Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Thomas Browning. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Thomas Browning | |
-/ | |
import data.zmod.quotient | |
/-! | |
# Complements | |
In this file we define the complement of a subgroup. | |
## Main definitions | |
- `is_complement S T` where `S` and `T` are subsets of `G` states that every `g : G` can be | |
written uniquely as a product `s * t` for `s ∈ S`, `t ∈ T`. | |
- `left_transversals T` where `T` is a subset of `G` is the set of all left-complements of `T`, | |
i.e. the set of all `S : set G` that contain exactly one element of each left coset of `T`. | |
- `right_transversals S` where `S` is a subset of `G` is the set of all right-complements of `S`, | |
i.e. the set of all `T : set G` that contain exactly one element of each right coset of `S`. | |
- `transfer_transversal H g` is a specific `left_transversal` of `H` that is used in the | |
computation of the transfer homomorphism evaluated at an element `g : G`. | |
## Main results | |
- `is_complement_of_coprime` : Subgroups of coprime order are complements. | |
-/ | |
open_locale big_operators | |
namespace subgroup | |
variables {G : Type*} [group G] (H K : subgroup G) (S T : set G) | |
/-- `S` and `T` are complements if `(*) : S × T → G` is a bijection. | |
This notion generalizes left transversals, right transversals, and complementary subgroups. -/ | |
@[to_additive "`S` and `T` are complements if `(*) : S × T → G` is a bijection"] | |
def is_complement : Prop := function.bijective (λ x : S × T, x.1.1 * x.2.1) | |
/-- `H` and `K` are complements if `(*) : H × K → G` is a bijection -/ | |
@[to_additive "`H` and `K` are complements if `(*) : H × K → G` is a bijection"] | |
abbreviation is_complement' := is_complement (H : set G) (K : set G) | |
/-- The set of left-complements of `T : set G` -/ | |
@[to_additive "The set of left-complements of `T : set G`"] | |
def left_transversals : set (set G) := {S : set G | is_complement S T} | |
/-- The set of right-complements of `S : set G` -/ | |
@[to_additive "The set of right-complements of `S : set G`"] | |
def right_transversals : set (set G) := {T : set G | is_complement S T} | |
variables {H K S T} | |
@[to_additive] lemma is_complement'_def : | |
is_complement' H K ↔ is_complement (H : set G) (K : set G) := iff.rfl | |
@[to_additive] lemma is_complement_iff_exists_unique : | |
is_complement S T ↔ ∀ g : G, ∃! x : S × T, x.1.1 * x.2.1 = g := | |
function.bijective_iff_exists_unique _ | |
@[to_additive] lemma is_complement.exists_unique (h : is_complement S T) (g : G) : | |
∃! x : S × T, x.1.1 * x.2.1 = g := | |
is_complement_iff_exists_unique.mp h g | |
@[to_additive] lemma is_complement'.symm (h : is_complement' H K) : is_complement' K H := | |
begin | |
let ϕ : H × K ≃ K × H := equiv.mk (λ x, ⟨x.2⁻¹, x.1⁻¹⟩) (λ x, ⟨x.2⁻¹, x.1⁻¹⟩) | |
(λ x, prod.ext (inv_inv _) (inv_inv _)) (λ x, prod.ext (inv_inv _) (inv_inv _)), | |
let ψ : G ≃ G := equiv.mk (λ g : G, g⁻¹) (λ g : G, g⁻¹) inv_inv inv_inv, | |
