Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import logic.equiv.basic | |
/-! | |
# Functions functorial with respect to equivalences | |
An `equiv_functor` is a function from `Type → Type` equipped with the additional data of | |
coherently mapping equivalences to equivalences. | |
In categorical language, it is an endofunctor of the "core" of the category `Type`. | |
-/ | |
universes u₀ u₁ u₂ v₀ v₁ v₂ | |
open function | |
/-- | |
An `equiv_functor` is only functorial with respect to equivalences. | |
To construct an `equiv_functor`, it suffices to supply just the function `f α → f β` from | |
an equivalence `α ≃ β`, and then prove the functor laws. It's then a consequence that | |
this function is part of an equivalence, provided by `equiv_functor.map_equiv`. | |
-/ | |
class equiv_functor (f : Type u₀ → Type u₁) := | |
(map : Π {α β}, (α ≃ β) → (f α → f β)) | |
(map_refl' : Π α, map (equiv.refl α) = @id (f α) . obviously) | |
(map_trans' : Π {α β γ} (k : α ≃ β) (h : β ≃ γ), | |
map (k.trans h) = (map h) ∘ (map k) . obviously) | |
restate_axiom equiv_functor.map_refl' | |
restate_axiom equiv_functor.map_trans' | |
attribute [simp] equiv_functor.map_refl | |
namespace equiv_functor | |
section | |
variables (f : Type u₀ → Type u₁) [equiv_functor f] {α β : Type u₀} (e : α ≃ β) | |
/-- An `equiv_functor` in fact takes every equiv to an equiv. -/ | |
def map_equiv : | |
f α ≃ f β := | |
{ to_fun := equiv_functor.map e, | |
inv_fun := equiv_functor.map e.symm, | |
left_inv := λ x, by { convert (congr_fun (equiv_functor.map_trans e e.symm) x).symm, simp, }, | |
right_inv := λ y, by { convert (congr_fun (equiv_functor.map_trans e.symm e) y).symm, simp, }, } | |
@[simp] lemma map_equiv_apply (x : f α) : | |
map_equiv f e x = equiv_functor.map e x := rfl | |
lemma map_equiv_symm_apply (y : f β) : | |
(map_equiv f e).symm y = equiv_functor.map e.symm y := rfl | |
@[simp] lemma map_equiv_refl (α) : | |
map_equiv f (equiv.refl α) = equiv.refl (f α) := | |
by simpa [equiv_functor.map_equiv] | |
@[simp] lemma map_equiv_symm : | |
(map_equiv f e).symm = map_equiv f e.symm := | |
equiv.ext $ map_equiv_symm_apply f e | |
/-- | |
The composition of `map_equiv`s is carried over the `equiv_functor`. | |
For plain `functor`s, this lemma is named `map_map` when applied | |
or `map_comp_map` when not applied. | |
-/ | |
@[simp] lemma map_equiv_trans {γ : Type u₀} (ab : α ≃ β) (bc : β ≃ γ) : | |
(map_equiv f ab).trans (map_equiv f bc) = map_equiv f (ab.trans bc) := | |
equiv.ext $ λ x, by simp [map_equiv, map_trans'] | |
end | |
@[priority 100] | |
instance of_is_lawful_functor | |
(f : Type u₀ → Type u₁) [functor f] [is_lawful_functor f] : equiv_functor f := | |
{ map := λ α β e, functor.map e, | |
map_refl' := λ α, by { ext, apply is_lawful_functor.id_map, }, | |
map_trans' := λ α β γ k h, by { ext x, apply (is_lawful_functor.comp_map k h x), } } | |
lemma map_equiv.injective | |
(f : Type u₀ → Type u₁) [applicative f] [is_lawful_applicative f] {α β : Type u₀} | |
(h : ∀ γ, function.injective (pure : γ → f γ)) : | |
function.injective (@equiv_functor.map_equiv f _ α β) := | |
λ e₁ e₂ H, equiv.ext $ λ x, h β (by simpa [equiv_functor.map] using equiv.congr_fun H (pure x)) | |
end equiv_functor | |