Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin, Simon Hudon, Scott Morrison | |
-/ | |
import control.bifunctor | |
import logic.equiv.basic | |
/-! | |
# Functor and bifunctors can be applied to `equiv`s. | |
We define | |
```lean | |
def functor.map_equiv (f : Type u → Type v) [functor f] [is_lawful_functor f] : | |
α ≃ β → f α ≃ f β | |
``` | |
and | |
```lean | |
def bifunctor.map_equiv (F : Type u → Type v → Type w) [bifunctor F] [is_lawful_bifunctor F] : | |
α ≃ β → α' ≃ β' → F α α' ≃ F β β' | |
``` | |
-/ | |
universes u v w | |
variables {α β : Type u} | |
open equiv | |
namespace functor | |
variables (f : Type u → Type v) [functor f] [is_lawful_functor f] | |
/-- Apply a functor to an `equiv`. -/ | |
def map_equiv (h : α ≃ β) : f α ≃ f β := | |
{ to_fun := map h, | |
inv_fun := map h.symm, | |
left_inv := λ x, by simp [map_map], | |
right_inv := λ x, by simp [map_map] } | |
@[simp] | |
lemma map_equiv_apply (h : α ≃ β) (x : f α) : | |
(map_equiv f h : f α ≃ f β) x = map h x := rfl | |
@[simp] | |
lemma map_equiv_symm_apply (h : α ≃ β) (y : f β) : | |
(map_equiv f h : f α ≃ f β).symm y = map h.symm y := rfl | |
@[simp] | |
lemma map_equiv_refl : map_equiv f (equiv.refl α) = equiv.refl (f α) := | |
begin | |
ext x, | |
simp only [map_equiv_apply, refl_apply], | |
exact is_lawful_functor.id_map x, | |
end | |
end functor | |
namespace bifunctor | |
variables {α' β' : Type v} (F : Type u → Type v → Type w) [bifunctor F] [is_lawful_bifunctor F] | |
/-- Apply a bifunctor to a pair of `equiv`s. -/ | |
def map_equiv (h : α ≃ β) (h' : α' ≃ β') : F α α' ≃ F β β' := | |
{ to_fun := bimap h h', | |
inv_fun := bimap h.symm h'.symm, | |
left_inv := λ x, by simp [bimap_bimap, id_bimap], | |
right_inv := λ x, by simp [bimap_bimap, id_bimap] } | |
@[simp] | |
lemma map_equiv_apply (h : α ≃ β) (h' : α' ≃ β') (x : F α α') : | |
(map_equiv F h h' : F α α' ≃ F β β') x = bimap h h' x := rfl | |
@[simp] | |
lemma map_equiv_symm_apply (h : α ≃ β) (h' : α' ≃ β') (y : F β β') : | |
(map_equiv F h h' : F α α' ≃ F β β').symm y = bimap h.symm h'.symm y := rfl | |
@[simp] | |
lemma map_equiv_refl_refl : map_equiv F (equiv.refl α) (equiv.refl α') = equiv.refl (F α α') := | |
begin | |
ext x, | |
simp [id_bimap] | |
end | |
end bifunctor | |