suffices : ψ ∘ (λ x : H × K, x.1.1 * x.2.1) = (λ x : K × H, x.1.1 * x.2.1) ∘ ϕ, | |
{ rwa [is_complement'_def, is_complement, ←equiv.bijective_comp, ←this, equiv.comp_bijective] }, | |
exact funext (λ x, mul_inv_rev _ _), | |
end | |
@[to_additive] lemma is_complement'_comm : is_complement' H K ↔ is_complement' K H := | |
⟨is_complement'.symm, is_complement'.symm⟩ | |
@[to_additive] lemma is_complement_top_singleton {g : G} : is_complement (⊤ : set G) {g} := | |
⟨λ ⟨x, _, rfl⟩ ⟨y, _, rfl⟩ h, prod.ext (subtype.ext (mul_right_cancel h)) rfl, | |
λ x, ⟨⟨⟨x * g⁻¹, ⟨⟩⟩, g, rfl⟩, inv_mul_cancel_right x g⟩⟩ | |
@[to_additive] lemma is_complement_singleton_top {g : G} : is_complement ({g} : set G) ⊤ := | |
⟨λ ⟨⟨_, rfl⟩, x⟩ ⟨⟨_, rfl⟩, y⟩ h, prod.ext rfl (subtype.ext (mul_left_cancel h)), | |
λ x, ⟨⟨⟨g, rfl⟩, g⁻¹ * x, ⟨⟩⟩, mul_inv_cancel_left g x⟩⟩ | |
@[to_additive] lemma is_complement_singleton_left {g : G} : is_complement {g} S ↔ S = ⊤ := | |
begin | |
refine ⟨λ h, top_le_iff.mp (λ x hx, _), λ h, (congr_arg _ h).mpr is_complement_singleton_top⟩, | |
obtain ⟨⟨⟨z, rfl : z = g⟩, y, _⟩, hy⟩ := h.2 (g * x), | |
rwa ← mul_left_cancel hy, | |
end | |
@[to_additive] lemma is_complement_singleton_right {g : G} : is_complement S {g} ↔ S = ⊤ := | |
begin | |
refine ⟨λ h, top_le_iff.mp (λ x hx, _), λ h, (congr_arg _ h).mpr is_complement_top_singleton⟩, | |
obtain ⟨y, hy⟩ := h.2 (x * g), | |
conv_rhs at hy { rw ← (show y.2.1 = g, from y.2.2) }, | |
rw ← mul_right_cancel hy, | |
exact y.1.2, | |
end | |
@[to_additive] lemma is_complement_top_left : is_complement ⊤ S ↔ ∃ g : G, S = {g} := | |
begin | |
refine ⟨λ h, set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, λ a ha b hb, _⟩, _⟩, | |
{ obtain ⟨a, ha⟩ := h.2 1, | |
exact ⟨a.2.1, a.2.2⟩ }, | |
{ have : (⟨⟨_, mem_top a⁻¹⟩, ⟨a, ha⟩⟩ : (⊤ : set G) × S) = ⟨⟨_, mem_top b⁻¹⟩, ⟨b, hb⟩⟩ := | |
h.1 ((inv_mul_self a).trans (inv_mul_self b).symm), | |
exact subtype.ext_iff.mp ((prod.ext_iff.mp this).2) }, | |
{ rintro ⟨g, rfl⟩, | |
exact is_complement_top_singleton }, | |
end | |
@[to_additive] lemma is_complement_top_right : is_complement S ⊤ ↔ ∃ g : G, S = {g} := | |
begin | |
refine ⟨λ h, set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, λ a ha b hb, _⟩, _⟩, | |
{ obtain ⟨a, ha⟩ := h.2 1, | |
exact ⟨a.1.1, a.1.2⟩ }, | |
{ have : (⟨⟨a, ha⟩, ⟨_, mem_top a⁻¹⟩⟩ : S × (⊤ : set G)) = ⟨⟨b, hb⟩, ⟨_, mem_top b⁻¹⟩⟩ := | |
h.1 ((mul_inv_self a).trans (mul_inv_self b).symm), | |
exact subtype.ext_iff.mp ((prod.ext_iff.mp this).1) }, | |
{ rintro ⟨g, rfl⟩, | |
exact is_complement_singleton_top }, | |
end | |
@[to_additive] lemma is_complement'_top_bot : is_complement' (⊤ : subgroup G) ⊥ := | |
is_complement_top_singleton | |
@[to_additive] lemma is_complement'_bot_top : is_complement' (⊥ : subgroup G) ⊤ := | |
is_complement_singleton_top | |
@[simp, to_additive] lemma is_complement'_bot_left : is_complement' ⊥ H ↔ H = ⊤ := | |
is_complement_singleton_left.trans coe_eq_univ | |
