≃ β) → (f α → f β))
(map_refl' : Π α, map (equiv.refl α) = @id (f α) . obviously)
(map_trans' : Π {α β γ} (k : α ≃ β) (h : β ≃ γ),
map (k.trans h) = (map h) ∘ (map k) . obviously)
restate_axiom equiv_functor.map_refl'
restate_axiom equiv_functor.map_trans'
attribute [simp] equiv_functor.map_refl
namespace equiv_functor
section
variables (f : Type u₀ → Type u₁) [equiv_functor f] {α β : Type u₀} (e : α ≃ β)
/-- An `equiv_functor` in fact takes every equiv to an equiv. -/
def map_equiv :
f α ≃ f β :=
{ to_fun := equiv_functor.map e,
inv_fun := equiv_functor.map e.symm,
left_inv := λ x, by { convert (congr_fun (equiv_functor.map_trans e e.symm) x).symm, simp, },
right_inv := λ y, by { convert (congr_fun (equiv_functor.map_trans e.symm e) y).symm, simp, }, }
@[simp] lemma map_equiv_apply (x : f α) :
map_equiv f e x = equiv_functor.map e x := rfl
lemma map_equiv_symm_apply (y : f β) :
(map_equiv f e).symm y = equiv_functor.map e.symm y := rfl
@[simp] lemma map_equiv_refl (α) :
map_equiv f (equiv.refl α) = equiv.refl (f α) :=
by simpa [equiv_functor.map_equiv]
@[simp] lemma map_equiv_symm :
(map_equiv f e).symm = map_equiv f e.symm :=
equiv.ext $ map_equiv_symm_apply f e
/--
The composition of `map_equiv`s is carried over the `equiv_functor`.
For plain `functor`s, this lemma is named `map_map` when applied
or `map_comp_map` when not applied.
-/
@[simp] lemma map_equiv_trans {γ : Type u₀} (ab : α ≃ β) (bc : β ≃ γ) :
(map_equiv f ab).trans (map_equiv f bc) = map_equiv f (ab.trans bc) :=
equiv.ext $ λ x, by simp [map_equiv, map_trans']
end
@[priority 100]
instance of_is_lawful_functor
(f : Type u₀ → Type u₁) [functor f] [is_lawful_functor f] : equiv_functor f :=
{ map := λ α β e, functor.map e,
map_refl' := λ α, by { ext, apply is_lawful_functor.id_map, },
map_trans' := λ α β γ k h, by { ext x, apply (is_lawful_functor.comp_map k h x), } }
lemma map_equiv.injective
(f : Type u₀ → Type u₁) [applicative f] [is_lawful_applicative f] {α β : Type u₀}
(h : ∀ γ, function.injective (pure : γ → f γ)) :
function.injective (@equiv_functor.map_equiv f _ α β) :=
λ e₁ e₂ H, equiv.ext $ λ x, h β (by simpa [equiv_functor.map] using equiv.congr_fun H (pure x))
end equiv_functor