@[simp, to_additive] lemma is_complement'_bot_right : is_complement' H ⊥ ↔ H = ⊤ := | |
is_complement_singleton_right.trans coe_eq_univ | |
@[simp, to_additive] lemma is_complement'_top_left : is_complement' ⊤ H ↔ H = ⊥ := | |
is_complement_top_left.trans coe_eq_singleton | |
@[simp, to_additive] lemma is_complement'_top_right : is_complement' H ⊤ ↔ H = ⊥ := | |
is_complement_top_right.trans coe_eq_singleton | |
@[to_additive] lemma mem_left_transversals_iff_exists_unique_inv_mul_mem : | |
S ∈ left_transversals T ↔ ∀ g : G, ∃! s : S, (s : G)⁻¹ * g ∈ T := | |
begin | |
rw [left_transversals, set.mem_set_of_eq, is_complement_iff_exists_unique], | |
refine ⟨λ h g, _, λ h g, _⟩, | |
{ obtain ⟨x, h1, h2⟩ := h g, | |
exact ⟨x.1, (congr_arg (∈ T) (eq_inv_mul_of_mul_eq h1)).mp x.2.2, λ y hy, | |
(prod.ext_iff.mp (h2 ⟨y, y⁻¹ * g, hy⟩ (mul_inv_cancel_left y g))).1⟩ }, | |
{ obtain ⟨x, h1, h2⟩ := h g, | |
refine ⟨⟨x, x⁻¹ * g, h1⟩, mul_inv_cancel_left x g, λ y hy, _⟩, | |
have := h2 y.1 ((congr_arg (∈ T) (eq_inv_mul_of_mul_eq hy)).mp y.2.2), | |
exact prod.ext this (subtype.ext (eq_inv_mul_of_mul_eq ((congr_arg _ this).mp hy))) }, | |
end | |
@[to_additive] lemma mem_right_transversals_iff_exists_unique_mul_inv_mem : | |
S ∈ right_transversals T ↔ ∀ g : G, ∃! s : S, g * (s : G)⁻¹ ∈ T := | |
begin | |
rw [right_transversals, set.mem_set_of_eq, is_complement_iff_exists_unique], | |
refine ⟨λ h g, _, λ h g, _⟩, | |
{ obtain ⟨x, h1, h2⟩ := h g, | |
exact ⟨x.2, (congr_arg (∈ T) (eq_mul_inv_of_mul_eq h1)).mp x.1.2, λ y hy, | |
(prod.ext_iff.mp (h2 ⟨⟨g * y⁻¹, hy⟩, y⟩ (inv_mul_cancel_right g y))).2⟩ }, | |
{ obtain ⟨x, h1, h2⟩ := h g, | |
refine ⟨⟨⟨g * x⁻¹, h1⟩, x⟩, inv_mul_cancel_right g x, λ y hy, _⟩, | |
have := h2 y.2 ((congr_arg (∈ T) (eq_mul_inv_of_mul_eq hy)).mp y.1.2), | |
exact prod.ext (subtype.ext (eq_mul_inv_of_mul_eq ((congr_arg _ this).mp hy))) this }, | |
end | |
@[to_additive] lemma mem_left_transversals_iff_exists_unique_quotient_mk'_eq : | |
S ∈ left_transversals (H : set G) ↔ | |
∀ q : quotient (quotient_group.left_rel H), ∃! s : S, quotient.mk' s.1 = q := | |
begin | |
simp_rw [mem_left_transversals_iff_exists_unique_inv_mul_mem, set_like.mem_coe, | |
← quotient_group.eq'], | |
exact ⟨λ h q, quotient.induction_on' q h, λ h g, h (quotient.mk' g)⟩, | |
end | |
@[to_additive] lemma mem_right_transversals_iff_exists_unique_quotient_mk'_eq : | |
S ∈ right_transversals (H : set G) ↔ | |
∀ q : quotient (quotient_group.right_rel H), ∃! s : S, quotient.mk' s.1 = q := | |
begin | |
simp_rw [mem_right_transversals_iff_exists_unique_mul_inv_mem, set_like.mem_coe, | |
← quotient_group.right_rel_apply, ← quotient.eq'], | |
exact ⟨λ h q, quotient.induction_on' q h, λ h g, h (quotient.mk' g)⟩, | |
end | |
@[to_additive] lemma mem_left_transversals_iff_bijective : S ∈ left_transversals (H : set G) ↔ | |
function.bijective (S.restrict (quotient.mk' : G → quotient (quotient_group.left_rel H))) := | |
mem_left_transversals_iff_exists_unique_quotient_mk'_eq.trans | |
(function.bijective_iff_exists_unique (S.restrict quotient.mk')).symm | |
@[to_additive] lemma mem_right_transversals_iff_bijective : S ∈ right_transversals (H : set G) ↔ | |
function.bijective (S.restrict (quotient.mk' : G → quotient (quotient_group.right_rel H))) := | |
mem_right_transversals_iff_exists_unique_quotient_mk'_eq.trans | |
(function.bijective_iff_exists_unique (S.restrict quotient.mk')).symm | |
@[to_additive] lemma range_mem_left_transversals {f : G ⧸ H → G} (hf : ∀ q, ↑(f q) = q) : | |
set.range f ∈ left_transversals (H : set G) := | |
mem_left_transversals_iff_bijective.mpr ⟨by rintros ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h; | |
exact congr_arg _ (((hf q₁).symm.trans h).trans (hf q₂)), λ q, ⟨⟨f q, q, rfl⟩, hf q⟩⟩ | |
@[to_additive] lemma range_mem_right_transversals {f : quotient (quotient_group.right_rel H) → G} | |
(hf : ∀ q, quotient.mk' (f q) = q) : set.range f ∈ right_transversals (H : set G) := | |
mem_right_transversals_iff_bijective.mpr ⟨by rintros ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h; | |
exact congr_arg _ (((hf q₁).symm.trans h).trans (hf q₂)), λ q, ⟨⟨f q, q, rfl⟩, hf q⟩⟩ | |
@[to_additive] lemma exists_left_transversal (g : G) : | |
∃ S ∈ left_transversals (H : set G), g ∈ S := | |
begin | |
classical, | |
refine ⟨set.range (function.update quotient.out' ↑g g), range_mem_left_transversals (λ q, _), | |
g, function.update_same g g quotient.out'⟩, | |
by_cases hq : q = g, | |
{ exact hq.symm ▸ congr_arg _ (function.update_same g g quotient.out') }, | |
{ exact eq.trans (congr_arg _ (function.update_noteq hq g quotient.out')) q.out_eq' }, | |
end | |
@[to_additive] lemma exists_right_transversal (g : G) : | |
∃ S ∈ right_transversals (H : set G), g ∈ S := | |
begin | |
classical, | |
refine ⟨set.range (function.update quotient.out' _ g), range_mem_right_transversals (λ q, _), | |
quotient.mk' g, function.update_same (quotient.mk' g) g quotient.out'⟩, | |
by_cases hq : q = quotient.mk' g, | |
{ exact hq.symm ▸ congr_arg _ (function.update_same (quotient.mk' g) g quotient.out') }, | |
{ exact eq.trans (congr_arg _ (function.update_noteq hq g quotient.out')) q.out_eq' }, | |
end | |
namespace mem_left_transversals | |
/-- A left transversal is in bijection with left cosets. -/ | |
@[to_additive "A left transversal is in bijection with left cosets."] | |
noncomputable def to_equiv (hS : S ∈ subgroup.left_transversals (H : set G)) : G ⧸ H ≃ S := | |
(equiv.of_bijective _ (subgroup.mem_left_transversals_iff_bijective.mp hS)).symm | |
@[to_additive] lemma mk'_to_equiv (hS : S ∈ subgroup.left_transversals (H : set G)) (q : G ⧸ H) : | |
quotient.mk' (to_equiv hS q : G) = q := | |
(to_equiv hS).symm_apply_apply q | |
@[to_additive] lemma to_equiv_apply {f : G ⧸ H → G} (hf : ∀ q, (f q : G ⧸ H) = q) (q : G ⧸ H) : | |
(to_equiv (range_mem_left_transversals hf) q : G) = f q := | |
begin | |
refine (subtype.ext_iff.mp _).trans (subtype.coe_mk (f q) ⟨q, rfl⟩), | |
exact (to_equiv (range_mem_left_transversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm, | |
end | |
/-- A left transversal can be viewed as a function mapping each element of the group | |
to the chosen representative from that left coset. -/ | |
@[to_additive "A left transversal can be viewed as a function mapping each element of the group | |
to the chosen representative from that left coset."] | |
noncomputable def to_fun (hS : S ∈ subgroup.left_transversals (H : set G)) : G → S := | |
to_equiv hS ∘ quotient.mk' | |
@[to_additive] lemma inv_to_fun_mul_mem (hS : S ∈ subgroup.left_transversals (H : set G)) | |
(g : G) : (to_fun hS g : G)⁻¹ * g ∈ H := | |
quotient_group.left_rel_apply.mp $ quotient.exact' $ mk'_to_equiv _ _ | |
@[to_additive] lemma inv_mul_to_fun_mem (hS : S ∈ subgroup.left_transversals (H : set G)) | |
(g : G) : g⁻¹ * to_fun hS g ∈ H := | |
(congr_arg (∈ H) (by rw [mul_inv_rev, inv_inv])).mp (H.inv_mem (inv_to_fun_mul_mem hS g)) | |
end mem_left_transversals | |
namespace mem_right_transversals | |
/-- A right transversal is in bijection with right cosets. -/ | |
@[to_additive "A right transversal is in bijection with right cosets."] | |
noncomputable def to_equiv (hS : S ∈ subgroup.right_transversals (H : set G)) : | |
quotient (quotient_group.right_rel H) ≃ S := | |
(equiv.of_bijective _ (subgroup.mem_right_transversals_iff_bijective.mp hS)).symm | |
@[to_additive] lemma mk'_to_equiv (hS : S ∈ subgroup.right_transversals (H : set G)) | |
(q : quotient (quotient_group.right_rel H)) : quotient.mk' (to_equiv hS q : G) = q := | |
(to_equiv hS).symm_apply_apply q | |
@[to_additive] lemma to_equiv_apply {f : quotient (quotient_group.right_rel H) → G} | |
(hf : ∀ q, quotient.mk' (f q) = q) (q : quotient (quotient_group.right_rel H)) : | |
(to_equiv (range_mem_right_transversals hf) q : G) = f q := | |
begin | |
refine (subtype.ext_iff.mp _).trans (subtype.coe_mk (f q) ⟨q, rfl⟩), | |
exact (to_equiv (range_mem_right_transversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm, | |
end | |
/-- A right transversal can be viewed as a function mapping each element of the group | |
to the chosen representative from that right coset. -/ | |
@[to_additive "A right transversal can be viewed as a function mapping each element of the group | |
to the chosen representative from that right coset."] | |
noncomputable def to_fun (hS : S ∈ subgroup.right_transversals (H : set G)) : G → S := | |
to_equiv hS ∘ quotient.mk' | |
@[to_additive] lemma mul_inv_to_fun_mem (hS : S ∈ subgroup.right_transversals (H : set G)) | |
(g : G) : g * (to_fun hS g : G)⁻¹ ∈ H := | |
quotient_group.right_rel_apply.mp $ quotient.exact' $ mk'_to_equiv _ _ | |
@[to_additive] lemma to_fun_mul_inv_mem (hS : S ∈ subgroup.right_transversals (H : set G)) | |
(g : G) : (to_fun hS g : G) * g⁻¹ ∈ H := | |
(congr_arg (∈ H) (by rw [mul_inv_rev, inv_inv])).mp (H.inv_mem (mul_inv_to_fun_mem hS g)) | |
end mem_right_transversals | |
section action | |
open_locale pointwise | |
open mul_action mem_left_transversals | |
variables {F : Type*} [group F] [mul_action F G] [quotient_action F H] | |
@[to_additive] instance : mul_action F (left_transversals (H : set G)) := | |
{ smul := λ f T, ⟨f • T, by | |
{ refine mem_left_transversals_iff_exists_unique_inv_mul_mem.mpr (λ g, _), | |
obtain ⟨t, ht1, ht2⟩ := mem_left_transversals_iff_exists_unique_inv_mul_mem.mp T.2 (f⁻¹ • g), | |
refine ⟨⟨f • t, set.smul_mem_smul_set t.2⟩, _, _⟩, | |
{ exact (congr_arg _ (smul_inv_smul f g)).mp (quotient_action.inv_mul_mem f ht1) }, | |
{ rintros ⟨-, t', ht', rfl⟩ h, | |
replace h := quotient_action.inv_mul_mem f⁻¹ h, | |
simp only [subtype.ext_iff, subtype.coe_mk, smul_left_cancel_iff, inv_smul_smul] at h ⊢, | |
exact subtype.ext_iff.mp (ht2 ⟨t', ht'⟩ h) } }⟩, | |
one_smul := λ T, subtype.ext (one_smul F T), | |
mul_smul := λ f₁ f₂ T, subtype.ext (mul_smul f₁ f₂ T) } | |
@[to_additive] lemma smul_to_fun (f : F) (T : left_transversals (H : set G)) (g : G) : | |
(f • to_fun T.2 g : G) = to_fun (f • T).2 (f • g) := | |
subtype.ext_iff.mp $ | ↥(f • T) (λ s, (↑s)⁻¹ * f • g ∈ H)|
(mem_left_transversals_iff_exists_unique_inv_mul_mem.mp (f • T).2 (f • g)) | |
⟨f • to_fun T.2 g, set.smul_mem_smul_set (subtype.coe_prop _)⟩ (to_fun (f • T).2 (f • g)) | |
(quotient_action.inv_mul_mem f (inv_to_fun_mul_mem T.2 g)) (inv_to_fun_mul_mem (f • T).2 (f • g)) | |
@[to_additive] lemma smul_to_equiv (f : F) (T : left_transversals (H : set G)) (q : G ⧸ H) : | |
f • (to_equiv T.2 q : G) = to_equiv (f • T).2 (f • q) := | |
quotient.induction_on' q (λ g, smul_to_fun f T g) | |
@[to_additive] lemma smul_apply_eq_smul_apply_inv_smul (f : F) (T : left_transversals (H : set G)) | |
(q : G ⧸ H) : (to_equiv (f • T).2 q : G) = f • (to_equiv T.2 (f⁻¹ • q) : G) := | |
by rw [smul_to_equiv, smul_inv_smul] | |
end action | |
@[to_additive] instance : inhabited (left_transversals (H : set G)) := | |
⟨⟨set.range quotient.out', range_mem_left_transversals quotient.out_eq'⟩⟩ | |
@[to_additive] instance : inhabited (right_transversals (H : set G)) := | |
⟨⟨set.range quotient.out', range_mem_right_transversals quotient.out_eq'⟩⟩ | |
lemma is_complement'.is_compl (h : is_complement' H K) : is_compl H K := | |
begin | |
refine ⟨λ g ⟨p, q⟩, let x : H × K := ⟨⟨g, p⟩, 1⟩, y : H × K := ⟨1, g, q⟩ in subtype.ext_iff.mp | |
(prod.ext_iff.mp (show x = y, from h.1 ((mul_one g).trans (one_mul g).symm))).1, λ g _, _⟩, | |
obtain ⟨⟨h, k⟩, rfl⟩ := h.2 g, | |
exact subgroup.mul_mem_sup h.2 k.2, | |
end | |
lemma is_complement'.sup_eq_top (h : subgroup.is_complement' H K) : H ⊔ K = ⊤ := | |
h.is_compl.sup_eq_top | |
lemma is_complement'.disjoint (h : is_complement' H K) : disjoint H K := | |
h.is_compl.disjoint | |
lemma is_complement.card_mul [fintype G] [fintype S] [fintype T] (h : is_complement S T) : | |
fintype.card S * fintype.card T = fintype.card G := | |
(fintype.card_prod _ _).symm.trans (fintype.card_of_bijective h) | |
lemma is_complement'.card_mul [fintype G] [fintype H] [fintype K] (h : is_complement' H K) : | |
fintype.card H * fintype.card K = fintype.card G := | |
h.card_mul | |
lemma is_complement'_of_card_mul_and_disjoint [fintype G] [fintype H] [fintype K] | |
(h1 : fintype.card H * fintype.card K = fintype.card G) (h2 : disjoint H K) : | |
is_complement' H K := | |
begin | |
refine (fintype.bijective_iff_injective_and_card _).mpr | |
⟨λ x y h, _, (fintype.card_prod H K).trans h1⟩, | |
rw [←eq_inv_mul_iff_mul_eq, ←mul_assoc, ←mul_inv_eq_iff_eq_mul] at h, | |
change ↑(x.2 * y.2⁻¹) = ↑(x.1⁻¹ * y.1) at h, | |
rw [prod.ext_iff, ←.1 y.1, ← K _ x.2 y.2, subtype.ext_iff, | H _ x|
subtype.ext_iff, coe_one, coe_one, h, and_self, ←mem_bot, ←h2.eq_bot, mem_inf], | |
exact ⟨subtype.mem ((x.1)⁻¹ * (y.1)), (congr_arg (∈ K) h).mp (subtype.mem (x.2 * (y.2)⁻¹))⟩, | |
end | |
lemma is_complement'_iff_card_mul_and_disjoint [fintype G] [fintype H] [fintype K] : | |
is_complement' H K ↔ | |
fintype.card H * fintype.card K = fintype.card G ∧ disjoint H K := | |
⟨λ h, ⟨h.card_mul, h.disjoint⟩, λ h, is_complement'_of_card_mul_and_disjoint h.1 h.2⟩ | |
lemma is_complement'_of_coprime [fintype G] [fintype H] [fintype K] | |
(h1 : fintype.card H * fintype.card K = fintype.card G) | |
(h2 : nat.coprime (fintype.card H) (fintype.card K)) : | |
is_complement' H K := | |
is_complement'_of_card_mul_and_disjoint h1 (disjoint_iff.mpr (inf_eq_bot_of_coprime h2)) | |
lemma is_complement'_stabilizer {α : Type*} [mul_action G α] (a : α) | |
(h1 : ∀ (h : H), h • a = a → h = 1) (h2 : ∀ g : G, ∃ h : H, h • (g • a) = a) : | |
is_complement' H (mul_action.stabilizer G a) := | |
begin | |
refine is_complement_iff_exists_unique.mpr (λ g, _), | |
obtain ⟨h, hh⟩ := h2 g, | |
have hh' : (↑h * g) • a = a := by rwa [mul_smul], | |
refine ⟨⟨h⁻¹, h * g, hh'⟩, inv_mul_cancel_left h g, _⟩, | |
rintros ⟨h', g, hg : g • a = a⟩ rfl, | |
specialize h1 (h * h') (by rwa [mul_smul, smul_def h', ←hg, ←mul_smul, hg]), | |
refine prod.ext (eq_inv_of_mul_eq_one_right h1) (subtype.ext _), | |
rwa [subtype.ext_iff, coe_one, coe_mul, ←self_eq_mul_left, mul_assoc ↑h ↑h' g] at h1, | |
end | |
end subgroup | |
namespace subgroup | |
open equiv function mem_left_transversals mul_action mul_action.quotient zmod | |
universe u | |
variables {G : Type u} [group G] (H : subgroup G) (g : G) | |
/-- Partition `G ⧸ H` into orbits of the action of `g : G`. -/ | |
noncomputable def quotient_equiv_sigma_zmod : G ⧸ H ≃ | |
Σ (q : orbit_rel.quotient (zpowers g) (G ⧸ H)), zmod (minimal_period ((•) g) q.out') := | |
(self_equiv_sigma_orbits (zpowers g) (G ⧸ H)).trans | |
(sigma_congr_right (λ q, orbit_zpowers_equiv g q.out')) | |
lemma quotient_equiv_sigma_zmod_symm_apply | |
(q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : zmod (minimal_period ((•) g) q.out')) : | |
(quotient_equiv_sigma_zmod H g).symm ⟨q, k⟩ = g ^ (k : ℤ) • q.out' := | |
rfl | |
lemma quotient_equiv_sigma_zmod_apply (q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : ℤ) : | |
quotient_equiv_sigma_zmod H g (g ^ k • q.out') = ⟨q, k⟩ := | |
by rw [apply_eq_iff_eq_symm_apply, quotient_equiv_sigma_zmod_symm_apply, | |
zmod.coe_int_cast, zpow_smul_mod_minimal_period] | |
/-- The transfer transversal as a function. Given a `⟨g⟩`-orbit `q₀, g • q₀, ..., g ^ (m - 1) • q₀` | |
in `G ⧸ H`, an element `g ^ k • q₀` is mapped to `g ^ k • g₀` for a fixed choice of | |
representative `g₀` of `q₀`. -/ | |
noncomputable def transfer_function : G ⧸ H → G := | |
λ q, g ^ ((quotient_equiv_sigma_zmod H g q).2 : ℤ) * (quotient_equiv_sigma_zmod H g q).1.out'.out' | |
lemma transfer_function_apply (q : G ⧸ H) : transfer_function H g q = | |
g ^ ((quotient_equiv_sigma_zmod H g q).2 : ℤ) * (quotient_equiv_sigma_zmod H g q).1.out'.out' := | |
rfl | |
lemma coe_transfer_function (q : G ⧸ H) : ↑(transfer_function H g q) = q := | |
by rw [transfer_function_apply, ←smul_eq_mul, coe_smul_out', | |
←quotient_equiv_sigma_zmod_symm_apply, sigma.eta, symm_apply_apply] | |
/-- The transfer transversal as a set. Contains elements of the form `g ^ k • g₀` for fixed choices | |
of representatives `g₀` of fixed choices of representatives `q₀` of `⟨g⟩`-orbits in `G ⧸ H`. -/ | |
def transfer_set : set G := | |
set.range (transfer_function H g) | |
lemma mem_transfer_set (q : G ⧸ H) : transfer_function H g q ∈ transfer_set H g := | |
⟨q, rfl⟩ | |
/-- The transfer transversal. Contains elements of the form `g ^ k • g₀` for fixed choices | |
of representatives `g₀` of fixed choices of representatives `q₀` of `⟨g⟩`-orbits in `G ⧸ H`. -/ | |
def transfer_transversal : left_transversals (H : set G) := | |
⟨transfer_set H g, range_mem_left_transversals (coe_transfer_function H g)⟩ | |
lemma transfer_transversal_apply (q : G ⧸ H) : | |
↑(to_equiv (transfer_transversal H g).2 q) = transfer_function H g q := | |
to_equiv_apply (coe_transfer_function H g) q | |
lemma transfer_transversal_apply' | |
(q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : zmod (minimal_period ((•) g) q.out')) : | |
↑(to_equiv (transfer_transversal H g).2 (g ^ (k : ℤ) • q.out')) = g ^ (k : ℤ) * q.out'.out' := | |
by rw [transfer_transversal_apply, transfer_function_apply, | |
←quotient_equiv_sigma_zmod_symm_apply, apply_symm_apply] | |
lemma transfer_transversal_apply'' | |
(q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : zmod (minimal_period ((•) g) q.out')) : | |
↑(to_equiv (g • transfer_transversal H g).2 (g ^ (k : ℤ) • q.out')) = | |
if k = 0 then g ^ minimal_period ((•) g) q.out' * q.out'.out' else g ^ (k : ℤ) * q.out'.out' := | |
begin | |
rw [smul_apply_eq_smul_apply_inv_smul, transfer_transversal_apply, transfer_function_apply, | |
←mul_smul, ←zpow_neg_one, ←zpow_add, quotient_equiv_sigma_zmod_apply, smul_eq_mul, | |
←mul_assoc, ←zpow_one_add, int.cast_add, int.cast_neg, int.cast_one, int_cast_cast, | |
cast_id', id.def, ←sub_eq_neg_add, cast_sub_one, add_sub_cancel'_right], | |
by_cases hk : k = 0, | |
{ rw [if_pos hk, if_pos hk, zpow_coe_nat] }, | |
{ rw [if_neg hk, if_neg hk] }, | |
end | |
end subgroup | |